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Abstract

A simulated annealing method is presented for Maximum A Poste-
riori state estimation. Specifically, I consider the problems of smooth-
ing and filtering. A minimax entropy interpretation is proposed to
motivate the method.

1 Introduction

The problem addressed in this paper is the following. Consider a discrete
time stochastic dynamic system with state vector xn taking values in RN ,
obeying the equation

xn = f(xn−1) + un, (1)

and observation vector yn ∈ RM

yn = g(xn) + vn. (2)

Here, un, vn, n = 1, 2, ... are zero mean, white and independent of each other
stochastic processes, with probability laws pun(u), pvn(v) respectively. Fur-
thermore, we assume a random initial state x0, with probability law px0(x),
and independent of un, vn. When the context is clear, I will also write
p(un), p(vn), p(x0).

Let Xn = [x0, ..., xn], Y n = [y1, ..., yn]. The Maximum A Posteriori
Estimation problem is to find vectors Z ∈ RN ·n, z ∈ RN such that for given
Yn,

pXn(Z | Yn), pxn(z | Yn)

are maximized. (Here the vertical bars indicate conditional probabilities.)
Maximization of the first probability is the smoothing problem, maximiza-
tion of the second probability is the filtering problem.
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2 Notation

Unless otherwise specified, lowercase subscripted letters refer to stochastic
processes that take values in RN , e.g. xn. The same letters, with a bar or
hat, refer to random variables, e.g. x̂m. Uppercase superscripted letters,
refer to stochastic processes made up by a sequence of RN -valued stochastic
processes . E.g. Xt,n = [xt,1, ..., xt,n]. Bars and hats refer, again, to random
variables.

In general, I use the following naming convention: an estimator is a
s.p., e.g. Xt,n and an estimate is a r.v., e.g. X̂m,n. For example, we could
have the estimator converging to an estimate: limt→tm Xt,n = X̂m,n. We
have two levels of time here: time indicated by m,n, n + 1, ... is the time in
which the dynamical system (1)-(2) evolves; time indicated by t is the time
in which the estimation algorithm runs.

3 Smoothing - Preliminaries

Consider a fixed number of observations, n. Note that

p(Xn | Y n) =
p(Y n | Xn)p(Xn)

p(Y n)
, (3)

p(Xn) = p(xn | xn−1)p(xn−1 | p(xn−2)...p(x0) =

pun(xn − f(xn−1)pun−1(xn−1 − f(xn−2))...p(x0), (4)

p(Y n | Xn) = pvn,vn−1,...,v1(yn − g(xn), ..., y1 − g(x1)) =

pvn(yn − g(xn))pvn−1(yn−1 − g(xn−1))...pv1(y1 − g(x1)). (5)

Hence, for given Y n, maximization of p(Xn | Y n) is equivalent to maxi-
mization of p(Y n | Xn)p(Xn) = U∗(Xn). But, we have

U∗(Xn) = pun(xn − f(xn−1))pun−1(xn−1 − f(xn−2))...px0(x0)·

pvn(yn − g(xn))...pv1(y1 − g(x1)). (6)

Define U(Xn) = −logU∗(Xn): the negative log-likelihood function of Xn.
Maximization of U∗(Xn) is equivalent to minimization of U(Xn). By defin-
ing functions U0(.) = −log px0(.), Um(.) = −logpum(.), Vm(.) = −log pvm(.),
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we can write

U(Xn) = U0(x0) +
n∑

m=1

[Um(xm(xm − f(xm−1)) + Vm(ym − g(xm))] . (7)

Now, take the usual aproximation of the continuous valued variables xm

by discrete variables xm, taking values xm ∈ Λ = {λ1, ..., λL}. Assume the
approximation is good enough that minimization of U(Xn) over RN ·n is
equivalent to minimization over Ω = Λn.

4 Smoothing by Simulated Annealing

The method of simulated annealing was introduced by Kirkpatrick [4] for
combinatorial optimization problems. Geman and Geman [3] proved impor-
tant convergence results and used the method for image restoration. The
present work is very much in line with their paper.

The function U(Xn) has a number of global minima Xn
1 , ..., Xn

K ∈ RN ·n.
The smoothing problem is to find one of them. Simulated annealing solves
the smoothing problem in the following way: we will consider a stochastic
process Xt,n which will be constructed in such a way as to ensure that the
estimator Xt,n will converge to one of the minima of U. More exactly, define
the random variable X̂n which takes values in the set {Xn

1 , ..., Xn
K} with

a uniform probability. Then we will construct Xt,n in such a way that it
converges in distribution to X̂n, as t →∞.

To achieve this convergence, perform the following algorithm:

Homogeneous Annealing Algorithm

Given a positive function of time, T (t),
and a random variable Ẑ , taking values in Ω,

choose X0,n arbitrarily and, given Xt,n,
choose Xt+1,n in the following way:

Pick Ẑ ∈ Ω randomly and, given T (t), compute q:

q =
exp(−U(Ẑ)

T (t) )

exp(−U(Xt,n)
T (t) )

. (8)
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If q ≥ 1 Xt+1,n = Ẑ with probability 1.
If q < 1 Xt+1,n = Ẑ with probability q (else Xt+1,n = Xt,n).
Continue for the next t.

