
Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity II:
Asymptotic Notation and Classification Algorithms

Maria-Eirini Pegia

Seminar on Theoretical Computer Science and Discrete Mathematics
Aristotle University of Thessaloniki

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Context

1 Section 1: Computational Complexity

2 Section 2: Asymptotic Notation

3 Section 3: Algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Computational Complexity of an algorithm A:

¢ time, space (memory)

¢worst, average, best case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Computational Complexity of an algorithm A:

¢ time, space (memory)

¢worst, average, best case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Computational Complexity of an algorithm A:

¢ time, space (memory)

¢worst, average, best case

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Input snapshot size n:

¢ #bits for the representation input data to the memory

¢ number of basic components which constitute the size and
difficulty measure of snapshot
(i.e., vetrices and edges of a graph)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Input snapshot size n:

¢ #bits for the representation input data to the memory

¢ number of basic components which constitute the size and
difficulty measure of snapshot
(i.e., vetrices and edges of a graph)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Input snapshot size n:

¢ #bits for the representation input data to the memory

¢ number of basic components which constitute the size and
difficulty measure of snapshot
(i.e., vetrices and edges of a graph)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Computational Complexity of the problem P:

Complexity (worst case) best algorithm which solves
the problem P.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Computational Complexity

Computational Complexity of the problem P:

Complexity (worst case) best algorithm which solves
the problem P.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

Valuation of computational complexity

¢worst case

Running time guarantees for any input of size n.
- Generally captures efficiency in practice .
- ¢ Draconian view, but hard to find effective alternative

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

Valuation of computational complexity

¢worst case

Running time guarantees for any input of size n.
- Generally captures efficiency in practice .
- ¢ Draconian view, but hard to find effective alternative

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

Valuation of computational complexity

¢worst case

Running time guarantees for any input of size n.

- Generally captures efficiency in practice .
- ¢ Draconian view, but hard to find effective alternative

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

Valuation of computational complexity

¢worst case

Running time guarantees for any input of size n.
- Generally captures efficiency in practice .
- ¢ Draconian view, but hard to find effective alternative

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ average case

the performance of an algorithm averaged over ”random”
instances can sometimes provide considerable insight.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ average case

the performance of an algorithm averaged over ”random”
instances can sometimes provide considerable insight.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

Best solution depending on application requirements.

Average performance and worst-case performance are the
most used in algorithm analysis.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

Best solution depending on application requirements.

Average performance and worst-case performance are the
most used in algorithm analysis.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

Best solution depending on application requirements.

Average performance and worst-case performance are the
most used in algorithm analysis.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Algorithm Design

¢ best case

The term best case performance is used to describe an algorithm’s
behavior under optimal conditions.

Best solution depending on application requirements.

Average performance and worst-case performance are the
most used in algorithm analysis.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Valuation

Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

We are interested in the size class T(n)
¢ Size class is intrinsic property of algorithm.
- binary search � logarithmic time
- dynamic programming � linear time

ignores stables & focuses on runtime size class

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Valuation

Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

We are interested in the size class T(n)
¢ Size class is intrinsic property of algorithm.

- binary search � logarithmic time
- dynamic programming � linear time

ignores stables & focuses on runtime size class

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Valuation

Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

We are interested in the size class T(n)
¢ Size class is intrinsic property of algorithm.
- binary search � logarithmic time
- dynamic programming � linear time

ignores stables & focuses on runtime size class

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Valuation

Running time of the algorithm A:
¢ Increasing function of T(n) that expresses in how much
time is completed A when is applied in snapshot of size n.

We are interested in the size class T(n)
¢ Size class is intrinsic property of algorithm.
- binary search � logarithmic time
- dynamic programming � linear time

ignores stables & focuses on runtime size class

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Upper Bounds

Big-Oh notation

T(n) is O(Sf �n�S) if there exist
constants c A 0 and n0 C 0 such
that T(n) B c · f(n) ¦ n C n0.

