
Some Properties of Nonlinear MAP Estimation by

Simulated Annealing

A. Kehagias
Division of Applied Mathematics

Brown University
Providence, RI 02912

E-Mail Address: kehagias@brown.csc.edu

October 11, 2001

Abstract

A Simulated Annealing method is presented for the solution of nonlinear time
series estimation problems, by maximization of the a Posteriori Likelihood function.
Homogeneous temperature annealing is proposed for smoothing problems and inho-
mogeneous temperature annealing for filtering problems. Both methods of annealing
guarantee convergence to the Maximum A Posteriori Likelihood (MAP) estimate. En-
tropy change with temperature provides a heuristic evaluation of speed of convergence.

1 Introduction

The problem addressed in this paper is the following: Consider a discrete time stochastic
dynamic system with state vector xn taking values in Rd, obeying the equation

xn = f(xn−1) + un, (1)

and observation vector yn taking values in Rc

yn = g(xn) + vn. (2)

Here, un, vn, n = 1, 2, ... are zero mean, white and independent of each other stochastic
processes, with probability laws pun(u), pvn(v) respectively. Furthermore, we assume a
random initial state x0, with probability law px0(x), and independent of un, vn.

Let XN = [x0, ..., xN ], Y N = [y1, ..., yN ]. The Maximum A Posteriori Estimation
problem is: given Y N , find vectors Z ∈ Rd·N , z ∈ Rd such that for given Y N ,

pXN (Z | YN ), pxN (z | YN )

are maximized. (Here the vertical bars indicate conditional probabilities.) Maximization
of the first probability is the smoothing problem, maximization of the second probability
is the filtering problem.
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2 Notation - Conventions

In general lowercase subscripted letters refer to vectors in Rd, e.g. xn. The same
letters in uppercase refer to vectors made up by a sequence of Rd-valued vectors. E.g.
Xn = [x1, ..., xn]. I use the following naming convention: an estimator is a stochastic
process (s.p., denoted by a doubly subscripted letter, e.g. Xt,n, xt,n) and an estimate
is a random variable (r.v., e.g. X̂m,n, x̂m,n). For example, we could have the estimator
converging to an estimate: limt→tm Xt,n = X̂m,n. This is denoted by using the same
letter for both, with a hat on top for the r.v. We have two levels of time here: time
indicated by m,n, n + 1, ... is the time in which the system (1)-(2) evolves; time indicated
by t is the time in which the estimation algorithm runs. I assume that all probability
distributions in this paper, except possibly the one on the global minima of Hn (see, the
following sections), do not concentrate on only one point. In other words, p(X) > 0 for
at least two distinct values of X. I also assume that the log-likelihood function Hn is
nonnegative.

3 Smoothing - Preliminaries

Consider a fixed number of observations, n. Note that

p(Xn | Y n) =
p(Y n | Xn)p(Xn)

p(Y n)
, (3)

p(Xn) = p(xn | xn−1)p(xn−1 | xn−2)...p(x1 | x0)p(x0) =

pun(xn − f(xn−1))pun−1(xn−1 − f(xn−2))...pu1(x1 − f(x0))px0(x0), (4)

p(Y n | Xn) = pvn,vn−1,...,v1(yn − g(xn), ..., y1 − g(x1)) =

pvn(yn − g(xn))pvn−1(yn−1 − g(xn−1))...pv1(y1 − g(x1)). (5)

Hence, for given Y n, maximization of p(Xn | Y n) is equivalent to maximization of
H∗,n(Xn) .= p(Y n | Xn)p(Xn). But, we have

H∗,n(Xn) = pun(xn − f(xn−1))pun−1(xn−1 − f(xn−2))...px0(x0)·

pvn(yn − g(xn))...pv1(y1 − g(x1)). (6)

Define Hn(Xn) .= −log H∗,n(Xn): the negative log-likelihood function of Xn. Maxi-
mization of H∗,n(Xn) is equivalent to minimization of Hn(Xn). By defining functions
U0(.)

