ΜΕΛΕΤΗ ΤΗΣ ΑΝΤΟΧΗΣ ΣΥΓΚΡΑΤΗΣΗΣ ΜΕΡΙΚΩΝ
ΕΝΘΕΜΑΤΩΝ ΛΥΟΜΕΝΩΝ - ΕΚΚΕΝΤΡΩΝ
ΣΥΝΔΕΣΕΩΝ ΕΠΙΠΛΩΝ ΣΕ ΜΟΡΙΟΠΛΑΚΑ ΚΑΙ
ΙΝΟΠΛΑΚΑ ΜΕΣΗΣ ΠΥΚΝΟΤΗΤΑΣ (MDF)

I. ΜΠΑΡΜΠΟΥΤΗΣ, B. ΒΑΣΙΛΕΙΟΥ
e-mail: jbarb@for.auth.gr e-mail: vass@for.auth.gr
Τμήμα Δασολογίας και Φυσικού Περιβάλλοντος, Α.Π.Θ.,
Εργαστήριο Δασικής Τεχνολογίας

A STUDY OF THE HOLDING STRENGTH OF SOME
INSERT FITTINGS USED IN THE READY-TO-
ASSEMBLE FURNITURE JOINTS IN
PARTICLEBOARD AND MDF

I. BARBOUTIS B. VASSILIOU
e-mail: jbarb@for.auth.gr e-mail: vass@for.auth.gr
Aristotle University, Department of Forestry and Natural Environment,
Laboratory of Wood Products Technology
Περίληψη

Στην κατασκευή των συνδέσεων των λιύμενων επίπλων χρησιμοποιούνται πολλοί τύποι ενθεμάτων (πίροι βιδωτοί, υποδοχές πλαστικές - μεταλλικές, φεράμια πλαστικά - μεταλλικά), για να συνδέσουν υφίσταμαι μοριοπλάκα και ινοπλάκα μέσης πυκνότητας. Στην εργασία αυτή μελετήθηκε η αντοχή συγκράτησης κάθετη στην επιφάνεια των ξύλινων, δύο τόου ενθεμάτων για λιύμενες - έκσεντρες συνδέσεις που προσφέρονται από μία εταιρία κατασκευής εξαρτημάτων επιπλουσιών (HETTICH, GERMANY). Διαπιστώθηκε ότι η μέση αντοχή συγκράτησης των βιδωτών πίρων είναι μεγαλύτερη από τη μέση αντοχή συγκράτησης των φεραμίων (κατά 118,2% στη μοριοπλάκα και 62% στην ινοπλάκα) και δίνονται οι τύποι ενθεμάτων πίρων και φεραμίων με τις μεγαλύτερες και τις μικρότερες μέσες αντοχές συγκράτησης στη μοριοπλάκα και στην ινοπλάκα μέσης πυκνότητας.

Λέξεις κλειδιά: αντοχή συγκράτησης, ενθέματα (πίροι, φεράμια), λιύμενες συνδέσεις, επιπλουσίων, μοριοπλάκα, ινοπλάκα (MDF).

Abstract

Many insert fittings (screws, sockets plastic - metallic, cam fittings plastic - metallic) are commonly used in ready-to-assemble cabinet furniture joints to connect particleboard and MDF. In this research, the face holding strength of all the insert fittings which are offered for this kind of joints by one manufacturer (Hettich, Germany), are studied.

It was found that the mean holding strength of the screws was higher than the mean strength of the cam fittings (by 118.2% in particleboard and by 62.0% in MDF).

Finally, the screw and cam fittings types which gave the higher and the lower strength values are given.

Key words: ready-to-assemble furniture, eccentric joints, insert fittings, holding strength, particleboard, MDF.

