Reproducing Infinite Boolean Sequences:
an Application of Hidden Markov Models
to Connectionist Learning

A. Kehagias
Division of Applied Mathematics
Brown University
Providence, RI 02912

E-Mail Address: st401843@brownvm.bitnet

Abstract

Given the first few terms of an infinite sequence of 0’s and 1’s, build a network that reproduces the
rest of the sequence. To accomodate this learning task, a framework is developed for learning, general
enough to include learning of finite-length input, finite-length output as well. The similarities between
the finite and infinite learning tasks are considered and parallels are drawn to the speech recognition
problem. Several properties of infinite length learning are obtained, using Hidden Markov Model theory.

1. Introduction: Consider the following learning problem: build a network that, given the first few terms
of an infinite sequence of 0’s and 1’s (call such a sequence a Boolean sequence), will output the rest of the
sequence. The network, will be trained on one or several finite (but possibly quite long) valid sequences.

This problem is similar to a standard connectionist learning problem: given input/output pairs train a
network that will, when presented with an input, produce the correct output. In this paper I will propose
a learning framework that accommodates both the finite and infinite case; also stochastic and deterministic
learning by connectionist networks (henceforth CN) can both be tretated. I will argue that the stochastic
case is more general and interesting.

An apology is due: because of the very limited space, I have only presented the general rationale behind the
theory and some of the theoretical results, but without proof. The proofs and very encouraging computational
results will be reported separately.

2. Learning by Computing Probabilities: The pattern learning problem can be phrased as follows:
given a learning universe L C U x Y (i.e. a set of input/output pairs (u,y)), build a network (and train
it) that, when given an input u € U, will output the ‘correct’ y € Y.

The concept of ‘correctness’ is generally not unambiguous and, in fact, this is an advantage. E.g., given
an input, it is possible that more than one outputs would pass as ‘correct’ in some sense. Also, given an
unambiguous training set T = {(u,y)}, such that we can build a network that will reproduce the training
pairs exactly but will generalize poorly [Huy]. In fact, the power of generalization that CN’s exhibit can be
partly attributed to their tolerance of errors.

Let us then change the learning problem so that more than one correct answer is possible. The entity to
be learned is a conditional probability measure P(y | u) , where u is a U-measurable random variable y
is a Y-measurable random variable, I/ is a o-algebra on U,) is a o-algebra on Y. u, y are the input and
output random variables; the idea is that, given some input, the output is a random variable with probability
conditioned on the input. This prompts the following:

Definition 1 Given random variables x, y, z on an appropriate probability space. x and'y are said to be z
input equivalent iff Prob(x | z) = Prob(y | z).

3. Network Architecture: We will consider connectionist networks, that is, networks of numbers of
simple, identical, interconnected units. The building units will be Stochastic Threshold Units (STU).
These units have the following input/output law:

Prob(y =0 | u=u) = Prob(n > u).

Here 7 is a random variable distributed uniformly in [a, b]. By proper choice of a,b we can get deterministic
output. A network built of such units accepts an input u and produces output y with probability Q(y | u).
As the output is exclusively 0/1, call such a network a Boolean CN. The network is, in general, stochastic.
Of course, nothing precludes that @ is a trivial measure, concentrating mass 1 to one element y and zero to
all others (deterministic case). It is useful to think of the connectionist network itself as equivalent to the
conditional probability measure Q(y | u).

4. Learning Finite Output: The finite input/output problem has been studied by many researchers,
usually as a deterministic problem. (But see [Bar], [Pea], [Lin], [Sol] for probability learning approaches.) In
essence we want to learn a Boolean function from a subset of its graph. The introduction of deterministic
Linearly Graded Units (LGU’s) offers more flexible solutions but still an exponentially large number of
units and exemplars, is needed for perfect learning [Huy]. Once again, the argument for stochastic learning
presents itself: if exact learning requires oversized networks, learning the statistical properties of the output
(which ispossible on a smaller network) is preferrable. Indeed, I submit that the most succesful case of discrete
input/output learning is done by connectionist methods but outside the traditional connectionist research
community. The example I have in mind is speech recognition by Hidden Markov Models (henceforth HMM)
[Lev]. Here exact learning of the input/output relationship is out of the question (because the input/output
function is unknown and the training set is too large for exact, deterministic learning). The HMM modellers
have resorted to a probabilistic model, which can produce rich input/output behavior with few connections
exactly because each unit can produce probabilistically many different outputs. On the other hand, I
have argued elsewhere [Keh] that the HMM is exactly analogous to a connectionist network and can be
implemented as one. Set the intial state of a HMM to u and let it run for a finite time N. The state
sequence of the underlying Markov Chain y = yq,...,yn is a random variable. By identifying sequences of
outputs of a Boolean CN with the (finite) number of states of a HMM, we can easily prove the following:

Theorem 1 To every Hidden Markov Model corresponds a u input equivalent connectionist network of

STU’s.

