Ας είναι η \(f \) μια ομάδα με πέδιο ορισμού \(\mathbb{R} \).
Από το σχήμα μπορούμε να προβούμε τα εξής ασύρματα:
- \(F'(-\infty, x_0) \), \(F'(x_0, +\infty) \)
- Για \(x = x_0 \) η \(f \) εμφανίζει τοπικό μέσο στο \(F(x_0) \)

Παρατηρήσει: \(i \) Αν πτωμά το πέδιο ορισμού \(\mathbb{R} - \{x_0\} \)
τότε \(F'(-\infty, x_0), F'(x_0, +\infty) \)

\(ii \) \(f \) είναι συνεχής στο \(x_0 \)
(τα πλευρικά ορια σύμφωνα και είναι ίσα)

2) Παρατηρούμε ότι η \(f \) εχει πέδιο ορισμού \(\mathbb{R} \).

\(F'(-\infty, x_0), F'(x_0, +\infty) \) ομως η \(f \) δεν είναι
συνεχής στο \(x_0 \) \((\lim_{x \to x_0} f(x) \neq F(x_0)) \)

Το \(x_0 \) δεν είναι ουτε τοπικό μέσο ουτε τοπικό
εξάρτημα
3) Η συνάρτηση έχει πέντε άκρες:

\[-\infty, x_3 \] \[x_3, x_4 \] \[x_4, x_5 \] \[x_5, x_0 \] \[x_2, +\infty \]

- \(F \downarrow (\infty, x_3] \):
 - Τα τελικά καμψίματα λαμβάνονται για \(x = x_3, x = x_5 \)
 - Και τα τελικά μέγιστα λαμβάνονται για \(x = x_4 \)

- \(F \uparrow [x_3, x_4] \):
 - Παρατηρούμε ότι για \(x = x_3 \) λαμβάνουμε άκρα μέγιστα
1) Να βρεθεί το πεδίο συμμόρφωσης των παρακάτω συναρτήσεων:

a) \(f(x) = \frac{x^2 + 9x + 1}{x + 2} \)

β) \(f(x) = \frac{4}{x - 2} \)

γ) \(g(x) = x^2 - 3x + 2 \)

δ) \(g(x) = \tan(x - 2) \)

ε) \(\text{arctan}(x - 2) \)

δ') \(g(x) = \sqrt{x + 1} \)

α) Παρατηρούμε ότι ένα \(f(x) = x^3 + 2x + 7 \) όρα το \(\text{π.δ}(f) = (-\infty, +\infty) \)

β) Βλέπωμε ότι η συνάρτηση δεν \(\forall x_0 \in \mathbb{R} \) είναι ορθή στη \(x_0 = 2 \) δεν ορίζεται \(f(x_2) \) \(\Rightarrow \) η συνάρτηση μονοπλοκής είναι ορθή

γ') \(\text{π.ο}(f) = (-\infty, 2) \cup (2, +\infty) \)

δ) Γνωρίζω ότι ο λογαριθμός ορίζεται μονοπλοκή σε \(x > 0 \) και επειδή \(1x^1, x^2 > 0 \) \(\Rightarrow \)

ε) \(x_0 \in \mathbb{R} \) \(\Rightarrow \) \(0 \)

ε') \(\text{π.ο}(f) = (-\infty, 0) \cup (0, +\infty) \)

θα πρέπει (από τον ορισμό του τετραγώνου πίθανο) το υποτέλειο να είναι δενόμο. Αρα

\[x + 7 \geq 0 \iff x \geq -7 \]

\[\text{π.ο}(f) = (-\infty, +\infty) \]
1) \[f(x) = \begin{cases}
 x^2 - 2 & x \leq 1 \\
 3x - 4 & 1 < x \leq 2 \\
 2x - 1 & x > 2
\end{cases} \]

Παρατηρήστε (αν χρήστετε) τα άρθρα:

i) \(\lim_{x \to 0} f(x) \)

ii) \(\lim_{x \to 1} f(x) \)

iii) \(\lim_{x \to 2} f(x) \)

Αναλύση:

i) Επειδή η η\(x^2 \) γίνει \(f(x) = x^2 - 2 \)

\[\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^2 - 2) = 0^2 - 2 = -2 \]

ii) Παρατηρήστε ότι η \(f \) ευθετείται του 1 ακάματος τύπο

- Αν \(x < 1 \), τότε \(f(x) = x^2 - 2 \) οπότε

\[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2 - 2) = 1^2 - 2 = -1 \]

- Αν \(1 < x < 2 \), τότε \(f(x) = 3x - 4 \), οπότε

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3x - 4) = 3 \cdot 1 - 4 = -1 \]