Εισαγωγή

Η συνεχής αύξηση της χρησιμοποίησης μοριοπλάκων και ινοπλάκων μέσης πυκνότητας (MDF) στην κατασκευή των επίπλων αποτελεί μία από τις σημαντικότερες αλλαγές που διαπιστώνονται τα τελευταία χρόνια στο χώρο της επιπλουσίων. Αυτό παρατηρείται υφάσμα, στον τομέα της μεγάλης κλίμακας, χαμηλού κόστους, επιπλουσίων όπου η θέση των συμπαγώς (μαθηματικά) έκπλευσης κατακτούν οι μοριοπλάκες και οι ινοπλάκες (MDF) (Uysal 2003). Υποστηρίζεται ότι, άσεμα περιουσίο από το 90% της βιομηχανίας συνολικά του επίπλου στην Ευρώπη βασίζεται στις ξύλινες και ιδιαίτερα στις μοριοπλάκες και το MDF (BioMatNet 2003).

Ο Eckelman (1975) βρήκε ότι η πυκνότητα και οι μηχανικές ιδιότητες των πρώτων υλών που χρησιμοποιούνταν στην κατασκευή των επίπλων καθορίζουν και περιορίζουν την αντοχή των συνδέσεων και προέρχεται εξισώσεις για την εκτίμηση της αντοχής συγκράτησης διάφορων ενθεμάτων (ξυλόβιδων).

Σήμερα, στην αγορά πρώτων υλών επιπλοκούσιας προσφέρονται πάρα πολλά ενθέματα διάφορων τύπων και υλικών, με διάφορα εμπορικά ονόματα, από πολλούς επωνυμούς κατασκευαστές αλλά και περισσότερα από ανώνυμους κατασκευαστές, τα
οποία συνήθως αποτελούν κακές απομιμήσεις των επωνύμων. Έτσι, η επιλογή εν μέρος των κατασκευαστών των επιπλών των ενθέματων που εξεισφορήσατε τη μεγαλύτερη αντοχή συγκρότησης γίνεται περίπλοκη και ιδιαίτερα δύσκολη.

Συνεπώς, η μελέτη της αντοχής συγκρότησης όλων των τύπων ενθεμάτων και η κατανόηση παραγόντων που επηρεάζουν την αντοχή των συνδέσεων, που χρησιμοποιούνται στην κατασκευή των λιβέμενων επιπλών μπορεί να αξιοποιηθεί αφενός στη μεταχειρίζεται αξιολόγηση και αφετέρου στη βελτίωση των συνδέσεων των λιβέμενων επιπλών που παράγονται από την επιπλοβιομηχανία.

Σκοπός της παρούσας έρευνας ήταν να μελετηθεί η αντοχή συγκρότησης όλων των τύπων ενθεμάτων που προσφέρει μια μεγάλη και επανάληψη εταιρία κατασκευής υλικών επιπλοβικών, σε ισορρόπησε μέσης πυκνότητας (MDF) και μοριοπλάκα, πάχους 16 mm και ενδείμενης πυκνότητας, καθώς αυτές οι ξυλοπλακάκες χρησιμοποιούνται χυδώς στην κατασκευή των λιβέμενων επιπλών σήμερα.

Υλικό και Μέθοδοι

Στην εργασία αυτή μελετήθηκε η αντοχή συγκρότησης όλων των διαθέσιμων ενθεμάτων (βιδωτών πίρους και φεραμών) για την κατασκευή έκσυγχρονων συνδέσεων επιπλών, μιας κατασκευαστικής εταιρίας (HETTICH, GERMANY), σε μοριοπλάκα και ισορρόπησε μέσης πυκνότητας (MDF), πάχους 16 mm.

Η μέση πυκνότητα της μοριοπλάκας ήταν 0,634 g/cm³ και η εσωτερική αντοχή της 0,58 N/mm². Η μέση πυκνότητα της ισορρόπησε μέσης 0,680 g/cm³ και η εσωτερική αντοχή της 0,59 N/mm². Οι ιδιότητες των ξυλοπλακάκων πληρούσαν τις απαιτήσεις της προδιαγραφής EN 312-3:1996 ως προς τις ελάχιστες τιμές των χαρακτηριστικών τους.