.= −log px0(.), Um(.) .= −logpum(.), Vm(.) .= −log pvm(.), we can write

Hn(Xn) = U0(x0) +
n∑

m=1

[Um(xm − f(xm−1)) + Vm(ym − g(xm))]. (7)

Now, take the usual aproximation of the continuous valued variables xm by discrete
variables xm, taking values xm ∈ Λ = {λ1, ..., λL}. Assume the approximation is good
enough that minimization of Hn(Xn) over Rd·n is equivalent to minimization over Ω = Λn.
Define J =| Ω |.
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4 Smoothing by Simulated Annealing

The method of simulated annealing was introduced by Kirkpatrick [4] for combinatorial
optimization problems. Geman and Geman [3] proved important convergence results and
used the method for image restoration. The present work is very much in line with their
paper.

The function Hn(Xn) has a number of global minima Xn
1 , ..., Xn

K ∈ Rd·n. The smooth-
ing problem is to find one of them. Simulated annealing solves the smoothing problem in
the following way: we will consider a stochastic process Xt,n which will be constructed in
such a way as to ensure that the estimator Xt,n will converge to one of the minima of Hn.
More exactly, define the random variable X̂n which takes values in the set {Xn

1 , ..., Xn
K}

with a uniform probability distribution. Then we will construct Xt,n in such a way that
it converges in distribution to X̂n, as t →∞.

To achieve this convergence, perform the following algorithm:

Homogeneous Annealing Algorithm

Given a positive function of time, T (t),
and a random variable Ẑ , taking values in Ω,

choose X0,n arbitrarily and, given Xt,n,
choose Xt+1,n in the following way:

Pick Ẑ ∈ Ω randomly and, given T (t), compute q:

q
.=

exp(−Hn(Ẑ)
T (t) )

exp(−Hn(Xt,n)
T (t) )

. (8)

If q ≥ 1 Xt+1,n = Ẑ with probability 1.
If q < 1 Xt+1,n = Ẑ with probability q (else Xt+1,n = Xt,n).
Continue for the next t.

In this way we generate a stochastic process Xt,n. It is easy to prove (by similar
arguments as the ones used in Geman and Geman [3] for the ”Gibbs Sampler”, a slightly
different algorithm) that to have Xt,n → X̂n, it is sufficient that two conditions are
satisfied. The first condition has to do with the probability law of Ẑ and further details
can be found in Geman and Geman [3]. The second condition is on T (t), the ”temperature”
parameter: lim T (t)t→∞ = 0 at a slow enough pace - specifically

T (t) ≥ K

logt
. (9)

If the above conditions hold, then

lim
t→∞

Xt,n = X̂n
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(the limit is in the distribution sense).
Here, let us consider only annealing schedules that are piecewise constant:

T (t) =


T1 t0 ≤ t ≤ t1
T2 t1 ≤ t ≤ t2
... ...
Tn tn−1 ≤ t ≤ tn

and respect the logarithmic bound of eq.(9).
We know [3] that for t1− t0, t2− t1, ... big enough the stochastic process Xt,n → X̂m,n

(for t → tm) where X̂m,n is a random variable (the estimate) with

πm
i

.= p(Xm = Xi) =
exp(− 1

Tm
Hn(Xi))∑J

i=1 exp(− 1
Tm

Hn(Xi)
) (10)

(The quantity Z(T ) .=
∑J

i=1 exp(− 1
T Hn(Xi)) is called the partition function.)

