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'|||HH| Multiple Regression

Dr. George Menexes
Aristotle University of Thessaloniki
School of Agriculture, Lab of Agronomy

I
””H Learning Objectives

In this lecture, you learn:
= How to develop a multiple regression model
= How to interpret the regression coefficients

= How to determine which independent variables to
include in the regression model

= How to determine which independent variables are
most important in predicting a dependent variable

= How to use categorical variables in a regression
model




-|||||” Simple and Multiple Least-
Squares Regression

:

X

In asimple regression model In amultiple regression model

the least-squares estimators the least-squares estimators
minimize the sum of squared minimize the sum of squared
errors from the estimated errors from the estimated

regressionine.

regressiorplane.

'I||||”H The Multiple Regression
Model

Idea: Examine the linear relationship between 1 dependent (Y)
& 2 or more independent variables)XX

Multiple Regression Model with k Independent Valésh

Y-intercept | Population slopes |

Yo =B +ByXyi + P Xy . B X + &,




Multiple Regression Equation

The coefficients of the multiple regression model
are estimated using sample data

Multiple regression equation with k independenialales:

Estimated i ; ici
Estimated | Estimated slope coefficients |

szf.fg%%'%ted’/i“te"’e‘“/ /O~

~/
Y.=b, +b, X, +b, X, +...+ b X,

In this lecture we will always use Excel to obtain the regressior
slope coefficients and other regression summary measures.

Multiple Regression Equation

Example with Y

two independent
variables

Y =b, +b,X, +b,X,




Multiple Regression Equation
2 Variable Example

= A distributor of frozen dessert pies wants to
evaluate factors thought to influence demand

= Dependent variable:

Pie sales (units per week)

= Independent variables: Price (in $)

Advertising ($100’s)

» Data are collected for 15 weeks

Multiple Regression Equation
2 Variable Example

Week | Pie Sales

Price

®)

Advertising
($100s)

[

350
460
350
430
350
380
430
470
450
490
340
300
440
450
300

© © N o O B~ W N

P =
g » W N P O

5.50
7.50
8.00
8.00
6.80
7.50
4.50
6.40
7.00
5.00
7.20
7.90
5.90
5.00
7.00

3.3
3.3
3.0
4.5
3.0
4.0
3.0
3.7
3.5
4.0
3.5
3.2
4.0
3.5
2.7

Multiple regression equation:

= Sales = p+ b, (Price) +
b, (Advertising)
= Sales = p+b;X; + b,X,

Where X = Price
X, = Advertising




-|||||” Multiple Regression Equation
2 Variable Example, Excel

Regression Statistics
Multiple R 0.72213
R Square 0.52148
Adjusted R Square 0.44172
Standard Error 4740381 Sales-306.526 24.975(X) + 74.131(%)
Observations 15 /
ANOVA df 3/ MS [F Significance F
Regression 2 9460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333
/
Coefficients / Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52610 114.25389 2.68285 0.01993 57.58835 555.46404]
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888

'I|||||H Multiple Regression Equation
2 Variable Example

Sales=306.526-24.975(X )+ 74.131(X,)

where
Sales is in number of pies per week
Price isin $
Advertising is in $100’s.

b, = -24.975 sales will b, = 74.131 sales will
decrease, on average, by | increase, on average, by
24.975 pies per week for| | 74.131 pies per week
each $1 increase in selling | for each $100 increase
price, net of the effects of | iN advertising, net of the

changes due to advertising | €ffects of changes due
to price




"'|||| Multiple Regression Equation
2 Variable Example

Predict sales for a week in which the selling price is
$5.50 and advertising is $350:

Sales- 306.526 24.975(X) + 74.131(X,)
= 306.526 24.9755.50)+ 74.1313.5)

=428.62
) | : Note that Advertising is in
Predicted sales is $100's, so $350 means that
428.62 pies X,=3.5

"'|||| Coefficient of
Multiple Determination

» Reports the proportion of total variation in Y
explained by all X variables taken together

(2 SSR  regressiosumof squares
SST totalsumof squares




'I|||||H Coefficient of
Multiple Determination (Excel)

Regression Statistics
Multiple R 0.72213 r2 _ SSR_ 294600_ 52148
/ - - . -
R Square 0.52148 SS1 56493.;
Adjusted R Square 0.44172 a_nf . . n
! . 52.1% of the variation in pie sales is
Standard Error 47.46341 . q_f q ]
_ explained by the variation in price
Observations 15 A
and advertising
ANOVA df SS / MS E Significance F
Regression 2 29460.027  14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404]
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392,
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 l30.7088£=3|

.n””‘“ Adjusted r?