In this way we generate a stochastic process Xt,n. In [3] it is proven that
for Xt,n → X̂n, it is sufficient that two conditions are satisfied. The first
condition has to do with the probability law of hatZ and further details
can be found in [3]. The second condition is on T (t), the ”temperature”
parameter: T (t) → 0 at a slow enough pace - specifically

T (t) ≥ K

logt
. (9)

If the above conditions hold, then

lim
t→∞

Xt,n = X̂n

(the limit is in the distribution sense). In practice we start the algorithm
at a temperature Ti and end at Tf = ε > 0. Assuming that at any time we
use the lowest admissible value of T (t) = K/logt we have a total execution
time of

∆t = exp(K/Tf )− exp(K/Ti). (10)

Here, let us consider only annealing schedules that are piecewise con-
stant:

T (t) =


T1 t0 ≤ t ≤ t1
T2 t1 ≤ t ≤ t2
... ...
Tn tn−1 ≤ t ≤ tn

and respect the logarithmic bound of eq.(9). Then the execution time is
essentiallly the same as in eq.(10).

Furthermore from [3] we know that for t1 − t0, t2 − t1, ... big enough
the stochastic process Xt,n → X̂m,n (for t → tm) where X̂m,n is a random
variable (the estimate) with

πm
i = p(Xm = Xi) =

exp(− 1
Tm

U(Xi)∑J
X∈Ω exp(− 1

Tm
U(X)

(Xi ∈ Ω) (12)

So, in the limit t → tm, the estimate has a distribution πm = {π1, ..., πj}
and, accordingly, an average log-likelihood

E(−U(X̂m,n)) = Gm. (13)
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Define
G(t) = Gm for tm−1 ≤ t ≤ tm. (14)

Now, Jaynes [1,2] proves that the equilibrium distribution πm is the
maximum entropy distribution of all distributions satisfying (13). Obviously,
Gm in (13) is a measure of the likelihood of X̂m,n (as an estimate of Xn).

What happens then in our annealing scheme is the following: For a
given temperature we pick the max entropy estimate subject to fixed average
likelihood. The max entropy estimate is the most honest, or most efficient
one to choose (see [2]). However, we actually want an estimate with small
entropy (ideally, in the limit we would like to have an estimate with zero
entropy - it would take just one value with probability 1 and that value
would maximize U).

This is resolved, as temperature drops to lower and lower levels. First
of all, as temperature decreases, expected likelihood increases. This is true
because

G(t) =
d

d(−1/T (t))
(log

∑
X∈Ω

exp(− 1
T (t)

U(X)) (12)

dG

dT
≤ 0. (16)

And secondly, for the entropy, defined by

S(t) =
∑
X∈Ω

1
T (t)

U(X)
exp(− 1

T (t)U(X))

C(T (t))
− logC(T (t)), (17)

dS

dT
≥ 0. (18)

At every temperature step then (tm−1 ≤ t ≤ tm), we effectively fix a likeli-
hood level Gm and pick the maximum entropy estimate with such likelihood.
When going to a lower temperature, we increase the likelihood (Tm ↓, so
Gm ↑) and decrease the maximum entropy. This is then a minimax proce-
dure on the entropy, with a simultaneous increase of the likelihood of the
estimator. In the limit of T (t) → 0 we get a very likely estimate with a low
entropy.

5 Filtering

For filtering we would like to maximize pxn(z | Y n). It turns out this is a
rather difficult task. In a sense, it is better anyway to maximize pXn(Z | Y n),
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but we also have to work harder. The power of linear systems filtering [5] is
in that it can be done in a recursive way. Simulated annealing can be used
for nonlinear problems but it is not obvious how to do this recursively. The
general idea of recursive filtering is to use some of the previous work in the
next step.

We now want to minimize

U(Xn+1) = −logpx0(x0)−
n∑

m=1

[logpum(xm − f(xm−1) + logpvm(ym − g(xm)]

−logpun+1(xn+1 − f(xn))− logpvn+1(yn+1 − g(xn+1). (19)

For the purpose of this discussion, use the following terminology: At time
n we have an estimate X̂n and at time n+1 an estimate X̂n+1 = [X̄n, x̂n+1].
We will call X̄n the ”first part” of ˆXn+1 (or Xt,n+1) and x̄n+1 the ”last
part”. We will use ”first” and ”last” in the same sense for the estimator
Xt,n+1.

X̂n, X̄n are estimates of the same quantity. It is intuitively obvious, that
the new observation yn+1 will not completely invalidate our old estimate,
and, in fact, we can be fairly confident that X̂n ' X̄n. At any rate, it is
a good idea to start the new annealing algorithm with the old estimate as
initial value for the first part of Xt,n+1.

On the other hand, the choice of the initial temperature, as indicated in
the previous section, is related to the confidence we have in the estimate.
If we consider a piecewise constant cooling schedule, as we go to lower and
lower temperatures, we consider classes of more and more likely estimates.

