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Learning Objectives

In this lecture, you learn:

� How to develop a multiple regression model

� How to interpret the regression coefficients

� How to determine which independent variables to 
include in the regression model

� How to determine which independent variables are 
most important in predicting a dependent variable

� How to use categorical variables in a regression 
model



In asimple regression model, 
the least-squares estimators 
minimize the sum of squared 
errors from the estimated 
regression line.

In a simple regression modelsimple regression model, 
the least-squares estimators 
minimize the sum of squared 
errors from the estimated 
regression line.

In amultiple regression model, 
the least-squares estimators 
minimize the sum of squared 
errors from the estimated 
regressionplane.

In a multiple regression modelmultiple regression model, 
the least-squares estimators 
minimize the sum of squared 
errors from the estimated 
regressionplane.
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Simple and Multiple Least-
Squares Regression

The Multiple Regression 
Model

Idea: Examine the linear relationship between 1 dependent (Y) 
& 2 or more independent variables (Xi).
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Multiple Regression Model with k Independent Variables:

Y-intercept Population slopes Random Error



Multiple Regression Equation

The coefficients of the multiple regression model 
are estimated using sample data

kik2i21i10i XbXbXbbŶ ++++= K

Estimated 
(or predicted) 
value of Y

Estimated slope coefficients

Multiple regression equation with k independent variables:

Estimated
intercept

In this lecture we will always use Excel to obtain the regression 
slope coefficients and other regression summary measures.

Multiple Regression Equation

Example with 
two independent 
variables

Y

X1

X2
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Multiple Regression Equation
2 Variable Example

� A distributor of frozen dessert pies wants to 
evaluate factors thought to influence demand

� Dependent variable:       Pie sales (units per week)

� Independent variables:   Price (in $)

Advertising ($100’s)

� Data are collected for 15 weeks

Multiple Regression Equation
2 Variable Example

� Sales = b0 + b1 (Price) + 
b2 (Advertising)

� Sales = b0 +b1X1 + b2X2

Where X1 = Price

X2 = Advertising

2.77.0030015

3.55.0045014

4.05.9044013

3.27.9030012

3.57.2034011

4.05.0049010

3.57.004509

3.76.404708

3.04.504307

4.07.503806

3.06.803505

4.58.004304

3.08.003503

3.37.504602

3.35.503501

Advertising
($100s)

Price
($)Pie SalesWeek

Multiple regression equation:



Multiple Regression Equation
2 Variable Example, Excel

130.7088817.553030.014492.8547825.9673274.13096Advertising

-1.37392-48.576260.03979-2.3056510.83213-24.97509Price

555.4640457.588350.019932.68285114.25389306.52619Intercept

Upper 95%Lower 95%P-valuet StatStandard ErrorCoefficients

56493.33314Total

2252.77627033.30612Residual

0.012016.5386114730.01329460.0272Regression

Significance FFMSSSdfANOVA

15Observations

47.46341Standard Error

0.44172Adjusted R Square

0.52148R Square

0.72213Multiple R

Regression Statistics

)74.131(X  )24.975(X - 306.526 Sales 21 +=

Multiple Regression Equation
2 Variable Example

)74.131(X  )24.975(X - 306.526 Sales 21 +=

b1 = -24.975: sales will 
decrease, on average, by 
24.975 pies per week for 
each $1 increase in selling 
price, net of the effects of 
changes due to advertising

b2 = 74.131: sales will 
increase, on average, by 
74.131 pies per week 
for each $100 increase 
in advertising, net of the 
effects of changes due 
to price

where
Sales is in number of pies per week
Price is in $
Advertising is in $100’s.