As for the training algorithm: back propagation is an option, the backward-forward HMM algorithm is
another '. In fact any kind of descent algorithm that utilizes gradient information will benefit from a
forward-backward derivative-computation. This follows from the staged character of the architectures we
have proposed and the use of Lagrange multipliers optimization [Keh]. It is also true of time-evolving
networks which we will use for the infinite output case.

5. Learning Infinite Output: Consider the infinite output case. The STU-networks that we have been
considering can be in an on or off state. It follows that the complete state of an M-unit network can be
characterized at any given moment by an M-long state vector of 0’s and 1’s, indicating which units are on
and which off. Evolution of the state vector in time is described by the network acting on the initial state
vector?. Time is not of great importance in the finite case, because the network is static. However, if we
want an infinite output, we must build an infinitely large network or else trade space for time and obtain the
output sequence as the output of a time evolving network®. The problem of learning an infinite sequence is
the following: we are given the initial part of one or more valid sequences and we want to build a network
that when presented with the beginning of a sequence will produce correct (infinitely long) output. The
natural way to think about the problem is that of building a network that will accept an input and then
will run on its own until infinity, producing output. This is like a dynamical network where we specify the

LGeneralization of the Backward-Forward algorithm to CN’s is possible: results will be reported elsewhere.

2 Another useful state-network characterization is the one based on the state probability vector. This will not be presented
here, for brevity.

3Such networks are called recurrent; they have been considered in the literature [Pin], but usually only as they evolve to
a steady state, that is, as all units settle down to either 0 or 1 output for all time.

initial conditions*. In the proposed general framework, the input is the initial states. The learning task is,
in general, to learn a probability measure P(- | v), where w is the input. It would be nice if the output y,
at time n depended on a finite number of past outputs.

Prob(yn =7 |y¥n-1=01,-,¥1 = 0n-1) = f(01,...,0m) (1)

Here f is a Boolean function of m arguments. This is a highly desirable situation, as we can take this
sequence as the output of a STU-network with, at most, However its also conceivable that

P’I"Ob(yn =T | Yn-1=01,..,¥1 = Jnfl) = f(017 "'70—77,71) (2)

The network as described by equation (1) is an m-th order Markov chain, equivalent to an HMM, which
can be trained by the powerful Backward-Forward algorithm. It can also be implemented as a STU-network
with at most O(2™) units. We will also use the term Boolean Dynamic Network. The next question is
whether the sequence is determinstic or stochastic; consider the case where we are given a finite part of a
sequence and must compute the next terms. We do not know whether it is stochastic or deterministic. Of
course the following fact is true:

Theorem 2 For every deterministic Boolean dynamical network with output y1,ys2, ..., 3 N such that yn+1,
YN42, ... 15 periodic®.

However, the period may turn to be exponentially long, so given a relatively short training sequence lack of
periodic behavior does not determine whther the inifinite sequence is deterministic or stochastic. That is,
we may see any finite substring of 0’s and 1’s followed by either a 0 or a 1; this would still not show that
the sequence is stochastic. In short, we have no basis to decide whether the sequence is deterministic or
stochastic and the reasonable assumption is to try to model it as stochastic.

Definition 2 A aggregate of a stochastic process {X,,} is another process {Y,} s.t. Y, = f(X,).

A HMM is a aggregate of a Markov chain; the output of a connectionist network is a aggregate of the state
vector and, since the state vector is a Markov chain, the output of the connectionist network is the observable
of a Hidden Markov Model.

Definition 3 A Boolean stochastic process is a probability measure on the set of sets of infinite sequences
of 0’s and 1’s (call every such sequence a realization of the stochastic process), that is, P(x = s153....).

With each realization we can associate a number s in the interval [0, 1]; we do this by taking s = .s155...
in binary notation. © The measure P is thus well defined on dyadic intervals and can be extended by
Kolmogorov’s Theorem on the Borel sets in [0, 1]. Hence the stochastic process x is equivalent to a a random
variable x taking values in [0, 1], or, which is really the same thing, to a probability measure on [0, 1]. As
the CN produces a stochastic process depending on the initial conditions, by the same process as the one
outlined above, we have a conditional probability measure P(- | u) associated with each input w.

Now we can apply the same steps as in the finite learning task: we must find a probability measure Q(- | -)
that will approximate P(- | -). Many approximation schemes are available, but it is useful to establish first
that an arbitrarily close approximation is possible.

