4 5 B 7 6 93 A B C D E F

Bits & Bytes

Data — Memory — Pointers

Programmaing with C++

Dimitrios N. Terzopoulos

terzopod@math. auth. gr

14/10/2015



0 L2 3 456k 7?7 89ABCDEF
Contents (1) — Data / Memory

* Processor Registers, Cache & Instructions — Assembly
 Stack / Heap (Function Calls)

* Bit/Byte Endianness (wtf?77)

 File Structure — Running Processes — Address Space

= . Hacking through Memory



0 L2345k 7?&9ABCDEF
Practice (1) — Pointers in C+-

+ 0x0CFE02AC & (0xFF << 16)) >> 16) — 0xFE
 Uninitialized Variables (Garbage)

e Global vs. Local Variables

* Return Value Optimization & Pointer Misassignment

? * #define directive, typedet keyword



0 L2345k 7?&9ABCDEF
Practice (2) — Pointers in C+-

» Call by Value vs. Call by Reference (“Swap Problem”)

* Fixed-size Arrays vs. Variable-size Arrays & Containers
* Pointers to Pointers

 Pointers to Functions

gl - e

» Casts and Data Reinterpretation




0 1 2 3 4 5 L 7689 ADBTG CUDEF
Motivation

* Too much Theory in Theoretical Information Science(!)
* Prestige(!)

* Code Elegance & Readability (The FORTRAN curse)

* Development Performance & Productivity

» * Code Reusability




0 L2 3 4 56L 7 89ABCDEF
Russian Multiplication

int M(int a, int b) {
int result = 0;
while (a) { if (a&1) {result+=b;} a>>=1; b<<=1; }
return result;

}

International Obfuscated

C Code Contest




0 L. 2 3 4 5 kb 77 &9 A B CDUEF

~ Registers — Cache — Instructions — Assembly

* Registers = Like local variables for the processor.

* Registers = Their size depends on Proc. Architecture.

* Cache = Small temporary memory space for duplicates.

Bsedb

e Cache hit vs. Cache mziss

 Instructions > Bits that are an order for the processor.

..* Instructions = They make up Machine code (Bytes).

"‘-" * Assembly = Compacted “baptized” Machine Code.

= 4’1 7



0 L2 3 456k 7?7 89ABCDEF
Motivational Example (Registers)

* 32-bit Architecture & 32-bit register variables.
» 32-bit variable 2 Max Value — 232 — 4294967295.

* How much is that??? = 232 = (22).(210)3 =4.(1024)° ...
... = 4294967295 values.

If each value points to one 1-byte memory cell, that’s...
4 GB of Addressable Memory!



0 L2 3 4 56k 7 89ABCDEF
Stack & Heap in Memory

e Stack =2 ,Smaller Memory Area for local operations.
« Stack = Functions place local variables on the Stack.

When stack is full = Stack Overflow

 Heap = Large Memory Chunk for global operations.
 Heap = Hosts dynamaically assigned variables.



-
. 1]
L4
228
‘Aeje;
.>;~"'
g5 1
a4
-
.l
1
-~
.
B}
!

0 L. 2 3 4 5 kb 77 &9 A B CDUEF

int Func() {
int d = 20;
return d*d;

}

int Func2() {
static int w = 50;
return (w/4);

// d Is a local variable
// allocated on the stack.
// It “dies” afterwards.

// w is a global variable
// allocated on the heap

// Tt never “dies” until we
[/ “kill” it.



2 3 4 5L 789 ABCDEF
Bit /Byte Endianness

* 1 Byte = 8 Bits

* 1 Short = 2 Bytes = 1 Word (Windows API)

* 1 Integer = 4 Bytes = 1 Dword

etc... (but not always — sizes are machine dependent).

* Let intVal = (A2 B1 12 3D),, = (2729513533),,

The same integer in two different representations.

e Little Endian =2 3D 12 B1 A2
. ST ea * Big Endian 2 A2 B1 12 3D

T g
'_’"&k"
"&:-v

> Endianness = The order of Byte Interpretation.
(From Gulliver’s Travels)




0 L2 3 4 56L 7 89ABCDEF
File Structure — Running
Processes — Address Space

* Files are made of bytes (honestly?).
* The meaning of these bytes is Contextual.

* Programs rely on “Grouped Byte Interpretation”.
(Usually defined in Standards and described in headers)

* File contents can be viewed using a Hex Editor.




0 L2 3 4 56L 7 89ABCDEF
File Structure — Running
Processes — Address Space

* Running Processes are also ... Bytes! Loaded in RAM.
(It is Machine Code loaded and executed)

* Windows PE (Portable Executable) Format.

* Each Process runs in a Virtual Address Space.

Knowing what the Address Space content looks
like allows for “tampering’ with Processes.




0 L 2 3 4 56L7?789ADBCTDEF
And some fun...

* Code Injection (Run code in the address space of a
running process)

» Self~-Modifying Code (Code is mutated at runtime to
become malicious).

* Disassemble / Decompile (Retrieving the original
source code in some form).

\ ~“"t - »

Q,:a
/

<* DLL Proxy (Build a proxy to incorporate desired
behavior in some already existing
library)

-




0 1 2 3 4 5 L 7689 ADBTG CUDEF
References

 Patterson, D.A. and Hennessy, J.L. (2014). Computer
Organization and Design (5" FEdition): The
Hardware / Software Interface. The Morgan
Kaufmann Series in Computer Architecture and

Design, Elsevier, Oxtord.

* Eckel, B. (2000). Thinking in C++ (2 Volumes).
Prentice Hall, Pearson Higher Education, New

Jersey.




o L 2 3 4 5 kb ¢ 49 A B CDUE F

Thank you for your attention!

...on ftor the Practice