* 2 never decreases when a new X variable is added
to the model

= This can be a disadvantage when comparing
models

= What is the net effect of adding a new variable?

= We lose a degree of freedom when a new X
variable is added

= Did the new X variable add enough independent
power to offset the loss of one degree of
freedom?




Adjusted r?

= Shows the proportion of variation in Y explained by all X
variables adjusted for the number of X variables used

r’=1-

n-1

@d- rYZ.lz.k) n_k_1

(where n = sample size, k = number of independanables)

= Penalizes excessive use of unimportant independent
variables

= Smaller than%

= Useful in comparing models

Adjusted r?

Regression Statistics

r2, =.44172

Multiple R 0.72213 adj
A 252198 '44.2% of the variation in pie sales is explained
Adjusted R Square 0.4417 .
S —— 4746341 DY the variation in price and advertising, taking
L. 15 into account the sample size and number of
independent variables

ANOVA df Ss MS [F Significance F
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404]
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888]




T
””H F-Test for Overall Significance

» F-Test for Overall Significance of the Model

= Shows if there is a linear relationship between all of
the X variables considered together and Y

» Use F test statistic
= Hypotheses:

Ho: B1=PB,= ... =B, =0 (no linear relationship)
H,: at least oneB; #0 (at least one independent variable
affects Y)

T
””H F-Test for Overall Significance

» Test statistic:

SR

I:_MSR_ Tk

MSE SSE
n-k-1

= where F has (numerator) =k and
(denominator) = (n -k - 1)
degrees of freedom




F-Test for Overall Significance

Regression Statistics

Multiple R 0.72213

R Square 0.52148 MSR 147300

Adjusted R Square 0.44172 F = MSE = 2252 8 = 65386
Standard Error 47.46341 '

ANOVA df SS MS F Significance F
Regression 2 29460.027 14730.013 6.53861

Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404]
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888

T
””H F-Test for Overall Significance

* Hyp,=B,=0 Test Statistic:
= H;: B, andp, not both zero MSR
+ 0=.05 F=——=6.5386
MSE
» df=2  df=12
= ~— ~ Decision:
Critical Since F test statistic is in the
VeI rejection region (p-value < .05),
F,=3.885 reject H,
a=.05 .
f l Conclusion:
0 ) F There is evidence that at least one

D t R tH . .
relj?er::?HO Fos= 3.§J§C ° independent variable affects Y




Residuals in Multiple Regression

Two variable model
Y  Sample

obiervation Q =b, +b,X; +b,X,

Residual =
A
e =(Y;=Y)

The best fitting linear regressic
equation,’\(, is found by

/ minimizing the sum of squared
X, errors,Xe?

n

Multiple Regression Assumptions

Errors (residuals) from the regression model:
N
e = (YY)

Assumptions

= The errors are independent

= The errors are normally distributed
= Errors have an equal variance




|| H Multiple Regression Assumptions

= These residual plots are used in multiple regressiq
= Residuals vsf\iY
= Residuals vs. X
= Residuals vs. X
» Residuals vs. time (if time series data)

Use the residual plots to check for
violations of regression assumptions

'I||||”H Individual Variables
Tests of Hypothesis

= Use t-tests of individual variable slopes
= Shows if there is a linear relationship
between the variable dnd Y
= Hypotheses:
Ho: Bi = O (no linear relationship)
Hi: B; #0 (linear relationship does exist
between Xand Y)




Individual Variables
Tests of Hypothesis

Ho: B; = O (no linear relationship)

H,: B; #0 (linear relationship does exist
between Xand Y)

» Test Statistic:

t ] (df=n-k-1)
J

| Individual Variabl

REGEEIaN SEEieE t-value for Price is t = -2.306, with p-
Multiple R 0.72213 Va.lue 0398
R Square 0.52148
Adjusted R Square 0.44172 t | f Ad t, . . t 2 855
Standard Error 47.46341 -Ya Lig el S ] 2 = = !
S 15 | with p-value .0145
ANOVA df SS MS F Significance F
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 57.58835 555.46404]
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70889]