So, in the limit t → tm, the estimate has a distribution πm = {π1, ..., πj} and, accord-
ingly, an average log-likelihood

E(−Hn(X̂m,n)) = Gm. (11)

Define
G(t) .= Gm for tm−1 ≤ t ≤ tm. (14)

Now, Jaynes [1,2] proves that the equilibrium distribution πm is the maximum entropy
distribution of all distributions satisfying (11). Obviously, Gm in (11) is a measure of
the likelihood of X̂m,n (as an estimate of Xn). For a given temperature we pick the max
entropy estimate subject to fixed average likelihood. The max entropy estimate is the
most honest to choose (see [2]). However, we actually want an estimate with small entropy
This is resolved, as temperature decreases. When T ↓ 0, E(−Hn) ↑. This is true because

G(t) =
d

d(−1/T (t))
(log

J∑
i=1

exp(− 1
T (t)

Hn(Xi)) (13)

dG

dT
=

1
T 2

· (E(Hn)2 − E((Hn)2)) ≤ 0. (14)

And secondly, for the entropy, defined by S
.= −

∑J
i=1 πilog πi, we have

S(t) =
J∑

i=1

1
T (t)

Hn(Xi)
exp(− 1

T (t)H
n(Xi))

Z(T (t))
− logZ(T (t)), (15)

dS

dT
=

1
T 3

· (E((Hn)2)− E(Hn)2) (16)

At every temperature step (tm−1 ≤ t ≤ tm), we effectively fix a likelihood level Gm and pick
the maximum entropy estimate with such likelihood. When going to a lower temperature,
we increase the likelihood (Tm ↓, so Gm ↑) and decrease the maximum entropy. This is
then a minimax procedure on the entropy, with a simultaneous increase of the likelihood
of the estimator. In the limit of T (t) → 0 we get a very likely estimate with a low entropy.
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One might object that the average value of Gm does not yield much information about
what the actual value of Gm is. However, we can extract more information using Markov’s
inequality. Set p

.= P (X̂m,n | Y n). Then

P (−log p ≥ α) ≤ 1
α

E(−log p) =
1
α

Gm ⇒

P (e−log p ≥ eα) ≤ 1
α

Gm ⇒

P (P (X̂m,n | Y n) ≤ e−α) ≤ 1
α

Gm. (17)

5 Filtering

For filtering we would like to maximize pxn(z | Y n). But this task is not well suited to
the Simulated Annealing method. The power of linear systems filtering (see Kalman [5])
is in that it can be done in a recursive way. But this is not true of Simulated Annealing.
On the other hand SA is well suited to maximizing pXn(Z | Y n). This maximization
yields more information, but is also computationally more intensive. Ideally, we would
like to use the basic idea of recursive filtering, that is, to use some of the previous work
in the next step, but retain the Simulated Annealing context, which makes treatment
of nonlinear problems as easy as that of linear ones. Another complication is that for
mn

.= min Hn(Xn+1), we will generally have mn → ∞, and no useful estimates of the
form of eq.(17) can be found.

To overcome the above problems, we will use a trick that is usual in filtering theory:
Define Wm(xm, xm−1)

.= Um(xm, xm−1) + Vm(xm, xm−1) if m > 0 and Wm(xm, xm−1)
.=

Um(xm) for m = 0 (where Um, Vm refer to eq.(..)). Define

Hn(Xt,n) .=
n∑

l=1

Wl(xt,l, xt,l−1). (18)

(This is the Hn function of the previous sections with Xt,n as argument.) Define

Hn
λ(m)(X

t,n) .=
n∑

l=1

λl(m)Wl(xt,l, xt,l−1) (19).

Define the functions In,q, Jn,q, In,q
λ(m), J

n,q
λ(m) as follows:

In,q .=
q∑

l=1

Wl, Jn,q .=
n∑

l=q+1

Wl In,q
λ(m)

.=
q∑

l=1

λ(m)lWl, J n,q
λ(m)

.=
n∑

l=q+1

λ(m)l−qWl. (20)

Also we will make the following assumptions about these functions:

Assumptions:

1. ∃ m1, m2 s.t. ∀Z ∈ Ω, ∀ l m1 ≤ Wl(Z) ≤ m2

2. ∃ k1, q λ(m) s.t. ∀ n E(In,q
λ(m)) ≥ n · k1 · E(J n,q

λ(m)).
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3. ∃ k2, q, λ(m) s.t. ∀ n E((In,q
λ(m))

2) ≥ n · k2 · E((J n,q
λ(m))

2).
4. ∃ ε s.t. ∀ n q λ(m) E((In,q

λ(m))
2) ≥ ε · E(In,q

λ(m))
2

(The above assumptions will certainly hold for any practical case and are in fact
easily derivable from the boundedness of Wl, the finiteness of the state space Ω and
the nondegeneracy of the probability distributions. They are listed explicitly only for
convenience.)

