

Learning Objectives

In this lecture, you learn:

- How to develop a multiple regression model
- How to interpret the regression coefficients
- How to determine which independent variables to include in the regression model
- How to determine which independent variables are most important in predicting a dependent variable
- How to use categorical variables in a regression model

Simple and Multiple LeastSquares Regression

In a simple regression model, the least-squares estimators minimize the sum of squared errors from the estimated regression line.

In a multiple regression model, the least-squares estimators minimize the sum of squared errors from the estimated regression plane.

The Multiple Regression Model

Idea: Examine the linear relationship between 1 dependent (Y) \& 2 or more independent variables (X_{i}).

Multiple Regression Model with k Independent Variables:

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

In this lecture we will always use Excel to obtain the regression slope coefficients and other regression summary measures.

Multiple Regression Equation

1		Multiple Regression Equation 2 Variable Example		
Week	Pie Sales	$\underset{\substack{\text { Price } \\(\$)}}{ }$	$\begin{gathered} \text { Advertising } \\ (\$ 100 \mathrm{~s}) \end{gathered}$	Multiple regression equation:
1 2	350 460	5.50 7.50 .0	3.3 3.3	
3	${ }_{350}$	8.00	3.0	
4	${ }^{430}$	8.00	4.5	- Sales $=\mathrm{b}_{0}+\mathrm{b}_{1}$ (Price) +
5	350 380	6.80 7.50	3.0 4.0	b_{2} (Advertising)
7	${ }^{430}$	4.50	3.0	
8	470	6.40	3.7	- Sales $=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}$
${ }_{10}$	450 490	7.00 5.00	3.5 4.0	
11	340	7.20	3.5	Where $\mathrm{X}_{1}=$ Price
12 13	300 440	7.90 5.90	3.2 4.0	$\mathrm{X}_{2}=$ Advertising
14	450	5.00	${ }^{3} .5$	
15	300	7.00	2.7	

Coefficient of Multiple Determination

- Reports the proportion of total variation in Y explained by all X variables taken together

$$
r^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\text { regression sum of squares }}{\text { total sum of squares }}
$$

Coefficient of Multiple Determination (Excel)

Regression Statistics			$\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{29460.0}{56493.3}=.52148$						
Multiple R	0.72213								
R Square	0.52148								
Adjusted R Square	0.44172	52.1% of the variation in pie sales is explained by the variation in price and advertising							
Standard Error	47.46341								
Observations	15								
ANOVA	$d f$		MS	F	Significance F				
Regression	2	29460.027	14730.013	6.53861	0.01201				
Residual	12	27033.306	2252.776						
Total	14	56493.333							
Coefficients		Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%			
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404			
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392			
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888			

Adjusted ${ }^{2}$

- r^{2} never decreases when a new X variable is added to the model
- This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
- We lose a degree of freedom when a new X variable is added
- Did the new X variable add enough independent power to offset the loss of one degree of freedom?

Adjusted r${ }^{2}$

- Shows the proportion of variation in Y explained by all X variables adjusted for the number of X variables used

$$
r^{2}=1-\left[\left(1-r_{Y .12 . . k}^{2}\right)\left(\frac{n-1}{n-k-1}\right)\right]
$$

(where $\mathrm{n}=$ sample size, $\mathrm{k}=$ number of independent variables)

- Penalizes excessive use of unimportant independent variables
- Smaller than r^{2}
- Useful in comparing models

F-Test for Overall Significance

- F-Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F test statistic
- Hypotheses:
$\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{\mathrm{k}}=0$ (no linear relationship)
H_{1} : at least one $\beta_{\mathrm{i}} \neq 0$ (at least one independent variable affects Y)

F-Test for Overall Significance

- Test statistic:

$$
F=\frac{M S R}{M S E}=\frac{\frac{S S R}{k}}{\frac{S S E}{n-k-1}}
$$

- where F has (numerator) $=\mathrm{k}$ and $($ denominator $)=(\mathrm{n}-\mathrm{k}-1)$ degrees of freedom

F-Test for Overall Significance

- $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0$
- $H_{1}: \beta_{1}$ and β_{2} not both zero
- $\alpha=.05$
- $\mathrm{df}_{1}=2 \quad \mathrm{df}_{2}=12$

Test Statistic:
$F=\frac{M S R}{M S E}=6.5386$
Decision:
Since F test statistic is in the rejection region (p-value $<.05$), reject H_{0}

Conclusion:

There is evidence that at least one independent variable affects Y

Multiple Regression Assumptions

Errors (residuals) from the regression model:

$$
e_{i}=\left(Y_{i}-\hat{Y}_{i}\right)
$$

Assumptions:

- The errors are independent
- The errors are normally distributed
- Errors have an equal variance

Multiple Regression Assumptions

- These residual plots are used in multiple regression:
- Residuals vs. \hat{Y}_{i}
- Residuals vs. $\mathrm{X}_{1 \mathrm{i}}$
- Residuals vs. $\mathrm{X}_{2 \mathrm{i}}$
- Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

Individual Variables Tests of Hypothesis

- Use t-tests of individual variable slopes
- Shows if there is a linear relationship between the variable X_{i} and Y
- Hypotheses:
$\mathrm{H}_{0}: \beta_{\mathrm{i}}=0$ (no linear relationship)
$\mathrm{H}_{1}: \beta_{\mathrm{i}} \neq 0$ (linear relationship does exist between X_{i} and Y)