"'|||| Individual Variables
Tests of Hypothesis

N\
HO: Bj =0 Coefficients | Standard Error t Stat ﬂ:’-value \
H]_: BJ _+/_ 0 Price -24.97509 10.83213[ -2.30565|] 0.03979
Advertising 74.13096 25.96732 2.8547)9 \0.01449/

~—"

df.=15-2-1=12 .. . .
The test statistic for each variable falls in

(x' = '05 - - -
(= 21788 the rejection region (p-values < .05)
Decision:
a/2=.025 a/2=.025 Reject H for each variable
Conclusion:
I I There is evidence that both Price and
Reject Hy ; 'DornotrejectH, ,  Reject H, Advertising affect pie sales at= .05
al2 0 al2
'I| | . .
||| Confidence Interval Estimate

for the Slope

Confidence interval for the population sldge

bi + tn_k_lsb where t has

i (n—-k-1)d.f.
Coefficients Standard Error
Intercept 306.52619 114.25389 Here. t has
Price  -24.97509| 10.83213D (15-2-1)=12 df
Advertising 74.13096 25.96732 , - o

Example: Form a 95% confidence interval for the effect chges in
price (X,) on pie sales, holding constant the effects okdibing:

-24.975+ (2.1788)(10.832): So the interval is (-48.576,374)




'I||||”H Confidence Interval Estimate
for the Slope

Confidence interval for the population sldge

Coefficients Standard Error Lower 95% Upper 95%
Intercept 306.52619 114.25389( ... 57.58835 555.46404]
Price -24.97509 10.83213| ... ( -48.57626 -1.37392
Advertising 74.13096 25.96732| ... 17.55303 130.70888 ’

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by bettu@&rto 48.58 pies
for each increase of $1 in the selling price, hadionstant the effects of

advertising.

'I||||”H Testing Portions of the Multiple
Regression Model

= Contribution of a Single Independent Variable X

SSR(X | all variables except X
= SSR (all variables) — SSR(all variables except)X

= Measures the contribution of Xn explaining the total
variation in Y (SST)




"'|||| Testing Portions of the Multiple
Regression Model

Contribution of a Single Independent Variable assuming
all other variables are already included
(consider here a 3-variable model):

SSR(X; | X, and X,)
= SSR (all variables) — SSR(Xand X5)

From ANOVA section of From ANOVA section of
regression for regression for

Y =b, +b,X, +b,X, +b,X, Y =b, +b,X, +b,X,

Measures the contribution of ¥ explaining SST

The Partial F-Test Statistic

Consider the hypothesis test:

Ho: variable X does not significantly improve the
model after all other variables are included

H,: variable X significantly improves the model after
all other variables are included

Test using the F-test statistic:
(with 1 and n-k-1 d.f.)

- SSR(X; |all variablesxcept))
MSE




'I|||||H Testing Portions of Model:
Example

Example: Frozen dessert pies

Test at ther = .05 level to determine whether
the price variable significantly improves the
model given that advertising is included

'I|||||H Testing Portions of Model:
Example

Ho: X, (price) does not improve the model
with X, (advertising) included

H,: X, does improve model
a=.05, df=1and 12
F critical Value = 4.75

(For X, and X)) (For X, only)

ANOVA

df SS MS
Regression 2 29460.02687 14730.01343
Residual 12 27033.30647 2252.775539

Total 14  56493.33333




ANOVA

Testing Portions of Model:
Example

(For X, and X)) (For X, only)

df SS MS

Regression 2 29460.02687 14730.01343

Residual
Total

12 27033.30647 2252.775539
14  56493.33333

£_ SSR(X,|X,) _29,460.03-17,484.22

=5.316

MSE(all) 2252.78

Conclusion: Reject i adding X does improve model

Relationship Between Test
Statistics

= The partialF test statistic developed in this section
and thet test statistic are both used to determine the
contribution of an independent variable to a multiple
regression model.

= The hypothesis tests associated with these two
statistics always result in the same decision (that is,
thep-values are identical).