It is easy to see that ∀ fixed m, n, λ(m) < 1 (by Assumption 1) Hn
λ(m) < M <

∞ ∀ n, m. Also, it is easy to check that {Hn
λ(m)(X

t,n)}tm
t=1 is a submartingale with

respect to the σ-algebra generated by {Xt,n}tm
t=1. Hence it is a bounded submartingale (for

fixed n) and so converges w.p. 1 to some r.v., call it M̂n
1 . However, lim t→tmHn

λ(m)(X
t,n) =

Hn
λ(m)(X̂

m,n) weakly. So it follows that lim t→tmHn
λ(m)(X

t,n) = Hn
λ(m)(X̂

m,n) w.p. 1.
Why bother to change the likelihood function? Apart from the convenience of intro-

ducing a submartingale, there is a heuristic justification and computational advantages to
be gained. Also, it will be proven that, by taking an appropriate limiting procedure, we
can recover the solution to the original problem.

For the purpose of this discussion, use the following terminology: At time q we have
an estimate X̂q and at time n an estimate X̂n = [X̄n

q , X̃n
q ]. We will call X̄n

q (which is a
q · d vector) the ”first part” of X̂n and X̃n

q the ”last part”. We will use ”first” and ”last”
in the same sense for the estimator Xt,n+1.

X̂q, X̄n
q are estimates of the same quantity. It is intuitively obvious, that the new

observations yq+1, ..., yn will not completely invalidate our old estimate, and, in fact, we
can be fairly confident that X̂n ' X̄n

q . At any rate, it is a good idea to start the new
annealing algorithm with the old estimate as initial value for the first part of Xt,n.

On the other hand, the choice of the initial temperature, as indicated in the previous
section, is related to the confidence we have in the estimate. If we consider a piecewise
constant cooling schedule, as we go to lower and lower temperatures, we consider classes
of more and more likely estimates. Furthermore our state of higher confidence in the first
part of the estimate must be reflected in the annealing scheme we will use. Finally, entropy
is often used as an indication of the distance from equilibrium (see 6).

I will now show that an annealing scheme that uses two temperatures, T1 (low) for
the first part of Xn and T2 (high) for the second part of Xn, reduces entropy and reflects
the differing degrees of confidence in the two parts of our estimate. I call this new scheme
inhomogeneous annealing

In place of one constraint (eq.(11)) on the likelihood of X̂m,n+1, we will use the two
constraints:

E(−In,q
λ(m)(X̂

m,n)) .= Gm,1, E(−J n,q
λ(m)(X̂

m,n)) .= Gm,2 (21)

Annealing according to a law ∼ exp(− I
T1
− J

T2
) will yield the max-entropy distribution

that respects the above constraints. Now, dropping the indices for brevity, it is clear that
H = I + λ(m)qJ . Also, Hn

λ(m) = Hn when λ(m) = 1. Define H̄ .= I + αJ . Annealing

H̄ homogeneously at temperature T1 (that is with law ∼ exp( H̄T1
)) is equivalent to

1Strictly speaking this is not true, since tm is finite. Assume tm to be large enough that convergence is
”almost achieved”.
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annealingH inhomogeneously at temperatures T1, T2 (that is with law∼ exp(− I
T1
− J

T2
)).