Η προμήθεια των ενθεμάτων (βιδωτών πίρου, υποδοχών πλαστικών και μεταλλικών, φεραμών μονόν και διπλών, πλαστικών και μεταλλικών) έγινε από την κατασκευαστική εταιρία μέσω του εμπορίου (Εικόνες 1 και 2). Τα πλήρη τεχνικά χαρακτηριστικά των ενθεμάτων δίνονται στον Πίνακα 1.

Εικόνα 1. Τα ενθέματα (πίροι και υποδοχές) που μελετήθηκαν.
Figure 1. The insert fittings (screws and sockets) used in the study.
Πίνακας 1
Περιγραφή των ενθέματων (πίρουν - φερμομίων) που μελετήθηκαν

Table 1
Description of the insert fittings (screws-can fittings) used in the study

<table>
<thead>
<tr>
<th>Χαρακτηριστικό Characteristic</th>
<th>Τύπος ενθέματος / Insert fitting item</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΠΙΡΟΙ ΚΑΙ ΥΠΟΔΟΧΕΣ - SCREWS AND SOCKETS</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ανάμετρος οπίσθιο</td>
<td>Hole diameter (mm)</td>
</tr>
<tr>
<td>Μήκος οπίσθιο</td>
<td>Hole length (mm)</td>
</tr>
<tr>
<td>Υλικό πίρου</td>
<td>Screw material</td>
</tr>
<tr>
<td>Ανάμετρος πίρου</td>
<td>Screw diameter (mm)</td>
</tr>
<tr>
<td>Μήκος στεφαρμάτου</td>
<td>Thread length (mm)</td>
</tr>
<tr>
<td>Χρήση υποδοχής</td>
<td>Socket use</td>
</tr>
<tr>
<td>Υλικό υποδοχής</td>
<td>Socket material</td>
</tr>
<tr>
<td>Ανάμετρος υποδοχής</td>
<td>Socket diameter (mm)</td>
</tr>
<tr>
<td>Μήκος υποδοχής</td>
<td>Socket length (mm)</td>
</tr>
</tbody>
</table>

ΦΕΡΜΑΙΑ - CAM FITTINGS

<table>
<thead>
<tr>
<th>ΠΙ</th>
<th>М1</th>
<th>Π2</th>
<th>М2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Υλικό φερμομίου</td>
<td>Cam fitting material</td>
<td>Πλαστικό</td>
<td>μεταλλικό</td>
</tr>
<tr>
<td>Μεγάλο διάμετρος φερ</td>
<td>F. large diameter (mm)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Μεγάλο ύψος φερμομίου</td>
<td>F. large height (mm)</td>
<td>12,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Μικρό διάμετρος φερ</td>
<td>F. small diameter (mm)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Μικρό ύψος φερμομίου</td>
<td>F. small height (mm)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Διαμορφώθηκαν 20 δοκίμια για κάθε είδος ενθέματος, δηλαδή συνολικά 260 δοκίμια (20 επαναλήψεις x 13 είδη ενθέματων), διαστάσεων 5 cm x 5 cm. Στο κέντρο
κάθε δοκιμών διαμορφώθηκε σετ, με κατεδάφιση κάθετα στην επιφάνειά του, με τη βοήθεια ηλεκτρικού δράπανου και προσαρμόστηκαν τα ενθέματα αντίστοιχα με βίδωμα ή χτύπημα, σύμφωνα με τις οδηγίες του κατασκευαστή.

Πριν τη διάτρηση και την προσαρμογή των ενθέματων τα δοκιμάσιμα χλωματώτηκαν μέχρι να αποκτήσουν σταθερό βάρος σε θερμοκρασία 20°C και σχετική υγρασία 60%, συνήθως που αντιστοιχούν σε περιμένεται υγρασία περί το 10%.

Ο προσδιορισμός της δύναμης εξαγωγής των ενθέματων έγινε σε μηχανή αντοχής (SHIMATZU), σύμφωνα με την ευρωπαϊκή προδιαγραφή EN 13446:2002. Η ταχύτητα διεξαγωγής των δοκιμών επιλέχθηκε έτσι ώστε σε όλες τις μετρήσεις το μέγιστο φορτίο εξαγωγής των ενθέματων να εμφανίζεται εντός 60 ± 30 sec.