Επειδή \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) \) είναι \(\lim_{x \to 1} f(x) = -1 \)

iii) \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (3x - 4) = 3 \cdot 2 - 4 = 2 \)

\(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x - 1) = 2 \cdot 2 - 1 = 3 \)

Επειδή \(\lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x) \) δεν υπάρχει το \(\lim_{x \to 2} f(x) \)
2) \[
\lim_{x \to -1} \frac{\sqrt{x^2 + x} - 2}{x^2 + x} = \lim_{x \to -1} \frac{(\sqrt{x^2 + x} + 2)(\sqrt{x^2 + x} - 2)}{x(x+1)(\sqrt{x^2 + x} + 2)} = \\
= \lim_{x \to -1} \frac{x + 5 - 4}{x(x+1)(\sqrt{x^2 + x} + 2)} = \lim_{x \to -1} \frac{x + 1}{x(x+1)(\sqrt{x^2 + x} + 2)} = \\
= \lim_{x \to -1} \frac{1}{x(x+1)(\sqrt{x^2 + x} + 2)} = \frac{1}{-1(1-1+5+2)} = -\frac{1}{4}
\]

3) \[
\lim_{x \to 0} (\eta_μ \cdot \text{ω} \cdot \frac{1}{x})
\]

(μδενίση επί γραμμή)

Ερευνάμε ως επι-ςης \(-1 \leq \text{ω} \cdot \frac{1}{x} \leq 1, \quad \forall x \in [0, \frac{\pi}{2}]\)

\[\Rightarrow \quad -\mu x \leq \text{μν} \cdot \text{ομω} \cdot \frac{1}{x} \leq \mu x\]

Επειδή \(\lim_{x \to 0} (-\eta_μ) = \lim_{x \to 0} (\eta_μ) = 0\) απο το κριτήριο

περιβολής, έχουμε ότι \(\lim_{x \to 0} \text{μν} \cdot \text{ομω} \cdot \frac{1}{x} = 0\)
Na βρείετε τα όρια:

\[i) \lim_{x \to 1} \frac{x^3 - 6x + 5}{2x^2 - x - 1} \quad \text{ii) } \lim_{x \to -2} \left(\frac{1}{x^2 + 2} + \frac{9}{x^2 - 2x} \right) \]

\[\text{Λύση} \]

i) Επειδή \(\lim (2x^2 - x - 1) = 0 \) δεν μπορούμε να εφαρμόσουμε τον κανόνα του πολυώνυμων δια τα όρια (κανόνα πολυώνυμων: \(\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)} \) οπου \(P, Q \) πολυώνυμα) ώστε να δημιουργήσουμε οποιοδήποτε παράγοντα το \(x - 1 \)

- Σχήμα Horner (Διαρκεία πολυώνυμων)

\[
\begin{align*}
 x^3 - 6x + 5 &= (x-1)(x^2 + x - 5) \\
 2x^2 - x - 1 &= (x-1)(2x+1)
\end{align*}
\]

\[\text{Αρα} \quad \lim_{x \to 1} \frac{x^3 - 6x + 5}{2x^2 - x - 1} = \lim_{x \to 1} \frac{(x-1)(x^2 + x - 5)}{(x-1)(2x+1)} = \lim_{x \to 1} \frac{x^2 + x - 5}{2x+1} = \frac{1^2 + 1 - 5}{2 \cdot 1 + 1} = -\frac{1}{3} \]

ii) \[\lim_{x \to -2} \left(\frac{1}{x^2 + 2} + \frac{9}{x^2 - 2x} \right) = \lim_{x \to -2} \left(\frac{1}{x^2 + 2} + \frac{9}{x(x-2)} \right) = \lim_{x \to -2} \left(\frac{(x-2)}{(x-2)(x+2)} + \frac{9}{x(x-2)} \right) \]

\[= \lim_{x \to -2} \left(\frac{-x^2}{(x-2)(x+2)} \right) = \lim_{x \to -2} \frac{1}{x-2} = \frac{1}{-2 - 2} = -\frac{1}{4} \]
Δίνεται η συνάρτηση

\[f(x) = \begin{cases} \alpha x^4 + 1 & x \leq 1 \\ 2\alpha x^3 + \beta x & x > -1 \end{cases} \]

Να βρεθούν οι τιμές \(\alpha, \beta \in \mathbb{R} \) ώστε να ισοπεδωθεί το οριο \(\lim_{x \to -1} f(x) \).