2
t.=F.

e

Where a = degrees of freedom




"1
||||”H Coefficient of Partial Determination
for k Variable Model

r 2
Yj.(all variables except j)

B SSR (X ; |all variables except j)
~ SST- SSR(all variables) + SSR(X ;| all variables except j)

Measures the proportion of variation in the dependent variabls
that is explained by Xvhile controlling for (holding constant)
the other independent variables

\U

I
””H Using Dummy Variables

= A dummy variable is a categorical
independent variable with two levels:
= yes or no, on or off, male or female
= codedasOorl

= Assumes equal slopes for other variables

= |f more than two levels, the number of
dummy variables needed is (number of level
- 1)

UJ




Dummy Variable Example

Y =b,+bX,+bX,
Let:
Y = pie sales
X, = price

X, = holiday (X, = 1 if a holiday occurred during the week)
(X, = 0 if there was no holiday that week)

Dummy Variable Example

Y = b, +b X, +b,(1) =|(b, +b,) +b X, Holiday

Y =b,+b X, +b,(0)= b, +b/X, NoHoliday
Y (sales) Different Same
intercept slope
bo + b2 HO//' If Ho: Bz — 0 =
b, day X, < 1 rejected, then
No Holjg ) “Holiday” has a
Y (X, < 0 significant effect
) on pie sales

X, (Price)




Dummy Variable Example

Sales =300 - 30(Price) + 15(Holiday)
Sales: number of pies sold per week
Price: pie price in $

Holiday: 1 If a holiday occurred during the week
OldaY-10 1f no holiday occurred

b, = 15: on average, sales were 15 pies greater iksvee
with a holiday than in weeks without a holiday,&the
same price

"'|||| Interaction Between
Independent Variables

» Hypothesizes interaction between pairs of X
variables

= Response to one X variable may vary at different leve

of another X variable
= Contains a two-way cross product term

. Y=b,+b,X, +b,X, +b,X,
=Db, +b, X, +b,X, +b,(X,X,)

S



Effect of Interaction
» Given: Y =B+ B X +B. X, + B X X, +¢

= Without interaction term, effect of Jon Y is
measured b,

= With interaction term, effect of Xon Y is measured
by B, + B3 X,
= Effect changes asXhanges

Suppose Xis a dummy variable and the estimated
regression equation is Y = 1 + 2X; + 3X, + 4X,X,

Interaction Example

Y
12 4+

T X,=1:

8 + Y =1+2X+3(1) +4X(1) =4+ 6X
4

X,=0:
0 -%_2)(14.3(0)4.4)(1(0):14_2)&
1 Ll T Xl
0 0.5 1 1.5

Slopes are different if the effect of ¥n Y depends on )Xvalue




'I||||”H Significance of Interaction
Term

= Can perform a partial F-test for the
contribution of a variable to see if the
addition of an interaction term improves the
model

= Multiple interaction terms can be included

= Use a partial F-test for the simultaneous
contribution of multiple variables to the model

'I||||”H Simultaneous Contribution of
Independent Variables

» Use partial F-test for the simultaneous contrilbutio
of multiple variables to the model

» Let m variables be an additional set of variables adde
simultaneously

= To test the hypothesis that the set of m variables
improves the model:

_ [SSR(all}-SSR(all excepmnewsetof m variable§] / m
MSE(all)

F

(where Fhas m and n-k-1 d.f)

d



T ‘
”l H Lecture Summary

In this lecture, we have

= Developed the multiple regression model

= Tested the significance of the multiple
regression model

= Discussed adjusted r

= Discussed using residual plots to check
model assumptions

T ‘
”l H Lecture Summary

In this lecture, we have

= Tested individual regression coefficients
= Tested portions of the regression model
= Used dummy variables

= Evaluated interaction effects




Some Special Topics

The F Test of a Multiple
Regression Model

A statistical test for the existence of a linedatienship between Y and any
all of the independent variables,X,, ..., X:

Ho: By=PBo=..=p=0
H,: Not all thep, (i=1,2,...,k) are equal to O

Source of | Sum of Degrees o
Variation [ Squares Freedom | Mean Square F Ratio
Regressior| SSR k SSR

MSR = —

k
Error SSE n - (k+1) o SSE
(0= (k+1)
Total SST n-1
(-1

I




.'||||” Decomposition of the Sum of Squares and
the Adjusted Coefficient of Determination

SSF S

2 SSR__ SSE

= =1-
SST SST

Theadjustedmultiple coefficiert of determination,R2 isthecoefficiert of
determinaon with the&sSE anSST dividedby theirrespectivelegreesf freedom
SSE
R2=1- (n-(k+1))
SST
(nI)

4| Example : s=1.911 R-sq = 96.1% R-sq(adj) = 95'92{"_

1 . . . -
'||||| Investigating the Validity of the
Regression: Outliers and Influential
Observations
R.egressionlline Point with a large
y without outlier Yy value of x
- ﬁegression line
:i?neg\rsifr? on when all data are
outlier included
hﬁNHFEIe(tionship in
* Outlier this cluster
X X

Influential ObservationlS




the Available Cluster of Data and the Far

u”””” Possible Relation in the Region between
Point

| Point with a large value of x I

W Some of the possible data between X
original cluster and the far point

More appropriate curvilinear relationship
(seen when the in between data are knowfy).