Τα αποτελέσματα των μετρήσεων της αντοχής συγκράτησης εκφράζονται σε Newtons (N), ώστε να συγκρίνονται οι μέγιστες τιμές των πραγματικών φορτίων εξαγωγής ενθέματος διαφορετικών υλικών (πλαστικό, μέταλλο) και η σύγκριση εφαρμογής (βίδωμα, χτύπημα).

Αποτελέσματα και συζήτηση

Τα αποτελέσματα των μετρήσεων της αντοχής συγκράτησης όλων των ενθέματων που μελετήθηκαν, κάθετα προς την επιφάνεια της μορφοπλάκας και ινοπλάκας (MDF) δίνονται στον πίνακα 2.

Γενικά, διαπιστώνεται η υπεροχή της αντοχής συγκράτησης όλων σχεδόν των τέσσερα πέντε πόρων απέναντι στην αντοχή συγκράτησης όλων των τέσσερα πέντε πόρων στη μορφοπλάκα και στην ινοπλάκα (MDF). Η μέση αντοχή συγκράτησης όλων των τέσσερα πέντε πόρων στη μορφοπλάκα ήταν 665,1 N (τυχ. απόκλιση 129,2) και στην ινοπλάκα 692,8 N (τυχ. απόκλιση 157,4). Αντιστοίχως, η μέση αντοχή συγκράτησης όλων των τέσσερα πέντε πόρων ήταν 306,7 N (τυχ. απόκλιση 76,3) στη μορφοπλάκα και 425,7 N (τυχ. απόκλιση 71,0) στην ινοπλάκα. Διαπιστώνεται δηλαδή, ότι η μέση αντοχή συγκράτησης όλων των τέσσερα πέντε πόρων ήταν σημαντικά μεγαλύτερη από τη μέση αντοχή συγκράτησης όλων των τέσσερα πέντε πόρων στη μορφοπλάκα (υπεροχή 118,2% μεγαλύτερη) και στην ινοπλάκα (62,9% μεγαλύτερη).

Οι μεγαλύτερες τιμές αντοχής και των πόρων και των φεραμών που διαπιστώνονται στην ινοπλάκα σε σχέση με τη μορφοπλάκα αποδίδονται κυρίως στην επίδραση της μεγαλύτερης μέσης πυκνότητας της ινοπλάκας (0,680 g/cm³ και 0,634 g/cm³, αντιστοίχως).

Ειδικότερα, από τα αποτελέσματα των μετρήσεων προκύπτουν τα εξής για την αντοχή συγκράτησης των πόρων (Εικόνα 3):

Η μέση αντοχή συγκράτησης των πόρων στη μορφοπλάκα κυμάνθηκε από 487,2 N στον πόρο χωρίς υποδοχή (Z1) μέχρι 817,5 N στον πόρο με πλαστική υποδοχή (Z3). Αντιστοίχως, η μέση αντοχή συγκράτησης των πόρων στην ινοπλάκα κυμάνθηκε από 427,9 N στον πόρο με μεταλλική υποδοχή (Στ), μέχρι 854,6 N στον πόρο χωρίς υποδοχή (B).
Πίνακας 2

Table 2

Αντοχή συγχράτησης των ενθημάτων σε μοριοπλάκα και ινοπλάκα (MDF)