Λύση

Θα πρέπει \(\lim_{x \to -1} F(x) = \lim_{x \to -1} f(x) = f(-1) \)

\[F(-1) = \alpha^2 + 1 \]

\[\lim_{x \to -1} F(x) = \lim_{x \to -1} 2\alpha x^3 + \beta x = -2\alpha - \beta^2 \]

Από \(i \) και \(ii \) συνεχίζετε

\[\alpha^2 + 1 = -2\alpha - \beta^2 \]

\[(\alpha + 1)^2 = -\beta^2 \]

\[(\alpha + 1)^2 + \beta^2 = 0 \]

Αναλύουμε \(\alpha + \beta \cdot \beta = 0 \)

\[\begin{align*}
\alpha + 1 &= 0 \\
\alpha &= -1 \\
\beta &= 0
\end{align*} \]
Είναι η συνάρτηση \(F(x) = \begin{cases} \frac{\sqrt{x^4 + x^2 + \mu x^2}}{x^2 + x}, & x > 0 \\ e^x + \lambda, & x \leq 0 \end{cases} \)

i) Να βρεθεί το \(\lambda \), ώστε η \(F \) να είναι σωστή στο \(x_0 = 0 \)

Λύση
- Για να είναι \(F \) σωστή, δύναμαι \(\lim_{x \to x_0} F(x) = F(x_0) \)
- Όπως \(\lim_{x \to 0} F(x) = F(0) \)
- \(F(0) = e^0 + \lambda = 1 + \lambda \)
- \(\lim_{x \to 0} F(x) = \lim_{x \to 0} \frac{\sqrt{x^4 + x^2 + \mu x^2}}{x^2 + x} = \lim_{x \to 0} \frac{\sqrt{x^2(x^2 + 1) + \mu 2x}}{x(x+1)} = \lim_{x \to 0} \frac{x(\sqrt{x^4 + 1} + \mu 2)}{x(x+1)} \)
- \(\lim_{x \to 0} \frac{x\sqrt{x^4 + 1} + \mu 2}{x(x+1)} = \frac{\sqrt{0^4 + 1} + \mu 2}{0+1} = \frac{\sqrt{1} + \mu 2}{1} = 1 \)

Αποκλειστικά να είναι σωστή, δύναμαι να έχει

\[1 + \lambda = 1 \implies \lambda = 0 \]
\[f(x) = \begin{cases} \frac{x}{1 + e^{-x}} & x \neq 0 \\ 0 & x = 0 \end{cases} \]

Γνωρίζω ότι η ψηφιδωτή είναι σωρεία στο \(x = 0 \) και \(x = 0 \).

\[\lim_{x \to 0} \frac{x}{1 + e^{-x}} = \lim_{x \to 0} \frac{1}{1 + e^{-x}} = \lim_{x \to 0} \frac{1}{1 + e^{-x}} = 0 \]

Το μετέπειτα θα γίνει ως προς την συνεχή ψηφιδωτή:

\[f(x) = \begin{cases} \ln(x + 1) & x < 0 \\ e^{x^2} - 1 & x \geq 0 \end{cases} \]

\[F(0) = e^{0} - 0 - 1 = e^0 - 1 = e - 1 \Rightarrow F(0) = 0 \]

\[\lim_{x \to 0} \ln(x + 1) = \ln(1) = 0 = F(0) \]

Απαντάω σωρεία
Δίνεται καρτεσιανό σύνολο συνορισμένων οκτώ και σημείο Α με καρτεσιανές συντεταγμένες (2,4). Να βρεθούν οι πολίνες συντεταγμένες του Α (ρ,θ).

Λύση
- Αρκεί να βρούμε το ρ που είναι η απόσταση από την αρχή των αξόνων (AO), και το θ τη σκιά που σχετίζει το ΑΟ με τον αξόνα x.
- Το τρίγωνο ABO είναι ορθόγωνο. Το ΑΒ και OB είναι ομολογικά (αποστάσεις). Επομένως εφαρμόζοντας τη Διάφορη Θεώρηση δια να βρούμε το OA = ρ
- \(OB^2 + AB^2 = OA^2\)
- \((0)^2 + (4)^2 = OA^2\) \(\Rightarrow\)
- \(OA^2 = 4 + 16 = 20\) \(\Rightarrow\)
- \(OA = \sqrt{20} = \sqrt{2 \times 5} = 2\sqrt{5}\)
- Άρα \(ρ = OA = 2\sqrt{5}\)
- Για τα σημεία θα σημαίνει ότι υπάρχει ορθόγωνο τρίγωνο.
- Το πλευρά με σκιαίς \(θ = \frac{π}{2}\) \(\Rightarrow\) 10χιλέμι
- \(\frac{θ}{\pi} = \frac{2\sqrt{5}}{\pi}\) σπορείο
- \(θ = 2\tan^{-1}\left(\frac{2\sqrt{5}}{5}\right)\)
- Άρα \((ρ,θ) = (2\sqrt{5},2\tan^{-1}\left(\frac{2\sqrt{5}}{5}\right))\)