Computational Complexity II:
Asymptotic Notation and Classification Algorithms

Maria-Eirini Pegia

Seminar on Theoretical Computer Science and Discrete Mathematics
Aristotle University of Thessaloniki

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Context

irini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Computational Complexity

@ Computational Complexity of an algorithm A:

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Computational Complexity

@ Computational Complexity of an algorithm A:

¢ time, space (memory)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Computational Complexity

@ Computational Complexity of an algorithm A:

¢ time, space (memory)

o worst, average, best case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Computational Complexity

@ Input snapshot size n:

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Computational Complexity

@ Input snapshot size n:

¢ #£bits for the representation input data to the memory

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Computational Complexity

@ Input snapshot size n:
¢ #£bits for the representation input data to the memory

¢ number of basic components which constitute the size and
difficulty measure of snapshot
(i.e., vetrices and edges of a graph)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Computational Complexity

@ Computational Complexity of the problem P:

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Computational Complexity

@ Computational Complexity of the problem P:

Complexity (Worst case) beSt algorithm which solves
the problem P.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Algorithm Design

@ Valuation of computational complexity

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Algorithm Design

@ Valuation of computational complexity

o WOFSt case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

@ Valuation of computational complexity
o WOIST case

Running time guarantees for any input of size n.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

@ Valuation of computational complexity
o WOIST case

Running time guarantees for any input of size n.
- Generally captures efficiency in practice .
- ¢ Draconian view, but hard to find effective alternative

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

¢ dVErage case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Algorithm Design

¢ dVErage case

1 1
the performance of an algorithm averaged over A ndom
instances can sometimes provide considerable insight.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

& best case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 1: Computational Complexity

Algorithm Design

& best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

& best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

@ Best solution depending on application requirements.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 1: Computational Complexity

Algorithm Design

& best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

@ Best solution depending on application requirements.

@ Average performance and worst-case performance are the
most used in algorithm analysis.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 2: Asymptotic Notation

Asymptotic Valuation

@ Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Valuation

@ Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

o We are interested in the size class T(n)
¢ Size class is of algorithm.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Valuation

@ Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

o We are interested in the size class T(n)
¢ Size class is of algorithm.
- binary search — logarithmic time
- dynamic programming — linear time

Computational Complexity II: Asymptotic Notation and Classific

Maria-Eirini Pegia

Section 2: Asymptotic Notation

Asymptotic Valuation

@ Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

o We are interested in the size class T(n)
¢ Size class is of algorithm.
- binary search — logarithmic time

- dynamic programming — linear time

° & focuses on runtime size class

Computational Complexity II: Asymptotic Notation and Classific

Maria-Eirini Pegia

Section 2: Asymptotic Notation

Asymptotic Upper Bounds

Big-Oh notation

T(n) is O(|f(n)]|) if there exist
constants ¢ > 0 and ng > 0 such
that T(n) < c-f(n) Y n > no.

Maria-Eirini Pegia

Figure: f(x) € O(g(x))

Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big-Oh notation

T(n) = pn®> +qn+r, par>0

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big-Oh notation

T(n) = pn®> +qn+r, par>0

We claim that any such function is O(n?).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classi

Section 2: Asymptotic Notation

Big-Oh notation

Example

T(n) = pn®> +qn+r, par>0

We claim that any such function is O(n?).

Vn>1 qgn<qn®andr<rn?

T(n) = pn® 4+ qn + r < pn® + qn® + rn® = (p+q+r) n* = c n?

v

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big-Oh notation

¢ O(f(n)) is a set of functions

O(f(n)) (v")
O(f(n)) (x v")

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big-Oh notation

¢ O(f(n)) is a set of functions

¢ Nonnegative functions: When using Big-Oh notation, we assume
that the functions involved are (asymptotically) nonnegative.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Lower Bounds

find

Big-Omega notation

T(n) is Q(f(n)) if there exist
constants ¢ > 0 and ng > 0 such
that T(n) > c-f(n) ¥ n > ng.

1Y

no

Figure: Big-Omega notation

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Lower Bounds

T(n) =pn® +qgn+r, par>0

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Lower Bounds

T(n) =pn® +qgn+r, par>0

Let's claim that T(n) = Q(n?).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotic Lower Bounds

T(n)=pn* +an+r, par>0
Let's claim that T(n) = Q(n?).