Insert fittings holding strength in particleboard and MDF

<table>
<thead>
<tr>
<th>Τύπος ενθήματος</th>
<th>Πίδα συγχράτησης / Panel type</th>
<th>Μοριοπλάκα / Particleboard</th>
<th>Ινοπλάκα M.P. / MDF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Αντοχή Strength (N)</td>
<td>Τυπ. Απόκλιση S.D.</td>
<td>Αντοχή Strength (N)</td>
</tr>
<tr>
<td>ΠΙΡΟΙ ΚΑΙ ΥΠΟΔΟΧΕΣ – SCREWS AND SOCKETS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Α</td>
<td>Πίδα / screw</td>
<td>708,4*</td>
<td>82,5</td>
</tr>
<tr>
<td>Β</td>
<td>&</td>
<td>726,5</td>
<td>26,1</td>
</tr>
<tr>
<td>Γ</td>
<td>&</td>
<td>790,7</td>
<td>87,3</td>
</tr>
<tr>
<td>Δ</td>
<td>&</td>
<td>665,6</td>
<td>53,0</td>
</tr>
<tr>
<td>Ε</td>
<td>&</td>
<td>491,7</td>
<td>31,9</td>
</tr>
<tr>
<td>Σ1</td>
<td>πίδα + μεταλλική υποδοχή screw + metallic socket</td>
<td>533,5</td>
<td>51,8</td>
</tr>
<tr>
<td>Z1</td>
<td>πίδα screw</td>
<td>487,2</td>
<td>26,7</td>
</tr>
<tr>
<td>Z2</td>
<td>πίδα + χιλιοστοκοστήρας screw + plastic socket</td>
<td>764,9</td>
<td>57,9</td>
</tr>
<tr>
<td>Z3</td>
<td>&</td>
<td>817,5</td>
<td>47,4</td>
</tr>
<tr>
<td>ΜΕΣΟΙ ΟΡΟΙ / MEAN VALUES</td>
<td>665,1</td>
<td>-</td>
<td>692,8</td>
</tr>
<tr>
<td>ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ / S.D.</td>
<td>129,2</td>
<td>-</td>
<td>157,4</td>
</tr>
<tr>
<td>ΦΕΡΑΜΙΑ – CAM FITTINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Π1</td>
<td>φεράμι πλαστικό κυλίδα cam fitting plastic single</td>
<td>251,3</td>
<td>32,3</td>
</tr>
<tr>
<td>Μ1</td>
<td>φεράμι μεταλλικό κυλίδα cam fitting metallic single</td>
<td>262,2</td>
<td>63,0</td>
</tr>
<tr>
<td>Π2</td>
<td>φεράμι πλαστικό διπλό cam fitting plastic double</td>
<td>295,7</td>
<td>49,1</td>
</tr>
<tr>
<td>Μ2</td>
<td>φεράμι μεταλλικό διπλό cam fitting metallic double</td>
<td>417,7</td>
<td>66,5</td>
</tr>
<tr>
<td>ΜΕΣΟΙ ΟΡΟΙ / MEAN VALUES</td>
<td>306,7</td>
<td>-</td>
<td>425,7</td>
</tr>
<tr>
<td>ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ / S.D.</td>
<td>76,3</td>
<td>-</td>
<td>71,0</td>
</tr>
</tbody>
</table>

Εικόνα 3. Αντοχή συγχράτησης πίδας σε μοριοπλάκα και ινοπλάκα.

Figure 3. Holding strenght of the screws in particleboard and MDF.
Πιο συγκεκριμένα, τις μεγαλύτερες τιμές μέσης αντοχής και στη μορφουλάκα και στην νιοπλάκα έδωσαν οι πύργοι Α, Β, Γ, διαμέτρου 5 mm, χωρίς υποδοχές καθός και οι πύργοι Ζ2, Ζ3, διαμέτρου 3 mm, με πλαστικές υποδοχές μήκους 13 mm. Αντιστοιχώς, τις μικρότερες τιμές μέσης αντοχής και στη μορφουλάκα και στην νιοπλάκα έδωσαν οι πύργοι Δ, Ε, διαμέτρου 5 mm, χωρίς υποδοχές, Ζ1, διαμέτρου 3 mm, χωρίς υποδοχή και ο πύργος Στ, διαμέτρου 5 mm, με μεταλλική υποδοχή.

Ως προς την αντοχή συγκράτησης των φεραμιών προκύπτουν τα εξής (Εικόνα 4):

Η μέση αντοχή κυμάνθηκε από 251,3 N μέχρι 417,7 N στη μορφουλάκα και από 361,0 N μέχρι 519,1 N στην νιοπλάκα. Διαπιστώνεται, ότι τα μεταλλικά φεράματα έδωσαν τις μεγαλύτερες μέσες τιμές αντοχής σε σχέση με τα πλαστικά φεράματα, καθός και ότι το διπλό φεράμα έδωσαν μεγαλύτερες μέσες τιμές αντοχής σε σχέση με τα μονά φεράματα, ειδικότερα τα μεταλλικά σε σχέση με τα πλαστικά φεράματα.

