Computational Complexity II: Asymptotic Notation and Classification Algorithms

Maria-Eirini Pegia

Seminar on Theoretical Computer Science and Discrete Mathematics Aristotle University of Thessaloniki

Context

- Section 1: Computational Complexity
- Section 2: Asymptotic Notation
- Section 3: Algorithms

Computational Complexity of an algorithm A:

- Computational Complexity of an algorithm A:
 - ♦ time, space (memory)

- Computational Complexity of an algorithm A:
 - ♦ time, space (memory)
 - worst, average, best case

Input snapshot size n:

- Input snapshot size n:
 - ♦ #bits for the representation input data to the memory

- Input snapshot size n:
 - ♦ #bits for the representation input data to the memory
 - number of basic components which constitute the size and difficulty measure of snapshot (i.e., vetrices and edges of a graph)

Computational Complexity of the problem P:

Computational Complexity of the problem P:

Complexity (WOrst case) best algorithm which solves the problem P.

Valuation of computational complexity

- Valuation of computational complexity
 - ♦ WOrst case

- Valuation of computational complexity
 - ♦ WOrst case

Running time guarantees for any input of size n.

- Valuation of computational complexity
 - ♦ WOrst case

Running time guarantees for any input of size n.

- Generally captures efficiency in practice .
- ♦ Draconian view, but hard to find effective alternative

♦ average case

♦ average case

the performance of an algorithm averaged over "random" instances can sometimes provide considerable insight.

♦ best case

♦ best case

The term best case performance is used to describe an algorithm's behavior under optimal conditions.

♦ best case

The term best case performance is used to describe an algorithm's behavior under optimal conditions.

• Best solution depending on application requirements.

♦ best case

The term best case performance is used to describe an algorithm's behavior under optimal conditions.

- Best solution depending on application requirements.
- Average performance and worst-case performance are the most used in algorithm analysis.

- Running time of the algorithm A:
 - \diamond Increasing function of T(n) that expresses in how much time is completed A when is applied in snapshot of size n.

- Running time of the algorithm A:
 Increasing function of T(n) that expresses in how much time is completed A when is applied in snapshot of size n.
- We are interested in the size class T(n)
 - ♦ Size class is intrinsic property of algorithm.

- Running time of the algorithm A:
 Increasing function of T(n) that expresses in how much time is completed A when is applied in snapshot of size n.
- We are interested in the size class T(n)
 - ♦ Size class is intrinsic property of algorithm.
 - binary search → logarithmic time
 - dynamic programming → linear time

- Running time of the algorithm A:
 Increasing function of T(n) that expresses in how much time is completed A when is applied in snapshot of size n.
- We are interested in the size class T(n)
 - ♦ Size class is intrinsic property of algorithm.
 - binary search → logarithmic time
 - dynamic programming → linear time
- ignores stables & focuses on runtime size class

Asymptotic Upper Bounds

Big-Oh notation

T(n) is O(|f(n)|) if there exist constants c > 0 and $n_0 \ge 0$ such that $T(n) \le c \cdot f(n) \ \forall \ n \ge n_0$.

Figure: $f(x) \in O(g(x))$

Example

$$T(n)=p\mathit{n}^{2}+qn+r,\quad p,q,r>0$$

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

We claim that any such function is $O(n^2)$.

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

We claim that any such function is $O(n^2)$.

$$\forall$$
 n \geq 1, qn \leq q n^2 and r \leq r n^2

$$T(n) = pn^2 + qn + r \le pn^2 + qn^2 + rn^2 = (p+q+r) n^2 = c n^2$$

 \diamond O(f(n)) is a set of functions

-
$$T(n) \in O(f(n)) (\checkmark)$$

$$-T(n) = O(f(n))(x, \checkmark)$$

 \diamond O(f(n)) is a set of functions

-
$$T(n) \in O(f(n)) (\checkmark)$$

- $T(n) = O(f(n)) (x, \checkmark)$

♦ Nonnegative functions: When using Big-Oh notation, we assume that the functions involved are (asymptotically) nonnegative.

Big-Omega notation

T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $T(n) \ge c \cdot f(n) \ \forall \ n \ge n_0$.