Multiple Regression Equation
2 Variable Example

Predict sales for a week in which the selling price is 
$5.50 and advertising is $350:

Predicted sales is 
428.62 pies

428.62 

(3.5) 74.131  (5.50) 24.975 - 306.526 

)74.131(X  )24.975(X - 306.526 Sales 21

=

+=

+=

Note that Advertising is in 
$100’s, so $350 means that 
X2 = 3.5

Coefficient of 
Multiple Determination

� Reports the proportion of total variation in Y 
explained by all X variables taken together

squares of sum total

squares of sum regression

SST

SSR2 ==r



Coefficient of 
Multiple Determination (Excel)

130.7088817.553030.014492.8547825.9673274.13096Advertising

-1.37392-48.576260.03979-2.3056510.83213-24.97509Price

555.4640457.588350.019932.68285114.25389306.52619Intercept

Upper 95%Lower 95%P-valuet StatStandard ErrorCoefficients

56493.33314Total

2252.77627033.30612Residual

0.012016.5386114730.01329460.0272Regression

Significance FFMSSSdfANOVA

15Observations

47.46341Standard Error

0.44172Adjusted R Square

0.52148R Square

0.72213Multiple R

Regression Statistics

.52148
56493.3

29460.0

SST

SSR
r2 ===

52.1% of the variation in pie sales is 
explained by the variation in price 
and advertising

Adjusted r2

� r2 never decreases when a new X variable is added 
to the model

� This can be a disadvantage when comparing 
models

� What is the net effect of adding a new variable?

� We lose a degree of freedom when a new X 
variable is added

� Did the new X variable add enough independent 
power to offset the loss of one degree of 
freedom?



Adjusted r2

� Shows the proportion of variation in Y explained by all X 
variables adjusted for the number of X variables used

(where n = sample size, k = number of independent variables)

� Penalizes excessive use of unimportant independent 
variables

� Smaller than r2

� Useful in comparing models

















−−

−
−−=

1

1
)1(1 2

..12.
2

kn

n
rr kY

Adjusted r2

130.7088817.553030.014492.8547825.9673274.13096Advertising

-1.37392-48.576260.03979-2.3056510.83213-24.97509Price

555.4640457.588350.019932.68285114.25389306.52619Intercept

Upper 95%Lower 95%P-valuet StatStandard ErrorCoefficients

56493.33314Total

2252.77627033.30612Residual

0.012016.5386114730.01329460.0272Regression

Significance FFMSSSdfANOVA

15Observations

47.46341Standard Error

0.44172Adjusted R Square

0.52148R Square

0.72213Multiple R

Regression Statistics

.44172r2
adj =

44.2% of the variation in pie sales is explained 
by the variation in price and advertising, taking 
into account the sample size and number of 
independent variables



F-Test for Overall Significance

� F-Test for Overall Significance of the Model
� Shows if there is a linear relationship between all of 

the  X  variables considered together and  Y

� Use F test statistic
� Hypotheses:

H0: �1 = �2 = … = �k = 0  (no linear relationship)

H1: at least one  �i � 0   (at least one independent variable 
affects Y)

F-Test for Overall Significance

� Test statistic:

� where F has (numerator) = k  and

(denominator) = (n - k - 1)

degrees of freedom 

1−−

==

kn

SSE
k

SSR

MSE

MSR
F



F-Test for Overall Significance

6.5386
2252.8

14730.0
MSE
MSR

F ===

130.7088817.553030.014492.8547825.9673274.13096Advertising

-1.37392-48.576260.03979-2.3056510.83213-24.97509Price

555.4640457.588350.019932.68285114.25389306.52619Intercept

Upper 95%Lower 95%P-valuet StatStandard ErrorCoefficients

56493.33314Total

2252.77627033.30612Residual

0.012016.5386114730.01329460.0272Regression

Significance FFMSSSdfANOVA

15Observations

47.46341Standard Error

0.44172Adjusted R Square

0.52148R Square

0.72213Multiple R

Regression Statistics

P-value for 
the F-Test

F-Test for Overall Significance

� H0: �1 = �2 = 0

� H1: �1 and �2 not both zero

� α = .05

� df1= 2      df2 = 12

Test Statistic: 

Decision:

Conclusion:

Since F test statistic is in the 
rejection region (p-value < .05), 
reject H0

There is evidence that at least one 
independent variable affects Y

0

α = .05

F.05 = 3.89
Reject H0Do not 

reject H0

6.5386
MSE
MSR

F ==

Critical 
Value:  

Fαααα = 3.885

F



Residuals in Multiple Regression

Two variable model
Y

X1

X2

22110 XbXbbŶ ++=Yi

Yi

<

x2i

x1i
The best fitting linear  regression 
equation, Y, is found by 
minimizing the sum of squared 
errors, Σe2

<
 

Sample 
observation

Residual = 
ei = (Yi – Yi)

<

Multiple Regression Assumptions

Assumptions:
� The errors are independent

� The errors are normally distributed

� Errors have an equal variance

ei = (Yi – Yi)

Errors ( residuals) from the regression model:

<



Multiple Regression Assumptions

� These residual plots are used in multiple regression:

� Residuals vs. Yi
� Residuals vs. X1i

� Residuals vs. X2i

� Residuals vs. time (if time series data)

Use the residual plots to check for 
violations of regression assumptions

<

Individual Variables
Tests of Hypothesis

� Use t-tests of individual variable slopes

� Shows if there is a linear relationship 
between the variable Xi and Y

� Hypotheses:
H0: �i = 0 (no linear relationship)

H1: �i � 0  (linear relationship does exist

between Xi and Y)



Individual Variables
Tests of Hypothesis

H0: �j = 0 (no linear relationship)

H1: �j � 0  (linear relationship does exist
between Xi and Y)

� Test Statistic:

(df = n – k – 1)

jb

j

S

b
t

0−
=

Individual Variables
Tests of Hypothesis

130.7088817.553030.014492.8547825.9673274.13096Advertising

-1.37392-48.576260.03979-2.3056510.83213-24.97509Price

555.4640457.588350.019932.68285114.25389306.52619Intercept

Upper 95%Lower 95%P-valuet StatStandard ErrorCoefficients

56493.33314Total

2252.77627033.30612Residual

0.012016.5386114730.01329460.0272Regression

Significance FFMSSSdfANOVA

15Observations

47.46341Standard Error

0.44172Adjusted R Square

0.52148R Square

0.72213Multiple R

Regression Statistics t-value for Price is  t = -2.306, with p-
value .0398

t-value for Advertising is t = 2.855, 
with p-value .0145



Individual Variables
Tests of Hypothesis

d.f. = 15 - 2 - 1 = 12

α = .05

tαααα/2 = 2.1788

H0: �j = 0

H1: �j � 0

The test statistic for each variable falls in 
the rejection region (p-values < .05)

There is evidence that both Price and 
Advertising affect pie sales at αααα = .05

Reject H0 for each variable

0.014492.8547825.9673274.13096Advertising

0.03979-2.3056510.83213-24.97509Price

P-valuet StatStandard ErrorCoefficients

Decision:

Conclusion:

Reject H0Reject H0

α/2=.025

-t�/2
Do not reject H0

0 t�/2

α/2=.025

Confidence Interval Estimate 
for the Slope

Confidence interval for the population slope �i 

Example: Form a 95% confidence interval for the effect of changes in 
price (X1) on pie sales, holding constant the effects of advertising:

-24.975 ± (2.1788)(10.832):  So the interval is  (-48.576,  -1.374)

ib1kni Stb −−±

25.9673274.13096Advertising

10.83213-24.97509Price

114.25389306.52619Intercept

Standard ErrorCoefficients

where t has 
(n – k – 1) d.f.

Here,  t has    

(15 – 2 – 1) = 12  d.f.



Confidence Interval Estimate 
for the Slope

Confidence interval for the population slope �i 

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies 
for each increase of $1 in the selling price, holding constant the effects of 
advertising.