Figure: f(x) > O(g(x))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Oh notation

Example

T(n) = pn2 + qn + r, p,q,r A 0

We claim that any such function is O(n2).

¦ n C 1, qn B qn2 and r B rn2

T(n) = pn2 + qn + r B pn2 + qn2 + rn2 = (p+q+r) n2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Oh notation

Example

T(n) = pn2 + qn + r, p,q,r A 0

We claim that any such function is O(n2).

¦ n C 1, qn B qn2 and r B rn2

T(n) = pn2 + qn + r B pn2 + qn2 + rn2 = (p+q+r) n2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Oh notation

Example

T(n) = pn2 + qn + r, p,q,r A 0

We claim that any such function is O(n2).

¦ n C 1, qn B qn2 and r B rn2

T(n) = pn2 + qn + r B pn2 + qn2 + rn2 = (p+q+r) n2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Oh notation

¢ O(f(n)) is a set of functions

- T(n) > O(f(n)) ()
- T(n) = O(f(n)) (x,)

¢ Nonnegative functions: When using Big-Oh notation, we assume
that the functions involved are (asymptotically) nonnegative.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Oh notation

¢ O(f(n)) is a set of functions

- T(n) > O(f(n)) ()
- T(n) = O(f(n)) (x,)

¢ Nonnegative functions: When using Big-Oh notation, we assume
that the functions involved are (asymptotically) nonnegative.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Lower Bounds

Big-Omega notation

T(n) is Ω(f(n)) if there exist
constants c A 0 and n0 C 0 such
that T(n) C c � f(n) ¦ n C n0.

Figure: Big-Omega notation

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Lower Bounds

Example

T(n) = pn2 + qn + r, p,q,r A 0

Let’s claim that T(n) = Ω(n2).

¦ n C 0, T(n) = pn2 + qn + r C pn2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Lower Bounds

Example

T(n) = pn2 + qn + r, p,q,r A 0

Let’s claim that T(n) = Ω(n2).

¦ n C 0, T(n) = pn2 + qn + r C pn2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotic Lower Bounds

Example

T(n) = pn2 + qn + r, p,q,r A 0

Let’s claim that T(n) = Ω(n2).

¦ n C 0, T(n) = pn2 + qn + r C pn2 = c n2

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Asymptotically Tight Bounds

Big-Theta notation

T(n) is Θ(f(n)) if there exist
constants c1 A 0 , c2 A 0 and

n0 C 0 such that
c1 � f(n) B T(n) B c2 � f(n)

¦ n C n0.
Figure: Big-Theta notation

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Theta notation

Example

T(n) = pn2 + qn + r, p,q,r A 0

We saw that T(n) is both O(n2) and Ω(n2).

T(n) = Θ(n2)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Big-Theta notation

Example

T(n) = pn2 + qn + r, p,q,r A 0

We saw that T(n) is both O(n2) and Ω(n2).

T(n) = Θ(n2)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Relational Properties

Reflexivity: O, Ω, Θ

Transitivity: O, Ω, Θ

Symmetry: f(n) = Θ(g(n))
� g(n) = Θ(f(n))

Transpose Symmetry (Duality):

f(n) = O(g(n))
� g(n) = Ω(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Relational Properties

Reflexivity: O, Ω, Θ

Transitivity: O, Ω, Θ

Symmetry: f(n) = Θ(g(n))
� g(n) = Θ(f(n))

Transpose Symmetry (Duality):

f(n) = O(g(n))
� g(n) = Ω(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Relational Properties

Reflexivity: O, Ω, Θ

Transitivity: O, Ω, Θ

Symmetry: f(n) = Θ(g(n))
� g(n) = Θ(f(n))

Transpose Symmetry (Duality):

f(n) = O(g(n))
� g(n) = Ω(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Relational Properties

Reflexivity: O, Ω, Θ

Transitivity: O, Ω, Θ

Symmetry: f(n) = Θ(g(n))
� g(n) = Θ(f(n))

Transpose Symmetry (Duality):

f(n) = O(g(n))
� g(n) = Ω(f(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Master Theorem

Master Theorem

If T(n) = a T(nb) + O(nd) for constants a A 0, b A 1, d C 0, then

T �n� �

¢̈
¨̈̈
¦
¨̈̈
¤̈

O�nd� if d A logba

O�nd logn� if d � logba

O�nlogba� if d @ logba

Nice Trick for computing quickly the computational complexity.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Efficient algorithm

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on
real input instances.