Εικόνα 4. Αντοχή συγκράτησης φεραμιών σε μορφουλάκα και νιοπλάκα.
Figure 4. Holding strength of the cam fittings in particleboard and MDF.

Ειδικότερα, διαπιστώνεται ότι στη μορφουλάκα τις μικρότερες τιμές αντοχής έδωσαν τα μονά φεράματα, 251,3 N το πλαστικό μονό και 262,2 N το μεταλλικό μονό, και τις μεγαλύτερες τιμές αντοχής τα διπλά φεράματα, 295,7 N το διπλό πλαστικό και 417,7 N το διπλό μεταλλικό. Αντιστοιχώς, στην νιοπλάκα τις μικρότερες τιμές αντοχής έδωσαν τα πλαστικά φεράματα, 361,0 N το μονό πλαστικό και 381,2 N το διπλό πλαστικό, ενώ τα μεταλλικά φεράματα έδωσαν μεγαλύτερες τιμές από τα πλαστικά, 441,3 N στο μονό μεταλλικό και 519,1 N στο διπλό μεταλλικό φεράμα.

Ιδιαίτερα, επισημαίνονται οι μεγαλύτερες τιμές αντοχής διόλου των τύπων φεραμιών στην νιοπλάκα σε σχέση με την μορφουλάκα, γεγονός που αποδίδεται αρεσκές στην επίδραση της μεγαλύτερης πυκνότητας της νιοπλάκας (0,680 g/cm³) σε σχέση με την μορφουλάκα (0,634 g/cm³) και αφετέρου στην καλύτερη πρόσφυση των φεραμιών στην νιοπλάκα.

Συμπεράσματα

• Για την κατασκευή των λυμένων - έκσκευρων συνδέσεων των επιπέδων προσφέρονται από μία μόνον ειρηνικά πολλοί τύποι ενθεμάτων (9 βιδωτοί πύργοι και 4 φεράματα).
• Η αντοχή συγκράτησης των πῶρων είναι μεγαλύτερη από τὴν αντοχή συγκράτησης τῶν φεραμίων (118,2% στὴν μοριοπλάκα καὶ 62,0% στὴν ινοπλάκα).
• Τέτοιες μεγαλύτερες μέτοχες αντοχής συγκράτησης καὶ στὴν μοριοπλάκα καὶ στὴν ινοπλάκα ἔδωσαν οἱ πῶροι Α, Β, Γ, χωρίς υποδοχὲς καὶ οἱ πῶροι Ζ2, Ζ3, μὲ πλαστικὲς υποδοχὲς.
• Τέτοιες μικρότερες μέτοχες αντοχής συγκράτησης καὶ στὴν μοριοπλάκα καὶ στὴν ινοπλάκα ἔδωσαν οἱ πῶροι Δ, Ε καὶ Ζ1, χωρίς υποδοχὲς καὶ οἱ πῶροι Σι μὲ μεταλλικὴ υποδοχή.
• Τα διπλά μεταλλικὰ φεράμια (M2) ἐδωσαν τὴ μεγαλύτερη μέση αντοχή συγκράτησης καὶ στὴν μοριοπλάκα καὶ στὴν ινοπλάκα, ἐνώ τὰ μονά πλαστικὰ φεράμια (Π1) ἐδωσαν τὴ μικρότερη μέση αντοχή καὶ στὴν μοριοπλάκα καὶ στὴν ινοπλάκα.
• Ὅλοι οἱ τύποι φεραμίων ἐδωσαν σημαντικὰ μεγαλύτερες τιμὲς αντοχῆς στὴν ινοπλάκα καὶ μικρότερες στὴν μοριοπλάκα.

ΒΙΒΛΙΟΓΡΑΦΙΑ