Vn>0 T(n)=pn® +qn+r>pn’>=cn?

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Asymptotically Tight Bounds

Big-Theta notation

T(n) is ©(f(n)) if there exist
constants ¢; > 0, ¢ > 0 and
ng > 0 such that
¢ - f(n) < T(n) < ¢ - f(n)

V' n 2> ng.

Maria-Eirini Pegia

e38(m)

fin)
c1g(m)

:]
Ay

fn) € O(g(n)

Figure: Big-Theta notation

Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big- Theta notation

T(n) =pn® +qgn+r, par>0

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Big- Theta notation

T(n) =pn® +qgn+r, par>0

We saw that T(n) is both O(n?) and Q(n?).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Relational Properties

o Reflexivity: O, 2, ©

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Relational Properties

o Reflexivity: O, 2, ©

e Transitivity: O, Q, ©

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 2: Asymptotic Notation

Relational Properties

o Reflexivity: O, 2, ©
o Transitivity: O, Q, ©

o Symmetry: f(n) = ©(g(n)) < g(n) = ©(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Relational Properties

Reflexivity: O, Q, ©

Transitivity: O, Q, ©

Symmetry: f(n) = ©(g(n)) <= g(n) = ©(f(n))

Transpose Symmetry (Duality):

f(n) = O(g(n)) = g(n) = Q(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Master Theorem

Master Theorem

If T(n) = a T(%) + O(n“) for constants a >0, b > 1, d > 0, then

0O(n?) if d > logpa
T(n) =1 0(n%logn) if d = logpa
O(nl°8r?) if d < logpa

Nice Trick for computing quickly the computational complexity.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 2: Asymptotic Notation

Notation Name

0(1) constant
Ofloglogn) double logarithmic
Oflogn) logarithmic
0Of(n) linear

Of(nlogn) loglinear

o(n?) quadratic
o[n’), e>1 polynomial
o(e") exponential
O(n!) factorial

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Efficient algorithm

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on
real input instances.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Efficient algorithm

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on
real input instances.

¢ the omission of where, and how well
¢ real input instances

¢ scale

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Efficient algorithm

Definition 2

An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Efficient algorithm

Definition 2
An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

¢ What do we mean by "qualitatively better performance”?

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Efficient algorithm

Definition 2

An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

¢ What do we mean by "qualitatively better performance”?

Definition 3

An algorithm is efficient if it has a polynomial running time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

¢ There exists constants ¢ > 0 and d > 0 such that on every input
of size n, its running time is bounded by cn® primitive
computational steps.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Why we care for the asymptotic bound of an algorithm?

2z on

n_ f(n) lgn n nlgn n n!

10 0.003 ps | 0.01 ps 0.033 ps 0.1 ps 1 ps 3.63 ms
20 0.004 ps | 0.02 ps 0.086 us 0.4 ps 1 ms 77.1 years
30 0.005 ps | 0.03 ps 0.147 ps 0.9 ps 1 sec 8.4 x 10'% yrs
40 0.005 ps | 0.04 ps 0.213 ps 1.6 pus 18.3 min

50 0.006 ps | 0.05 ps 0.282 us 2.5 ps 13 days

100 0.007 ps | 0.1 ps 0.644 pus | 10 ps 4 % 10%% yrs

1,000 0.010 ps | 1.00 ps 9.966 us 1 ms

10,000 0.013 ps | 10 ps 130 ps 100 ms

100,000 0.017 ps | 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 ps | 1 ms 19.93 ms 16.7 min

10,000,000 0.023 ps | 0.01 sec | 0.23 sec 1.16 days

100,000,000 0.027 ps | 0.10 sec | 2.66 sec 115.7 days

1,000,000,000 0.030 pus | 1 sec 20.90 sec | 31.7 years

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Classification algorithms by their design methodology

@ Brute-force (or exhaustive search)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Classification algorithms by their design methodology

@ Brute-force (or exhaustive search)

@ Divide and conquer

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Classification algorithms by their design methodology

@ Brute-force (or exhaustive search)
@ Divide and conquer

@ Dynamic programming

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Classification algorithms by their design methodology

Brute-force (or exhaustive search)

@ Divide and conquer

Dynamic programming

@ Randomized algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the

problem’s statement.