Figure: Big-Omega notation

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

Let's claim that $T(n) = \Omega(n^2)$.

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

Let's claim that $T(n) = \Omega(n^2)$.

$$\forall n \ge 0, T(n) = pn^2 + qn + r \ge pn^2 = c n^2$$

Asymptotically Tight Bounds

Big-Theta notation

T(n) is $\Theta(f(n))$ if there exist constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ $\forall n \ge n_0$.

Figure: Big-Theta notation

Big-Theta notation

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

Big-Theta notation

Example

$$T(n) = pn^2 + qn + r, p,q,r > 0$$

We saw that T(n) is both $O(n^2)$ and $\Omega(n^2)$.

$$T(n) = \Theta(n^2)$$

• Reflexivity: O, Ω, Θ

- Reflexivity: O, Ω , Θ
- Transitivity: O, Ω, Θ

- Reflexivity: O, Ω , Θ
- Transitivity: O, Ω , Θ
- Symmetry: $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$

- Reflexivity: O, Ω , Θ
- Transitivity: O, Ω, Θ
- Symmetry: $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$
- Transpose Symmetry (Duality):

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

Master Theorem

Master Theorem

If
$$T(n) = a T(\frac{n}{b}) + O(n^d)$$
 for constants $a > 0$, $b > 1$, $d \ge 0$, then

$$T(n) = \begin{cases} O(n^d) & \text{if } d > log_b a \\ O(n^d log n) & \text{if } d = log_b a \\ O(n^{log_b a}) & \text{if } d < log_b a \end{cases}$$

Nice Trick for computing quickly the computational complexity.

Notation	Name		
O(1)	constant		
O(loglogn)	double logarithmic		
O(logn)	logarithmic		
O(n)	linear		
O(nlogn)	loglinear		
O(n²)	quadratic		
O(n ^c) , c>1	polynomial		
O(e ⁿ)	exponential		
O(n!)	factorial		

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on real input instances.

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on real input instances.

- the omission of where, and how well
- ♦ real input instances
- ♦ scale

Definition 2

An algorithm is efficient if it achieves qualitatively better worst case performance, at an analytical level, than brute-force search.

Definition 2

An algorithm is efficient if it achieves qualitatively better worst case performance, at an analytical level, than brute-force search.

♦ What do we mean by "qualitatively better performance"?

Definition 2

An algorithm is efficient if it achieves qualitatively better worst case performance, at an analytical level, than brute-force search.

♦ What do we mean by "qualitatively better performance"?

Definition 3

An algorithm is efficient if it has a polynomial running time.

Poly-time algorithm

♦ Desirable scaling property: When the input size doubles, the algorithm should only slow down by some constant factor C.

Poly-time algorithm

♦ Desirable scaling property: When the input size doubles, the algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

Poly-time algorithm

♦ Desirable scaling property: When the input size doubles, the algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

 \diamond There exists constants c > 0 and d > 0 such that on every input of size n, its running time is bounded by cn^d primitive computational steps.

Why we care for the asymptotic bound of an algorithm?

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu s$	$0.033~\mu s$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu s$	$0.02~\mu s$	$0.086 \ \mu s$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005 \ \mu s$	$0.03~\mu s$	$0.147 \ \mu s$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \ \mu s$	$0.04~\mu s$	$0.213 \ \mu s$	$1.6~\mu s$	18.3 min	
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.5~\mu s$	13 days	
100	$0.007~\mu s$	$0.1~\mu s$	$0.644~\mu s$	$10 \mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00~\mu s$	$9.966 \ \mu s$	1 ms		
10,000	$0.013 \ \mu s$	$10 \mu s$	$130 \mu s$	100 ms		
100,000	$0.017 \ \mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \ \mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023 \ \mu s$	0.01 sec	$0.23 \mathrm{sec}$	1.16 days		
100,000,000	$0.027 \ \mu s$	0.10 sec	$2.66 \mathrm{sec}$	115.7 days		
1,000,000,000	$0.030 \ \mu s$	1 sec	$29.90 \mathrm{sec}$	31.7 years		

• Brute-force (or exhaustive search)

- Brute-force (or exhaustive search)
- Divide and conquer

- Brute-force (or exhaustive search)
- Divide and conquer
- Dynamic programming

- Brute-force (or exhaustive search)
- Divide and conquer
- Dynamic programming
- Randomized algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.