…

…

…

…

130.7088817.5530325.9673274.13096Advertising

-1.37392-48.5762610.83213-24.97509Price

555.4640457.58835114.25389306.52619Intercept

Upper 95%Lower 95%Standard ErrorCoefficients

Testing Portions of the Multiple 
Regression Model

� Contribution of a Single Independent Variable Xj

SSR(Xj | all variables except Xj)
= SSR (all variables) – SSR(all variables except Xj)

� Measures the contribution of Xj in explaining the total 
variation in Y (SST)



Testing Portions of the Multiple 
Regression Model

Measures the contribution of X1 in explaining SST

From ANOVA section of 
regression for

From ANOVA section of 
regression for

Contribution of a Single Independent Variable Xj, assuming 
all other variables are already included
(consider here a 3-variable model):

SSR(X1 | X2 and X3)
= SSR (all variables) – SSR(X2 and X3)

3322110 XbXbXbbŶ +++= 33220 XbXbbŶ ++=

The Partial F-Test Statistic

Consider the hypothesis test:

H0: variable Xj does not significantly improve the 
model after all other  variables are included

H1: variable Xj significantly improves the model after 
all other variables are included

Test using the F-test statistic:
(with 1 and n-k-1 d.f.)

MSE

 j)except   variablesall |  (X SSR 
 j=F



Testing Portions of Model: 
Example

Test at the = .05 level to determine whether 
the price variable significantly improves the 
model given that advertising is included

Example:  Frozen dessert pies

Testing Portions of Model: 
Example

H0: X1 (price) does not improve the model 
with X2 (advertising) included

H1: X1 does improve model

� = .05,  df = 1 and 12

F critical Value = 4.75

(For X1 and  X2) (For  X2  only)

56493.3333314Total

2252.77553927033.3064712Residual

14730.0134329460.026872Regression

MSSSdf

ANOVA

56493.3333314Total

39009.1108513Residual

17484.222491Regression

SSdf

ANOVA



Testing Portions of Model: 
Example

Conclusion: Reject H0; adding X1 does improve model

316.5
78.2252

22.484,1703.460,29
MSE(all)

 )X | (X SSR 
F 21 =

−
==

(For X1 and  X2) (For  X2  only)

56493.3333314Total

2252.77553927033.3064712Residual

14730.0134329460.026872Regression

MSSSdf

ANOVA

56493.3333314Total

39009.1108513Residual

17484.222491Regression

SSdf

ANOVA

Relationship Between Test 
Statistics

� The partial F test statistic developed in this section 
and the t test statistic are both used to determine the 
contribution of an independent variable to a multiple 
regression model.

� The hypothesis tests associated with these two 
statistics always result in the same decision (that is, 
the p-values are identical). 

aa Ft ,1
2 =

Where a = degrees of freedom



Coefficient of Partial Determination 
for k Variable Model

Measures the proportion of variation in the dependent variable 
that is explained by Xj while controlling for (holding constant) 
the other independent variables 

j)except   variablesall| SSR(X) variablesSSR(allSST

 j)except   variablesall |  (X SSR 

r

j

j

2
j)except   variablesYj.(all

+−
=

Using Dummy Variables

� A dummy variable is a categorical 
independent variable with two levels:
� yes or no, on or off, male or female

� coded as 0 or 1

� Assumes equal slopes for other variables

� If more than two levels, the number of 
dummy variables needed is (number of levels 
- 1)



Dummy Variable Example

Let:

Y  = pie sales

X1 = price

X2 = holiday (X2 = 1 if a holiday occurred during the week) 
(X2 = 0 if there was no holiday that week)

210 XbXbbŶ
21

++=

Dummy Variable Example

Same 
slope

X1 (Price)

Y (sales)

b0 + b2

b0

1010

12010

Xb    b       (0)bXbbŶ

Xb)b(b(1)bXbbŶ

121

121

+=++=

++=++= Holiday

No Holiday

Different 
intercept

Holiday (X
2 = 1)No Holiday (X

2 = 0)

If  H0: �2 = 0  is 
rejected, then
“Holiday” has a 
significant effect 
on pie sales