Computational Complexity II: Asymptotic Notation and Classific

Maria-Eirini Pegia

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the
problem’s statement.

¢ (-) can end up doing far more work to solve a given problem
than might do a more clever or sophisticated algorithm

Computational Complexity II: Asymptotic Notation and Classific

Maria-Eirini Pegia

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the
problem’s statement.

¢ (-) can end up doing far more work to solve a given problem
than might do a more clever or sophisticated algorithm

¢ (+) is often easier to implement than a more sophisticated one,
because of this simplicity, sometimes it can be more efficient

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Bubble Sort

In a bubble sort,
the “heaviest”
item sinks to

the bottom of the
list while the
“lightest” floats up
to the top

Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Bubble Sort

Input: array a with n elements
Fori=1 to n

Forj=i+1 to n

If (afi] > a[j]) s |1]e]2]4]>3
then swap their values
End - If
End - For
End - For

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n?)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n?)

WHY?777

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n?)
WHY???

¢ not a practical sorting algorithm when n is large

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Divide and Conquer

Definition

A divide and conquer algorithm works by recursively breaking down
a problem into two or more sub-problems of the same or related
type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution
to the original problem.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

3 steps of divide and conquer

divide

divide divide

o/
) € D €) (subproblem) (_) (D ())

solve solve solve solve solve solve solve solve
subproblem subproblem subproblem
y | Al s ¥ ¥

e e e =

combine,

divide

conquer

combine

solution to
subproblem

combine

solution to
problem

Eirini Pegia Computational Complexity Il: Asymptotic Notation and Classi

Section 3: Algorithms

Mergesort

T(n) = number of comparisons to mergesort an input of size n.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Mergesort

T(n) = number of comparisons to mergesort an input of size n.

o Divide array into two halves (divide O(1)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classi

Section 3: Algorithms

Mergesort

T(n) = number of comparisons to mergesort an input of size n.
o Divide array into two halves (divide O(1)).

@ Recursively sort each half (sort 2T(g))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Mergesort

T(n) = number of comparisons to mergesort an input of size n.
o Divide array into two halves (divide O(1)).

@ Recursively sort each half (sort 2T(g))

@ Merge two halves to make sorted whole (merge O(n)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Mergesort

0 ifn=1
2T(5) +O(n) otherwise

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Mergesort

0 ifn=1
2T(5) +O(n) otherwise

¢ Master Theorem ®

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Mergesort

T(n) = 0 ifn=1
- 2T(5) +O(n) otherwise

¢ Master Theorem ®

¢ Solution: T(n) = O(nlog(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each
sub-problem, and combine solution to sub-problems to form
solution to original problem.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each
sub-problem, and combine solution to sub-problems to form
solution to original problem.

Dynamic programming

Break up a problem into a series of overlapping sub-problems, and
build up solutions to larger and larger sub-problems.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Applications

¢ Dynamic programming applications:
Bioinformatics
Control Theory

Information Theory

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Applications

¢ Dynamic programming applications:
Bioinformatics
Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack Problem

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack

@ Given n objects and a "knapsack”.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack

@ Given n objects and a "knapsack”.

o Item i weights w; > 0 and has value v; > 0.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Knapsack

@ Given n objects and a "knapsack”.
o Item i weights w; > 0 and has value v; > 0.

@ Knapsack has capacity of W.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Knapsack

Given n objects and a "knapsack”.

Item i weights w; > 0 and has value v; > 0.

Knapsack has capacity of W.

GOalz fill knapsack so as to maximize total value.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

¢ Case 1: OPT does not select item .

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

¢ Case 1: OPT does not select item .

OPT selects best of { 1,2, ..., i—1 } using weight limit w.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

¢ Case 1: OPT does not select item .
OPT selects best of { 1,2, ..., i—1 } using weight limit w.

¢ Case 2: OPT selects item 1.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

¢ Case 1: OPT does not select item .
OPT selects best of { 1,2, ..., i—1 } using weight limit w.
¢ Case 2: OPT selects item 1.