¢ the omission of where, and how well

¢ real input instances

¢ scale

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Efficient algorithm

Definition 1

An algorithm is efficient if, when implemented, it runs quickly on
real input instances.

¢ the omission of where, and how well

¢ real input instances

¢ scale

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Efficient algorithm

Definition 2

An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

¢ What do we mean by ”qualitatively better performance”?

Definition 3

An algorithm is efficient if it has a polynomial running time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Efficient algorithm

Definition 2

An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

¢ What do we mean by ”qualitatively better performance”?

Definition 3

An algorithm is efficient if it has a polynomial running time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Efficient algorithm

Definition 2

An algorithm is efficient if it achieves qualitatively better worst
case performance, at an analytical level, than brute-force search.

¢ What do we mean by ”qualitatively better performance”?

Definition 3

An algorithm is efficient if it has a polynomial running time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

¢ There exists constants c A 0 and d A 0 such that on every input
of size n, its running time is bounded by cnd primitive
computational steps.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

¢ There exists constants c A 0 and d A 0 such that on every input
of size n, its running time is bounded by cnd primitive
computational steps.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Poly-time algorithm

¢ Desirable scaling property: When the input size doubles, the
algorithm should only slow down by some constant factor C.

Definition

An algorithm is poly-time if the above scaling property holds.

¢ There exists constants c A 0 and d A 0 such that on every input
of size n, its running time is bounded by cnd primitive
computational steps.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Why we care for the asymptotic bound of an algorithm?

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Classification algorithms by their design methodology

Brute-force (or exhaustive search)

Divide and conquer

Dynamic programming

Randomized algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Classification algorithms by their design methodology

Brute-force (or exhaustive search)

Divide and conquer

Dynamic programming

Randomized algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Classification algorithms by their design methodology

Brute-force (or exhaustive search)

Divide and conquer

Dynamic programming

Randomized algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Classification algorithms by their design methodology

Brute-force (or exhaustive search)

Divide and conquer

Dynamic programming

Randomized algorithms

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the
problem’s statement.

¢ (-) can end up doing far more work to solve a given problem
than might do a more clever or sophisticated algorithm

¢ (+) is often easier to implement than a more sophisticated one,
because of this simplicity, sometimes it can be more efficient

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the
problem’s statement.

¢ (-) can end up doing far more work to solve a given problem
than might do a more clever or sophisticated algorithm

¢ (+) is often easier to implement than a more sophisticated one,
because of this simplicity, sometimes it can be more efficient

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Brute-force search

Definition

Brute-force search is a very general problem-solving technique that
consists of systematically enumerating all possible candidates for
the solution and checking whether each candidate satisfies the
problem’s statement.

¢ (-) can end up doing far more work to solve a given problem
than might do a more clever or sophisticated algorithm

¢ (+) is often easier to implement than a more sophisticated one,
because of this simplicity, sometimes it can be more efficient

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Bubble Sort

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Bubble Sort

Input: array a with n elements

For i = 1 to n

For j = i + 1 to n

If (a[i] A a[j])
then swap their values

End - If

End - For

End - For

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n2)

WHY???

¢ not a practical sorting algorithm when n is large

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n2)

WHY???

¢ not a practical sorting algorithm when n is large

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Bubble Sort

¢ Computational Complexity: O(n2)

WHY???

¢ not a practical sorting algorithm when n is large

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Divide and Conquer

Definition

A divide and conquer algorithm works by recursively breaking down
a problem into two or more sub-problems of the same or related
type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution
to the original problem.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

3 steps of divide and conquer

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

Example

T(n) = number of comparisons to mergesort an input of size n.