♦ (-) can end up doing far more work to solve a given problem than might do a more clever or sophisticated algorithm

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.

- ♦ (-) can end up doing far more work to solve a given problem than might do a more clever or sophisticated algorithm
- \diamond (+) is often easier to implement than a more sophisticated one, because of this simplicity, sometimes it can be more efficient

In a bubble sort, the "heaviest" item sinks to the bottom of the list while the "lightest" floats up to the top

Input: array a with n elements

End - For

End - For

 \diamond Computational Complexity: $O(n^2)$

 \diamond Computational Complexity: $O(n^2)$

WHY???

 \diamond Computational Complexity: $O(n^2)$

WHY???

♦ not a practical sorting algorithm when n is large

Divide and Conquer

Definition

A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.

3 steps of divide and conquer

Example

T(n) = number of comparisons to mergesort an input of size n.

Example

T(n) = number of comparisons to mergesort an input of size n.

• Divide array into two halves (divide O(1)).

Example

T(n) = number of comparisons to mergesort an input of size n.

- Divide array into two halves (divide O(1)).
- Recursively sort each half (sort $2T(\frac{n}{2})$).

Example

T(n) = number of comparisons to mergesort an input of size n.

- Divide array into two halves (divide O(1)).
- Recursively sort each half (sort $2T(\frac{n}{2})$).
- Merge two halves to make sorted whole (merge O(n)).

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(\frac{n}{2}) + O(n) & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(\frac{n}{2}) + O(n) & \text{otherwise} \end{cases}$$

♦ Master Theorem ②

Mergesort

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(\frac{n}{2}) + O(n) & \text{otherwise} \end{cases}$$

- ♦ Master Theorem ⊕
- \diamond Solution: T(n) = O(n log(n))

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each sub-problem, and combine solution to sub-problems to form solution to original problem.

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each sub-problem, and combine solution to sub-problems to form solution to original problem.

Dynamic programming

Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

♦ Dynamic programming applications:

♦ Dynamic programming applications:

Bioinformatics

♦ Dynamic programming applications:

Bioinformatics

Control Theory

♦ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

♦ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

♦ Cocke-Kasami-Younger for parsing context-free grammars.

• Given n objects and a "knapsack".

- Given n objects and a "knapsack".
- Item i weights $w_i > 0$ and has value $v_i > 0$.

- Given n objects and a "knapsack".
- Item i weights $w_i > 0$ and has value $v_i > 0$.
- Knapsack has capacity of W.

- Given n objects and a "knapsack".
- Item i weights $w_i > 0$ and has value $v_i > 0$.
- Knapsack has capacity of W.
- Goal: fill knapsack so as to maximize total value.

 $\mathsf{OPT}(\mathsf{i},\,\mathsf{w}) = \mathsf{max}$ profit subset of items 1, ..., i with weight limit w

```
\mathsf{OPT}(i,\,w) = \max_{w} \mathsf{profit} \; \mathsf{subset} \; \mathsf{of} \; \mathsf{items} \; 1, \, \ldots, \, i \; \mathsf{with} \; \mathsf{weight} \; \mathsf{limit}
```

♦ Case 1: OPT does not select item i.

 $\mathsf{OPT}(\mathsf{i},\,\mathsf{w}) = \mathsf{max}\;\mathsf{profit}\;\mathsf{subset}\;\mathsf{of}\;\mathsf{items}\;1,\,\ldots,\,\mathsf{i}\;\mathsf{with}\;\mathsf{weight}\;\mathsf{limit}\;\mathsf{w}$

♦ Case 1: OPT does not select item i.

OPT selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

```
\mathsf{OPT}(i,\,w) = \max_{w} \mathsf{profit} \; \mathsf{subset} \; \mathsf{of} \; \mathsf{items} \; 1, \, \ldots, \, i \; \mathsf{with} \; \mathsf{weight} \; \mathsf{limit}
```

♦ Case 1: OPT does not select item i.