New weight limit = w — w;.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, ..., i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of { 1,2, ..., i—1 } using weight limit w.
¢ Case 2: OPT selects item i.

New weight limit = w — w;.

OPT selects best of { 1, 2, ..., i—1 } using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem

Objective function:

0 ifi=0
OPT(i,w)={ OPT(i-1,w) if w;>w
max{OPT(i—1,w),v;+ OPT(i-1,w—w;)} otherwise

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack Problem

¢ Knapsack problem: bottom-up

KNAPSACK (n, W,ws,...,Wp,v1,...,Vs)
forw=0to W
M [0, w] «— 0.
fori=1ton
forw =0to W
if (w;>w)
M [i, w] «<— M [i -1, w].
else
M, w«—max{ M[i-1,w], v + M[i-1 w-w]}
return M [n, W]

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Knapsack problem: running time

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in ©(n\W) time and ©(n\W) space.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Knapsack problem: running time

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in ©(n\W) time and ©(n\W) space.

¢ not polynomial in input size! (pseudo-polynomial)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Knapsack problem: running time

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in ©(n\W) time and ©(n\W) space.

¢ not polynomial in input size! (pseudo-polynomial)

¢ NP - complete problem ®

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Randomized Algorithms

Definition

A randomized algorithm is an algorithm that employs a degree of
randomness as part of its logic.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Randomized Algorithms

Definition

A randomized algorithm is an algorithm that employs a degree of
randomness as part of its logic.

¢ Randomization: Allow fair coin flip in unit time.

Computational Complexity II: Asymptotic Notation and Classific

Maria-Eirini Pegia

Section 3: Algorithms

Randomized Algorithms

Why randomize?

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Randomized Algorithms

Why randomize?

Can lead to simplest, fastest, or only known algorithm for a

particular problem!

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

< I_aS Vegas: A randomized algorithm that always outputs
the correct answer, it is just that there is a small probability of
taking long to execute.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

< I_aS Vegas: A randomized algorithm that always outputs
the correct answer, it is just that there is a small probability of
taking long to execute.

o Monte Carlo: sometimes we want the algorithm to

always complete quickly, but allow a small probability error.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Randomized Algorithms

Any Las Vegas algorithm can be converted into a Monte Carlo
algorithm by outputting an arbitrary, possibly incorrect answer if it
fails to complete within a specified time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Randomized Algorithms

Any Las Vegas algorithm can be converted into a Monte Carlo
algorithm by outputting an arbitrary, possibly incorrect answer if it
fails to complete within a specified time.

Monte Carlo algorithm cannot be converted into a Las Vegas
(i.e., approximation of)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

Monte Carlo vs Las Vegas

08
|
PR

02
|

0.0 02 04 08 08 1.0
n; cycle
(%3°)
N4 ——
N(square)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

¢ Computational Complexity

¢ Complexity Classes (i.e., P, N'P)

¢ Some nice computational problems ©
¢ Some reductions

Computational Complexity II: Asymptotic Notation and Classifi

Section 3: Algorithms

References

J.Kleinberg, E. Tardos. Algorithm Design. Boston, Mass.:
Pearson /Addison-Wesley, cop. 2006

I.Mavwidétovlog, A.Maradéroviog, K. TolyAag. Oswpio
ko AdydpLBuol Mpdpwv, ABfva: Ek8. Néwv Teyvoroyidv,
2014.

Toixhag, K., Todvapne, A., MavwAdrovrog, |., 2015.

Y xediaon ko avéhvon adyopiBuwv. [nhektp. BiPA.]
ABfva: X 0vdeopog EAAvik®dv Akadnuaikadv BipAwobnkov.
Awabéoo oto: http:\\hdl.handle.net\11419\4005
Aopéc dedopévwv, Mroldvne Mavayiotne A, EKAOXEIX
A. TZIOANA & TIOI A.E., 2006

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classific

Section 3: Algorithms

irini Pegia Computational Complexity II: Asymptotic Notation and Classifi

	Section 1: Computational Complexity
	Section 2: Asymptotic Notation
	Section 3: Algorithms