Dummy Variable Example

Sales: number of pies sold per week
Price:  pie price in $

Holiday:
1  If a holiday occurred during the week
0  If no holiday occurred

b2 = 15: on average, sales were 15 pies greater in weeks 
with a holiday than in weeks without a holiday, given the 
same price

)15(Holiday  30(Price) - 300 Sales +=

Interaction Between 
Independent Variables

� Hypothesizes interaction between pairs of X 
variables
� Response to one X variable may vary at different levels 

of another X variable

� Contains a two-way cross product term

�

)X(XbXbXbb

XbXbXbbŶ

21322110

3322110

+++=

+++=



Effect of Interaction

� Given:

� Without interaction term, effect of X1 on Y  is 
measured by 1

� With interaction term, effect of X1 on Y  is measured 
by 1 + 3 X2

� Effect changes as X2 changes 

�X�X�X��Y 21322110 ++++= X

Interaction Example

X2 = 1:
Y = 1 + 2X1 + 3(1) + 4X1(1) = 4 + 6X1

X2 = 0: 
Y = 1 + 2X1 + 3(0) + 4X1(0) = 1 + 2X1

Slopes are different if the effect of X1 on Y depends on X2 value

X1

44

88

1212

00

00 110.50.5 1.51.5

Y
= 1 + 2X1 + 3X2 + 4X1X2

Suppose X2 is a dummy variable and the estimated 
regression equation is Ŷ



Significance of Interaction 
Term

� Can perform a partial F-test for the 
contribution of a variable to see if the 
addition of an interaction term improves the 
model

� Multiple interaction terms can be included 
� Use a partial F-test for the simultaneous 

contribution of multiple variables to the model

Simultaneous Contribution of 
Independent Variables

� Use partial F-test for the simultaneous contribution 
of multiple variables to the model
� Let m variables be an additional set of variables added 

simultaneously

� To test the hypothesis that the set of m variables 
improves the model:

MSE(all)

 m / )] variablesm ofset  newexcept  (all SSR[SSR(all) 
 

−
=F

(where F has  m  and  n-k-1  d.f.)



Lecture Summary

� Developed the multiple regression model

� Tested the significance of the multiple 
regression model

� Discussed adjusted r2

� Discussed using residual plots to check 
model assumptions 

In this lecture, we have

Lecture Summary

� Tested individual regression coefficients

� Tested portions of the regression model

� Used dummy variables

� Evaluated interaction effects

In this lecture, we have



Some Special Topics

A statistical test for the existence of a linear relationship between Y and any or 
all of the independent variables X1, x2, ..., Xk:

H0:  β1 = β2 = ...= βk= 0
H1:  Not all the βi (i=1,2,...,k) are equal to 0

A statistical test for the existence of a linear relationship between Y and any or 
all of the independent variables X1, x2, ..., Xk:

H0:  β1 = β2 = ...= βk= 0
H1:  Not all the βi (i=1,2,...,k) are equal to 0

Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

 
Mean Square 

  
F Ratio 

Regression SSR k    

Error SSE n - (k+1) 
 

  
 

 

Total SST n-1   
 

 

 

 

MSR
SSR

k
=

MSE
SSE

n k
=

− +( ( ))1

MST
SST

n
=

−( )1

The F Test of a Multiple 
Regression Model



                                                  

1)-(n
SST

1))+(k-(n
SSE

-1= 

:freedom  of degrees respectiveby their  divided  SST and SSE heion with tdeterminat
oft coefficien  theis ,2R , The

2R

iondeterminat oft coefficien multiple adjusted

SST

SSESSR

  =
SSR

SST
= 1 -

SSE

SST
R

2

Example : s = 1.911       R-sq = 96.1%     R-sq(adj) = 95.0%Example :Example : s = 1.911       R-sq = 96.1%     R-sq(adj) = 95.0%

Decomposition of the Sum of Squares and 
the Adjusted Coefficient of Determination
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* Outlier

y

x

Regression line 
without outlier

Regression 
line with 
outlier

OutliersOutliers

.
.. .... .
.. .