Theorem 3 Given a Stochastic Process, that is, a measure on [0,1], it can be weakly approzimated by a
sequence of Hidden Markov Models.

4We can go up one degree of generality: Imagine an infinite input as well an infinite output. This would correspond to a
network where we have input at every time instant. We can certainly build such a network. I do not give details here, for lack
of space, but also because it turns out many of the properties of the input network will be similar to the no-input network.
However there are interesting peculiarities, too. Roughly, the no-input network corresponds to a free dynamical network and
the input network corresponds to a control network.

5There is a subtlety here: the actual evolution will depend on the initial conditions. So for different initial conditions the
network may get attracted to a different periodic sequence .This is similar with limit cycles in real-valued nonlinear dynamical
systems, as well as with non-ergodic Markov chains.

6The correspondence is not one-to-one. However, for all interesting cases, we can turn it to one-to-one by dropping out
realizations of probability 0.

Given that there exist HMM’s and hence CN’s that can approximate a stochastic Boolean sequence arbitrarily
close, how does one go about finding them and, probably most important, how does one train them? I have
used several schemes; one, call it structured, is the following: the training sequence is used to estimate the
joint probabilities of x1, xa, ..., ;41 , for some prechosen m; then from these the transition probabilities
P(Zpntm | Tatm—1,..-, Tn) are computed. It is easy to implement a CN that has 2™ + m STU’s and the
above computed transition probabilities. The training of such a network consists in updating the estimates
of the transition probabilities as new data is collected; when these probabilities are known the weights of the
connection can be immediately computed. In this respect it is important to have ergodicity of the teaching
sequence, or else samples from all the ergodic elements. This architecture yields large but easily trainable
networks; yet output is pretty good even with rather small values of m. Another possibility explored is less
structured architectures where a more or less random choice of connectivity is made and then weights are
computed by some backpropagating algorithm. The actual criterion used was either cross entropy between
desired and actual probability function, or the following weighted quadratic criterion:

al Pzn_QZnQ
J:;;((;@m()). (3)

Results were again quite good, with no noticeable differences across learning algorithms and criteria.

One last point must be raised: we are essentially looking at high order sequences and attempt to approximate
them by aggregates. This alleviates certain problems (estimation, size of networks) but, inevitably, produces
some faulty sequences. The degradation in terms of spurious sequences being produced by the approximating
network can be quantified in terms of the entropy H of the model as compared to the entropy of the original
sequence. This is the subject of the following Theorem; remember that an approximation is a aggregate of
the original sequence.

Theorem 4 If a stochastic process X is a aggregate of a stochastic processy, then H(x) > H(y). If y, =y,
then H(yn) | H(y).

This is yet another way of saying that there are approximating networks that will approximate the original
sequence arbitrarily well.

6. Conclusion: I have presented an outline of a framework for learning that involves infinitely large learn-
ing universes. The basic idea is that as the learning(and training) universe get large it is not feasible to
learn deterministically, especially when it is not clear that the objects being learned behave deterministi-
cally. Therefore stochastic learning methods are proposed; several theoretical results indicate that stchastic
learning is feasible and practical. Computational results are also very encouraging, but were not presented
for lack of space.

REFERENCES

[Bar] Barto A.G. et al., Pattern-Recognizing Stochastic Learning Automata, IEEE SMC, Vol.15, No.3, May
1985.

[Huy] Huy, K.A. and Horowitz, M.A., Generalization in Connectionist Networks that Realize Functions,
Proc. of the Pittsburgh Connectionist School, Morgan Kauffman, 1988

[Keh] Keh, Ath., Optimal Control for Training: The missing Link between Hidden Markov Models and
Connectionist Training, Brown University, Div. of Appl. Math. Preprint, 1989

[Lev] Levinson, S.E. et al., An Introduction to the Application of the Theory of Probabilistic Functions of a
Markov Process to Automatic Speech Recognition, Bell Sys. Tech. J., Vol. 62, No.4, April 1983

[Lin] Linsker, R. Self-Organizing in Perception Networks, IEEE Computer,Vol.21,No.3, March 1988

[Pea] Pearlmutter,B. and Hinton G., G-Mazimization: An Unsupervised Learning Procedure, Neural Net-
works for Computing, AIP Conf. Proc. 151, 1986

[Pin] Pineda, F., Generalization of Back-Propagation to Recurrent Neural Networks, Phys. Rev. Let.,
Vol.59, No.19

[Sol] Solla, S. Accelerated Learning Experiments in Layered Neural Networks, Complex Systems, Vol. 2
1988