Divide array into two halves (divide O(1)).

Recursively sort each half (sort 2T(
n

2
)).

Merge two halves to make sorted whole (merge O(n)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

Example

T(n) = number of comparisons to mergesort an input of size n.

Divide array into two halves (divide O(1)).

Recursively sort each half (sort 2T(
n

2
)).

Merge two halves to make sorted whole (merge O(n)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

Example

T(n) = number of comparisons to mergesort an input of size n.

Divide array into two halves (divide O(1)).

Recursively sort each half (sort 2T(
n

2
)).

Merge two halves to make sorted whole (merge O(n)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

Example

T(n) = number of comparisons to mergesort an input of size n.

Divide array into two halves (divide O(1)).

Recursively sort each half (sort 2T(
n

2
)).

Merge two halves to make sorted whole (merge O(n)).

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

T �n� �
¢̈
¨
¦
¨̈
¤

0 if n = 1

2T �n2� �O�n� otherwise

¢ Master Theorem ,

¢ Solution: T(n) = O(nlog(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

T �n� �
¢̈
¨
¦
¨̈
¤

0 if n = 1

2T �n2� �O�n� otherwise

¢ Master Theorem ,

¢ Solution: T(n) = O(nlog(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Mergesort

T �n� �
¢̈
¨
¦
¨̈
¤

0 if n = 1

2T �n2� �O�n� otherwise

¢ Master Theorem ,

¢ Solution: T(n) = O(nlog(n))

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each
sub-problem, and combine solution to sub-problems to form
solution to original problem.

Dynamic programming

Break up a problem into a series of overlapping sub-problems, and
build up solutions to larger and larger sub-problems.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Dynamic programming

Divide and Conquer

Break up a problem into independent sub-problems, solve each
sub-problem, and combine solution to sub-problems to form
solution to original problem.

Dynamic programming

Break up a problem into a series of overlapping sub-problems, and
build up solutions to larger and larger sub-problems.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Applications

¢ Dynamic programming applications:

Bioinformatics

Control Theory

Information Theory

¢ Cocke-Kasami-Younger for parsing context-free grammars.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack Problem

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack

Given n objects and a ”knapsack”.

Item i weights wi A 0 and has value vi A 0.

Knapsack has capacity of W.

Goal: fill knapsack so as to maximize total value.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack

Given n objects and a ”knapsack”.

Item i weights wi A 0 and has value vi A 0.

Knapsack has capacity of W.

Goal: fill knapsack so as to maximize total value.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack

Given n objects and a ”knapsack”.

Item i weights wi A 0 and has value vi A 0.

Knapsack has capacity of W.

Goal: fill knapsack so as to maximize total value.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack

Given n objects and a ”knapsack”.

Item i weights wi A 0 and has value vi A 0.

Knapsack has capacity of W.

Goal: fill knapsack so as to maximize total value.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

OPT(i, w) = max profit subset of items 1, . . . , i with weight limit
w

¢ Case 1: OPT does not select item i.

OPT selects best of � 1, 2, . . . , i – 1 � using weight limit w.

¢ Case 2: OPT selects item i.

New weight limit = w – wi .

OPT selects best of � 1, 2, . . . , i – 1 � using this new weight limit.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem

Objective function:

OPT �i ,w� �

¢̈
¨̈̈
¦
¨̈̈
¤̈

0 if i � 0

OPT �i � 1,w� if wi A w

max�OPT �i � 1,w�, vi �OPT �i � 1,w �wi�� otherwise

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack Problem

¢ Knapsack problem: bottom-up

KNAPSACK (n, W,w1,. . . ,wn,v1,. . . ,vn)
for w = 0 to W

M [0, w] �Ð 0.
for i = 1 to n

for w = 0 to W
if (wi A w)

M [i, w] �Ð M [i – 1, w].
else

M [i, w] �Ð max� M [i – 1, w], vi + M [i – 1, w – wi] �
return M [n, W]

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in Θ(nW) time and Θ(nW) space.