.

. . .

Point with a large 
value of xiy

x

*

Regression line 
when all data are 
included

No relationship in 
this cluster

Influential ObservationsInfluential Observations

Investigating the Validity of the 
Regression: Outliers and Influential 

Observations



Possible Relation in the Region between 
the Available Cluster of Data and the Far 

Point

.
.. .... .

.. .
.
. . .

Point with a large value of xiPoint with a large value of xiy

x

*

More appropriate curvilinear relationship 
(seen when the in between data are known). 
More appropriate curvilinear relationship 
(seen when the in between data are known). 

x

x x
x

x

x

x
x x

x x
x

x
x

x

x

x
x

x

x
xx

Some of the possible data between the 
original cluster and the far point
Some of the possible data between the 
original cluster and the far point
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α

:i Xof values
given Y of mean lconditiona thefor  interval prediction 100% )-(1 A

:i Xof values given Y of value afor  interval prediction 100% )-(1 A

Prediction in Multiple Regression



One-variable polynomial regression model:
Y= ββββ0+ββββ1 X + ββββ2X2 + ββββ3X3 +. . .  + ββββmXm +εεεε

wherem is the degree of the polynomial - the highest power of X appearing in 
the equation.  The degree of the polynomial is the orderorder of the model.

X1

Y

X1

Y

$y b b X= +
0 1

$

( )

y b b X b X

b

= + +

<
0 1 2

2

2
0          

$y b b X= +
0 1

$y b b X b X b X= + + +
0 1 2

2

3

3

Polynomial Regression

T h e

Y X X X

T h e

Y X X X

 

 :

m u lt ip l ic a t iv e  m o d e l

lo g a r i th m ic  t r a n s fo r m a t io n

:

lo g lo g lo g lo g lo g lo g

=

= + + + +

β ε

β β β β ε

β β β

0 1 2 3

0 1 1 2 2 3 3

1 2 3

Nonlinear Models and 
Transformations



T h e

Y e

T h e

Y X

X

 

 :

e x p o n e n t i a l  m o d e l

l o g a r i t h m i c  t r a n s f o r m a t i o n

:

l o g l o g l o g

=

= + +

β ε

β β ε

β

0

0 1 1

1

Transformations: 
Exponential Model

x2

x1

Orthogonal X variables provide 
information from independent 
sources.  No multicollinearity.

x2 x1

Perfectly collinear X variables 
provide identical information 
content.  No regression. 

Some degree of collinearity. 
Problems with regression depend 
on the degree of collinearity.

x2

x1

A high degree of negative 
collinearity also causes problems 
with regression.

x2
x1

Multicollinearity



• Variances of regression coefficients are inflated.

• Magnitudes of regression coefficients may be different 
from what are expected.

• Signs of regression coefficients may not be as expected.

• Adding or removing variables produces large changes in 
coefficients.

• Removing a data point may cause large changes in 
coefficient estimates or signs.

• In some cases, the F ratio may be significant while thet 
ratios are not.

• Variances of regression coefficients are inflated.

• Magnitudes of regression coefficients may be different 
from what are expected.

• Signs of regression coefficients may not be as expected.

• Adding or removing variables produces large changes in 
coefficients.

• Removing a data point may cause large changes in 
coefficient estimates or signs.

• In some cases, the F ratio may be significant while thet 
ratios are not.

Effects of Multicollinearity

1.00.50.0

100

50

0
Rh

2

VIF

Relationship between VIF and R h
2

The  associated with 

                           

where R  is the  value obtained for the regression of X on 
the other independent variables.

h

2 2

variance inflation f actor X

VIF X
R

R

h

h
h

:

( ) =
−
1

1 2

Variance Inflation Factor



Variance Inflation Factor (VIF)

Observation:Observation: The VIF (Variance Inflation Factor) 
values for both variables Lend and Price are both 
greater than 5.  This would indicate that some degree of 
multicollinearity exists with respect to these two 
variables. 