Furthermore our state of higher confidence in the first part of the esti-
mate must be reflected in the annealing scheme we will use.

This is feasible by the Jaynes interpretation of maximum entropy meth-
ods. In place of one constraint (eq.(13)) on the likelihood of X̂m,n+1, let us
use two constraints, one on the likelihood of X̂m,n and one on the likelihood
of x̂m,n+1. To be more specific, define the functions

U1(Xn) = −log px0(x0)−

n∑
m=1

[log pum(xm − f(xm−1)) + logpvm(ym − g(xm))], (20)

U2(xn, xn+1) = −log pun+1(xn+1− f(xn))− logpvn+1(yn+1− g(xn+1)). (21)
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U1 is the negative log-likelihood of X̂n, U2 is the negative log-likelihood
of x̂n+1 conditioned on x̂n. If we set fixed levels for the expectations of these
two functions

E(−U1(X̂m,n)) = G1
m, (22)

E(−U2(x̂m,n, x̂m,n+1)) = G2
m, (23)

then the maximum entropy estimate X̂m,n+1 satisfying (22), (23) has the
following distribution

p(Xm,n+1 = (z1, ..., zn+1)) =

1
C(T1, T2)

· exp(− 1
T1

U1(z1, ..., zn)− 1
T2

U2(zn, zn+1)). (24)

Assume max|U2(Z)
U1(Z) | � 1. (this would be no problem for laws occuring in

practice, e.g. Gaussians).Then, computing dG1
m

dT1
, d(G1

m−G2
m)

dT1
, we find they

are always negative. That is, when we decrease T1, we increase G1
m and,

furthermore, we increase it more than G2
m. The conclusion is: an estimate

X̂m with a probability law given by (24), is more reliable in its first part:
(x̂m,1, ..., x̂m,n), than in its last: x̂m,n+1. This agrees well with the way
we want to weigh the parts of X̂m,n+1. How to get an estimate with the
law (24)? From [3] we know it is the limit of a stochastic process Xt,n+1,
generated by an algorithm like the one described in the previous section, the
only difference being in that we now have two functions: T1(t), T2(t) and the
quantity q is given by

q =
exp(− 1

T1(t)U1(z1, ..., zn)− 1
T2(t)U2(zn, zn+1))

exp(− 1
T1(t)U1(Xt,n)− 1

T2(t)U2(xt,n, xt,n+1))
, (25)

With T1(t) = T1, T2(t) = T2, the algorithm gives, in the limit t → tm, a r.v.
with the law (24). With T1(t), T2(t) as in (11), it is an annealing algorithm;
call it Inhomogeneous Annealing Algorithm.

So we will get the max entropy estimate in a given class. But what we
are really interested is a fast annealing schedule that will yield the minimum
of U = U1 + U2. To achieve this there are two points to arrange.

First, as we proceed in the computation, we would like the difference
in the likelihood of the two parts of the estimator to decrease. (This is
because our initial uninformed guess xt,n+1, t = 0 gets closer to the optimal
value as t → ∞.) An obvious way to have the difference decrease, is to
gradually diminish the difference ∆T = T 1

m−T 2
m. Specifically, take T 2

m(t) =
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h(t)T 1
m(t), h(t) ↓ 1. This has the effect of gradually equalizing the confidence

we have in the two parts of the estimate. In addition it allows us to start
the system at a lower temperature (hence fewer iterations will be needed).
We only want to keep the last part of the system at a high temperature and
we can cool this faster.

Second, inhomogeneous annealing of the function U = U1+U2 according
to (25) is equivalent to homogeneous annealing of the function U∗ = U1 +
(T1/T2) · U2. Consequently, the actual minimum to be reached will be a
minimum of U∗. However, again from [3], we know that the convergence
is not influenced by initial values. So, suppose at a given time, late in the
annealing schedule, when T 1

m/T 2
m ' 1, T 1

m, T 2
m ' 0, we fix T 1

m, T 2
m and keep

them constant for the rest of the process. The whole process, then will yield
a good approximation to a minimum of U∗ ' U .

The above two observations indicate that applying the inhomogeneous
annealing algorithm at time n+1 with initial values as determined from
time n, T1 lower than T2, T2 cooling faster and asymptotically approaching
T1, will yield a good approximation to the minimum of p(Xn+1 | Y n+1)
in a shorter time then what would be required had we done the problem
completely from scratch.

6 Conclusion

We have looked at two problems: MAP smoothing and MAP filtering of ob-
servations of nonlinear dynamical systems. These are both hard problems
for which no satisfactory and general solution exists to date. Smoothing
can be done as a straightforward extension of the Homogeneous Annealing
Algorithm. The ease of ipmplementation of this algorithm for any kind of
nonlinear system and the guaranteed convergence make it very attractive.
Filtering is a harder problem, but the Inhomogeneous Annealing Algorithm
makes a more efficient computation possible and retains simplicity of imple-
mentation and guaranteed convergence.
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