¢ not polynomial in input size! (pseudo-polynomial)

¢ NP - complete problem ,

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in Θ(nW) time and Θ(nW) space.

¢ not polynomial in input size! (pseudo-polynomial)

¢ NP - complete problem ,

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Knapsack problem: running time

Theorem

There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in Θ(nW) time and Θ(nW) space.

¢ not polynomial in input size! (pseudo-polynomial)

¢ NP - complete problem ,

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Definition

A randomized algorithm is an algorithm that employs a degree of
randomness as part of its logic.

¢ Randomization: Allow fair coin flip in unit time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Definition

A randomized algorithm is an algorithm that employs a degree of
randomness as part of its logic.

¢ Randomization: Allow fair coin flip in unit time.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Why randomize?

Can lead to simplest, fastest, or only known algorithm for a

particular problem! ,

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Why randomize?
Can lead to simplest, fastest, or only known algorithm for a

particular problem! ,

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

¢ Las Vegas: A randomized algorithm that always outputs
the correct answer, it is just that there is a small probability of
taking long to execute.

¢Monte Carlo: Sometimes we want the algorithm to
always complete quickly, but allow a small probability error.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

¢ Las Vegas: A randomized algorithm that always outputs
the correct answer, it is just that there is a small probability of
taking long to execute.

¢Monte Carlo: Sometimes we want the algorithm to
always complete quickly, but allow a small probability error.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

There are two large classes of such algorithms:

¢ Las Vegas: A randomized algorithm that always outputs
the correct answer, it is just that there is a small probability of
taking long to execute.

¢Monte Carlo: Sometimes we want the algorithm to
always complete quickly, but allow a small probability error.

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Any Las Vegas algorithm can be converted into a Monte Carlo
algorithm by outputting an arbitrary, possibly incorrect answer if it
fails to complete within a specified time.

Monte Carlo algorithm cannot be converted into a Las Vegas
(i.e., approximation of π)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Randomized Algorithms

Any Las Vegas algorithm can be converted into a Monte Carlo
algorithm by outputting an arbitrary, possibly incorrect answer if it
fails to complete within a specified time.

Monte Carlo algorithm cannot be converted into a Las Vegas
(i.e., approximation of π)

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Monte Carlo vs Las Vegas

π � 4
n
� cycle

4
�

n�square�

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Next

¢ Computational Complexity
¢ Complexity Classes (i.e., P, NP)
¢ Some nice computational problems ,
¢ Some reductions

��Y
�
Y�/

��Y
�
Y�/ ��Y

�
Y�/

��Y
�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/

��Y
�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/

��Y
�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/ ��Y

�
Y�/

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

References

J.Kleinberg, E.Tardos. Algorithm Design. Boston, Mass.:
Pearson/Addison-Wesley, cop. 2006

I.Manwlìpouloc, A.Papadìpouloc, K.TsÐqlac. JewrÐa
kai Algìrijmoi Gr�fwn, Aj na: Ekd. Nèwn Teqnologi¸n,
2014.

TsÐqlac, K., GoÔnarhc, A., Manwlìpouloc, I., 2015.
SqedÐash kai an�lush algorÐjmwn. [hlektr. bibl.]
Aj na:SÔndesmoc Ellhnik¸n Akadhmaðk¸n Bibliojhk¸n.
Diajèsimo sto: http:��hdl.handle.net�11419�4005

Domèc dedomènwn, Mpoz�nhc Panagi¸thc D, EKDOSEIS
A. TZIOLA & UIOI A.E., 2006

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

Section 1: Computational Complexity
Section 2: Asymptotic Notation

Section 3: Algorithms

Thank you!!!

Maria-Eirini Pegia Computational Complexity II: Asymptotic Notation and Classification Algorithms

	Section 1: Computational Complexity
	Section 2: Asymptotic Notation
	Section 3: Algorithms