Full model:
Y = ββββ0 + ββββ1 X1 + ββββ2 X2 + ββββ3 X3 + ββββ4 X4 + εεεε

Reduced model:
Y = ββββ0 + ββββ1 X1 + ββββ2 X2 + εεεε

Partial F test:
H0: ββββ3 = ββββ4 = 0
H1: ββββ3 and ββββ4 not both 0

Partial F statistic:

where SSER is the sum of squared errors of the reduced model, SSEF is the sum of squared 
errors of the full model; MSEF is the mean square error of the full model [MSEF = 
SSEF/(n-(k+1))]; r is the number of variables dropped from the full model.
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Partial F test:
H0: ββββ3 = ββββ4 = 0
H1: ββββ3 and ββββ4 not both 0

Partial F statistic:

where SSER is the sum of squared errors of the reduced model, SSEF is the sum of squared 
errors of the full model; MSEF is the mean square error of the full model [MSEF = 
SSEF/(n-(k+1))]; r is the number of variables dropped from the full model.
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Selection Methods



• Stepwise procedures
�Forward selection

• Add one variable at a time to the model, on the basis of 
its F statistic

�Backward elimination
• Remove one variable at a time, on the basis of its F

statistic

�Stepwise regression
• Adds variables to the model and subtracts variables 

from the model, on the basis of theF statistic

• Stepwise procedures
�Forward selection

• Add one variable at a time to the model, on the basis of 
its F statistic

�Backward elimination
• Remove one variable at a time, on the basis of its F

statistic

�Stepwise regression
• Adds variables to the model and subtracts variables 

from the model, on the basis of theF statistic

Variable Selection Methods

Compute F statistic for each variable not in the model

Enter most significant (smallest p-value) variable into model

Calculate partial F for all variables in the model 

Is there a variable with  p-value > Pout?
Remove
variable

Stop

Yes

NoIs there at least one variable with p-value >Pin?

No

Stepwise Regression



Influential Points

� Outliers (univariate, multivariate)

� Leverage Points (Distances)

� Influence Statistics

Influential Points continued…



Distances

� Mahalanobis: A measure of how much a case's values on the 
independent variables differ from the average of all cases. A 
large Mahalanobis distance identifies a case as having extreme 
values on one or more of the independent variables.

� Cook’s: A measure of how much the residuals of all cases 
would change if a particular case were excluded from the 
calculation of the regression coefficients. A large Cook's D 
indicates that excluding a case from computation of the 
regression statistics, changes the coefficients substantially.

� Leverage values: Measures the influence of a point on the fit 
of the regression. The centered leverage ranges from 0 (no 
influence on the fit) to (N-1)/N.

Influence Statistics (1)

� DfBeta(s):The difference in beta value is the 
change in the regression coefficient that results from 
the exclusion of a particular case. A value is 
computed for each term in the model, including the 
constant.

� Std. DfBeta(s):Standardized difference in beta 
value. The change in the regression coefficient that 
results from the exclusion of a particular case. You 
may want to examine cases with absolute values 
greater than 2 divided by the square root of N, where 
N is the number of cases. A value is computed for 
each term in the model, including the constant.

� DfFit: The difference in fit value is the change in the 
predicted value that results from the exclusion of a 
particular case.



Influence Statistics (2)

� Std. DfFit: Standardized difference in fit value. The 
change in the predicted value that results from the 
exclusion of a particular case. You may want to 
examine standardized values which in absolute value 
exceed 2 divided by the square root of p/N, where p 
is the number of independent variables in the 
equation and N is the number of cases.

� Covariance Ratio:The ratio of the determinant of 
the covariance matrix with a particular case excluded 
from the calculation of the regression coefficients to 
the determinant of the covariance matrix with all 
cases included. If the ratio is close to 1, the case 
does not significantly alter the covariance matrix.
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