OPT selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

♦ Case 2: OPT selects item i.

```
\mathsf{OPT}(i,\,w) = \max_{w} \mathsf{profit} \; \mathsf{subset} \; \mathsf{of} \; \mathsf{items} \; 1, \, \ldots, \, i \; \mathsf{with} \; \mathsf{weight} \; \mathsf{limit}
```

♦ Case 1: OPT does not select item i.

OPT selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

♦ Case 2: OPT selects item i.

New weight limit = $w - w_i$.

```
\mathsf{OPT}(i,\,w) = \max_{w} \mathsf{profit} \; \mathsf{subset} \; \mathsf{of} \; \mathsf{items} \; 1,\, \ldots, \; i \; \mathsf{with} \; \mathsf{weight} \; \mathsf{limit}
```

♦ Case 1: OPT does not select item i.

OPT selects best of $\{1, 2, ..., i-1\}$ using weight limit w.

♦ Case 2: OPT selects item i.

New weight limit = $w - w_i$.

OPT selects best of $\{1, 2, ..., i-1\}$ using this new weight limit.

Objective function:

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

♦ Knapsack problem: bottom-up

```
KNAPSACK (n, W, w_1, \ldots, w_n, v_1, \ldots, v_n)
for w = 0 to W

M [0, w] \longleftarrow 0.
for i = 1 to n

for w = 0 to W

if (w_i > w)

M [i, w] \longleftarrow M [i - 1, w].

else

M [i, w] \longleftarrow max{ M [i - 1, w], v_i + M [i - 1, w - w<sub>i</sub>] }

return M [n, W]
```

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(nW)$ time and $\Theta(nW)$ space.

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(nW)$ time and $\Theta(nW)$ space.

♦ not polynomial in input size! (pseudo-polynomial)

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n items and maximum weight W in $\Theta(nW)$ time and $\Theta(nW)$ space.

- not polynomial in input size! (pseudo-polynomial)
- ♦ NP complete problem ©

Definition

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic.

Definition

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic.

♦ Randomization: Allow fair coin flip in unit time.

Why randomize?

Why randomize?

Can lead to simplest, fastest, or only known algorithm for a particular problem!

There are two large classes of such algorithms:

There are two large classes of such algorithms:

♦ Las Vegas: A randomized algorithm that always outputs the correct answer, it is just that there is a small probability of taking long to execute.

There are two large classes of such algorithms:

- ♦ Las Vegas: A randomized algorithm that always outputs the correct answer, it is just that there is a small probability of taking long to execute.
- ♦ Monte Carlo: Sometimes we want the algorithm to always complete quickly, but allow a small probability error.

Any Las Vegas algorithm can be converted into a Monte Carlo algorithm by outputting an arbitrary, possibly incorrect answer if it fails to complete within a specified time.

Any Las Vegas algorithm can be converted into a Monte Carlo algorithm by outputting an arbitrary, possibly incorrect answer if it fails to complete within a specified time.

Monte Carlo algorithm cannot be converted into a Las Vegas (i.e., approximation of π)

Monte Carlo vs Las Vegas

$$\pi \approx 4 \frac{n_{(\frac{cycle}{4})}}{n_{(square)}}$$

Next

- ♦ Computational Complexity
- \diamond Complexity Classes (i.e., \mathcal{P} , \mathcal{NP})
- ♦ Some nice computational problems ⊕
- ♦ Some reductions

References

- J.Kleinberg, E.Tardos. Algorithm Design. Boston, Mass.: Pearson/Addison-Wesley, cop. 2006
- Ι.Μανωλόπουλος, Α.Παπαδόπουλος, Κ.Τσίχλας. Θεωρία και Αλγόριθμοι Γράφων, Αθήνα: Εκδ. Νέων Τεχνολογιών, 2014.
- Τσίχλας, Κ., Γούναρης, Α., Μανωλόπουλος, Ι., 2015.
 Σχεδίαση και ανάλυση αλγορίθμων. [ηλεκτρ. βιβλ.]
 Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών.
 Διαθέσιμο στο: http://hdl.handle.net/11419/4005
- Δομές δεδομένων, Μποζάνης Παναγιώτης Δ, ΕΚΔΟΣΕΙΣ
 Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε., 2006

Thank you!!!