X

III
l”” Prediction in Multiple Regression

A (1-2) 100%prediction interval for a valueof Y givenvaluesof Xi:
y+t JSA9)+MSE
Vg -V

A (1-0) 100%prediction interval for theconditional meanof Y give
valuesof Xi:

TR

| 19 |Prediction Interval

Given X [ M1 | Lend [ Price | Exch.
5 | o [ 10 | 2

[ [
\ \
[ 1a [(-@) P.l for ¥ for given X [1a | (e PLiorEIY[X] |
[88% ] 550621 +or- 08508 | 8% somez +or- 0823 |




III
l””” Polynomial Regression

One-variable polynomial regression model:

Y= BgtBy X + BX2+ BX3+. .. +B, XM +&

wherem s thedegree of the polynomial - the highest power of X appeatimg
the equation. The degree of the polynomial isafaler of the model.

Y

Y

y=b +bX+b X"

(b, <0)

Xy

Nonlinear Models and
Transformations

The multiplicative model
Y=, XXEXe
The logarithmic transformation :

logY =logpg,+ B, logX,+ g,logX,+ B.logX .+ loge

Multiple Regression Results |LogSales 1

1] 1 2 3 4 5 [ 7 ] 9 10
Intercept | ogAdver
b| 1.70082| 0.55314
sfb)| 0.05123[ 0.03011
| 33.2006) 18.3727
p-value| 0.0000] 0.0000

VIF[ #REF! | [ [ [ [ [

=

o=

ANOVA Table
Source SS df MS F ‘Fgmm ‘p-value‘
Regn.| 427217 1 42722 337.56] 4.3608] 0.0000 | s[ 0.1125]

[

=

Error] 0.24047) 19 0.0127

Total] 451263) 20 R 0.9467 Adjusted R?[ 0.9433

&

=

=0~




Transformations:
Exponential Model

Y = g .,e’¢

logyY =

The exponential m odel:

The logarithm ic transform ation
logpg,+ . X, + loge

Multiple Regression Results

0 1 2

Intercept[ogAdve
b| 3.66825] 6.784

s(b) | 0.40153] 0.23601

| 913423) 787443

p-valee| 0.0000] 0.0000

el=lelll==

=1

Vi

F[ #REF! |

i =

ANOVA Table

)

Source | SS df Ms

F[Frritica [p¥alue|

=

Regn. | 642 622 1

b42 62| 526,24 43508] 0.0000 |

o

Error] 147777 18
Total| 657.4] 20

0.7778

o

o~

5[0 5519]
F[oorre]  Adusted R2[057E3 |

Multicollinearity

X1

Orthogonal X variables provide
information from independent
sources.No multicollinearity.

X/v
Xy
Some degree of collinearity.

Problems with regression depend
on the degree of collinearity.

Xy Xy

Perfectly collinear X variables
provide identical information
content. No regression

X,

\—>X1

A high degree ofegative
collinearity also causes problen
with regression.

ns




Effects of Multicollinearity

* Variances of regression coefficients are inflated.

* Magnitudes of regression coefficients may be different
from what are expected.

* Signs of regression coefficients may not be as expect

* Adding or removing variables produces large changes il
coefficients.

* Removing a data point may cause large changes in
coefficient estimates or signs.

* |n some cases, theratio may be significant while the
ratios are not.

Variance Inflation Factor

Thevariance inflation factor associatd with X, :

V|F(xh)=1_1R12

where R is th&¥* value obtained for the regressfofi@n
the other independent variables.