with T2 = T1
α . Clearly, the choice of α determines whether we perform homogeneous

or inhomogeneous annealing of Hn. For α = 1 we have homogeneous annealing. For
α = λq(m) < 1 we have inhomogeneous annealing. It will be shown that inhomogeneous
annealing has lower entropy, hence smaller computational load, and reflects our higher
confidence in the likelihood of the first part of the estimator during the initial stages of
the computation. As we proceed, we would like the difference in the likelihood of the two
parts of the estimator to decrease. This implies that we want λ(m) → 1, which has the
effect of gradually equalizing the confidence we have in the two parts of the estimate. To
prove the above claims we need the following formulas (which are easy to prove):

dGm,1

dT1
=

1
T 2

1

· { − E(I2) + E(I)2} (22)

dGm,2

dT1
=

1
T 2

1

· { − E(IJ ) + E(I)E(J )} (23)

dS

dT1
=

1
T 2

1

· {E(
I
T1

+
J
T2
I)− E(

I
T1

+
J
T2

)E(I)} (24)

Using the above we can also prove that:
1. For fixed T2, entropy decreases as T1 decreases (equivalently, as α ≤ 1). This follows

from the fact that

dS

dT1
≥ 1

T 3
1

· [E(I2)− n · k1 · T2 + T1

n · k1 · T1 · T2
E(J )2)] ≥ 0 for large n. (25)

(Where we used Assumptions 2 and 4.)
2. For fixed T2, G1 increases as T1 decreases. This is a direct consequence of eq.(22).
3. For fixed T2, G1 −G2 increases as T1 decreases. This follows from the fact that

d(G1 −G2)
dT1

=
1
T 2

1

· [−E(IJ ) + E(I)E(J ) + E(I2)− E(I)2)] ≥

1
T 2

1

[E(I2)− (1 +
k2

n
)E(I)2] ≥ 0 (26).

(Where we have made use of Assumptions 3 and 4.)
Now, we have three facts:
1. The entropy decrease justifes the claim about computational savings.
2. Since {Hn

λ(m)) is a submartingale we can use the Markov inequality for martingales
and reason about the value of the log-likelihood function from its expectation:

P (maxt≤tm P (Xt,n | Y n) ≤ e−α) ≤ 1
α

(Gm,1 + Gm,2) (27).

This justifies, along with eq.(21), the confidence equalization argument.
3. As mentioned, λ(m) → 1 ; but this implies that we are approaching the minimizer

of Hn. Taking λ(m) ↑ 1 and using the Dominated Convergence Theorem, we get that

limλ(m)→1Hλ(m)
n (Xm,n) = Hn(Xm,n) w.p.1. (28)
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So, in the limit tm → ∞, Hn
λ(m)(.) and Hn(.) have the same minima. This fact supports

the following conjecture (also supported by numerical experimentation):

Conjecture:

For any n, exists m large enough that we have:

limn̄→∞[argmin Hn
λ(m)(.)− argmin Hn+n̄(.)]i = 0 (for 1 ≤ i ≤ n ) (29)

(where [Z]i indicates the i-th component of a vector).

The significance of this result is that, as we get longer and longer time series and
obtain optimal estimates, the estimate x̂m,n tends to a limiting value. This value (by the
convergence of Hn to Hn) has to be the minimizing value for Hn.

In short, annealing with an inhomogeneous temperature law yields reduced compu-
tation (by the empirical entropy argument), reflects the difference of confidence levels in
parts of the estimate, introduces a submartingale process that allows use of the Markov
inequality and solves the problem of unbounded log-likelihood functions. Hence we have
a viable solution to the filtering problem.

6 Conclusion

We have looked at two problems: MAP smoothing and MAP filtering of observations
of nonlinear dynamical systems. These are both hard problems for which no satisfactory
and general solution exists to date. Smoothing can be done as a straightforward extension
of the Homogeneous Annealing Algorithm. The ease of ipmplementation of this algorithm
for any kind of nonlinear system and the guaranteed convergence make it very attractive.
Filtering is a harder problem, but the Inhomogeneous Annealing Algorithm makes a more
efficient computation possible and retains simplicity of implementation and guaranteed
convergence.
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