Relationship between VIF and R ,?
VIFim0 -

T T T
2
00 05 10 Rh




Variance Inflation Factor (VIF)

Multiple Regression Results Expors ‘|

i} 1 2 5 4 5 5] 7 g 9 10
Intercept| M1 Lend | Price | Exch.
Bb| 4.0155)| 0.36846) 0.0047| D.0365| 0.2679
s(b)| 2.7664) 0.06305] 0.0452| 0.0093] 1.1754
t| -1.4515| 57708) 0.0855| 3.9149) 0.2975
p-value| 01517 0.0000 0.9242| 0.0002| 0.8205

=]

VIF[ 3.2072] 5.3539] 5.2887] 1.3857]

Observation: The VIF (Variance Inflation Factor)

values for both variables Lend and Price are both
greater than 5. This would indicate that some degree of
multicollinearity exists with respect to these two
variables.

|
I|||| Partial F Tests and Variable
Selection Methods

Full model:

Y =Bo+ By Xyt B X+ By X+ By Xyt e
Reduced model:

Y =B+ B Xt B X e

Partial F test:
Ho Bs=PB,=0
H,: B;and B, not both O

. o E_ -SSE
Partial F statistic: (EBlE_  SElE_Jin

r,(n - (k +1)) MSE _

where SSE; is the sum of squared errors of the reduced modebSE;. is the sum of squared
errors of the full model; MSE.. is the mean square error of the full model [MSE =
SSEJ/(n-(k+1))]; r is the number of variables dropped from the full malel.




”l H Variable Selection Methods

® Stepwise procedures

v’ Forward selection

* Add one variable at a time to the model, on theshafd
its F statistic

v’ Backward elimination
* Remove one variable at a time, on the basis &f its
statistic
v/ Stepwise regression

* Adds variables to the model and subtracts variable
: I I s of i o

uv)

”l ‘ Stepwise Regression

—’| Compute F statistic for each variable not in the mod:{

| Is there at least one variable wittp-value >P;,? |

Yes

| Enter most significant (smallestp-value) variable into model|

| Calculate partial F for all variables in the model |

—
| Is there a variable with p-value > R, ,? | { Remove
| "\ variable

No




”l H Influential Points

= Qutliers (univariate, multivariate)
= Leverage Points (Distances)
= Influence Statistics

| . . .
I|||”H Influential Points continued...

Linear Regression: Save El
Predicted Values Residuals
[ Urstandardized ™ Unstandardized Cancel
[~ Standardized [ Standardized
[ Adusted [™ Studentized Help
[~ S.E. of mean predictions ™ Deleted

™ Studertized deleted
Distances
ml E\Mahalanobis‘é Influence Statistics
" Cook's [ DfBetals)
™ Leverage values [ Standardized DB eta(s)
I~ Dffit

Prediction Intervals I Standardized DFit

I Mean [ Indtidual [ Coyariance iatio

Confidence Interval %

Save to Mew File

[~ Coefficient statistics:

Export model information to =ML file

J _ b |




Distances

Mahalanobis: A measure of how much a case's values on the
independent variables differ from the average lofades. A
large Mahalanobis distance identifies a case aspavitreme
values on one or more of the independent variables.

Cook’s: A measure of how much the residuals of all cases
would change if a particular case were excludenhftioe
calculation of the regression coefficients. A la@eok's D
indicates that excluding a case from computatiotinef
regression statistics, changes the coefficientstanbally.
Leverage valuesMeasures the influence of a point on the fit
of the regression. The centered leverage ranges@r(no
influence on the fit) to (N-1)/N.

Influence Statistics (1)

DfBeta(s): The difference in beta value is the
change in the regression coefficient that results from
the exclusion of a particular case. A value is
computed for each term in the model, including the
constant.

Std. DfBeta(s):Standardized difference in beta
value. The change in the regression coefficient that
results from the exclusion of a particular case. You
may want to examine cases with absolute values
greater than 2 divided by the square root of N, whery¢
N is the number of cases. A value is computed for
each term in the model, including the constant.

DfFit: The difference in fit value is the change in the
predicted value that results from the exclusion of a
particular case.
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Influence Statistics (2)

Std. DfFit: Standardized difference in fit value. The
change in the predicted value that results from the
exclusion of a particular case. You may want to
examine standardized values which in absolute valu
exceed 2 divided by the square root of p/N, where p
is the number of independent variables in the
equation and N is the number of cases.

Covariance Ratio: The ratio of the determinant of
the covariance matrix with a particular case exclude
from the calculation of the regression coefficients to
the determinant of the covariance matrix with all
cases included. If the ratio is close to 1, the case
does not significantly alter the covariance matrix.

>
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