Individual Variables Tests of Hypothesis

$\mathrm{H}_{0}: \beta_{\mathrm{j}}=0$ (no linear relationship)
$\mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0$ (linear relationship does exist between X_{i} and Y)

- Test Statistic:

$$
t=\frac{b_{j}-0}{S_{b_{j}}} \quad(\mathrm{df}=\mathrm{n}-\mathrm{k}-1)
$$

		Individual Variables Tests of Hypothesis				
Regression Statistics		t-value for Price is $\mathbf{t}=\mathbf{- 2 . 3 0 6}$, with p value $\mathbf{. 0 3 9 8}$ \mathbf{t}-value for Advertising is $\mathbf{t}=\mathbf{2 . 8 5 5}$, with p-value . 0145				
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172					
Standard Error	47.46341					
Observations	15					
ANOVA	$d f$	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_{i}

$$
\mathrm{b}_{\mathrm{i}} \pm \mathrm{t}_{\mathrm{n}-\mathrm{k}-1} \mathrm{~S}_{\mathrm{b}_{\mathrm{i}}} \begin{gathered}
\text { where thas } \\
\left(\begin{array}{l}
\mathrm{k}-\mathrm{k}-1)
\end{array}\right.
\end{gathered}
$$

$$
(n-k-1) \text { d.f. }
$$

	Coefficients	Standard Error		
Intercept	$\mathbf{3 0 6 . 5 2 6 1 9}$	$\mathbf{1 1 4 . 2 5 3 8 9}$		
Price	-24.97509	$\mathbf{1 0 . 8 3 2 1 3}$		
Advertising	$\mathbf{7 4 . 1 3 0 9 6}$	$\mathbf{2 5 . 9 6 7 3 2}$	\quad	Here, t has
:---				
$(15-2-1)=12$ d.f.				

Example: Form a 95\% confidence interval for the effect of changes in price $\left(\mathrm{X}_{1}\right)$ on pie sales, holding constant the effects of advertising:
$-24.975 \pm(2.1788)(10.832):$ So the interval is $(-48.576,-1.374)$

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_{i}

	Coefficients	Standard Error	\ldots	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	\ldots	57.58835	555.46404
Price	-24.97509	10.83213	\ldots	-48.57626	-1.37392
Advertising	74.13096	25.96732	\ldots	17.55303	130.70888

Example: Excel output also reports these interval endpoints:
Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of $\$ 1$ in the selling price, holding constant the effects of advertising.

Testing Portions of the Multiple Regression Model

- Contribution of a Single Independent Variable X_{j}

$\operatorname{SSR}\left(\mathbf{X}_{\mathrm{j}} \mid\right.$ all variables except $\left.\mathbf{X}_{\mathrm{j}}\right)$

$=$ SSR (all variables) - SSR(all variables except \mathbf{X}_{j})

- Measures the contribution of X_{j} in explaining the total variation in Y (SST)

The Partial F-Test Statistic

Consider the hypothesis test:
H_{0} : variable X_{j} does not significantly improve the model after all other variables are included
H_{1} : variable X_{j} significantly improves the model after all other variables are included
Test using the F-test statistic:
(with 1 and $\mathrm{n}-\mathrm{k}-1$ d.f.)

$$
F=\frac{\operatorname{SSR}\left(\mathrm{X}_{\mathrm{j}} \mid \text { all variables except } \mathrm{j}\right)}{\operatorname{MSE}}
$$

Testing Portions of Model: Example

Example: Frozen dessert pies
Test at the $\alpha=.05$ level to determine whether the price variable significantly improves the model given that advertising is included

	H_{0} : X_{1} (price) does not improve the model with X_{2} (advertising) included H_{1} : X_{1} does improve model $\alpha=.05, \mathrm{df}=1$ and 12 F critical Value $=4.75$					
	(For X_{1} and X_{2})			(For X_{2} only)		
ANOVA	df	ss	ms	Anova	${ }^{\text {df }}$	
Regression	2	29460.02687	14733.01343	Regression	1	17484.22249
Residual	12	27033.30647	2225.775539	Residual	13	39009.11085
Toal	14	5699.33333		Total	14	56493.33333

Testing Portions of Model: Example

$\left(\right.$ For X_{1} and $\left.\mathrm{X}_{2}\right)$					
ANova					
	$d f$	$S S$	$M S$		
Regression	2	29460.02687	14730.01343		
Residual	12	27033.30647	2252.775539		
Total	14	56493.33333			

(For X_{2} only)

ANOVA		
	$d f$	$S S$
Regression	1	$\mathbf{1 7 4 8 4 . 2 2 2 4 9}$
Residual	13	39009.11085
Total	14	56493.33333

$$
F=\frac{\operatorname{SSR}\left(X_{1} \mid X_{2}\right)}{\operatorname{MSE}(\mathrm{all})}=\frac{29,460.03-17,484.22}{2252.78}=5.316
$$

Conclusion: Reject H_{0}; adding X_{1} does improve model

Relationship Between Test Statistics

- The partial F test statistic developed in this section and the t test statistic are both used to determine the contribution of an independent variable to a multiple regression model.
- The hypothesis tests associated with these two statistics always result in the same decision (that is, the p-values are identical).

$$
t_{a}^{2}=F_{1, a}
$$

Where $\mathrm{a}=$ degrees of freedom

Coefficient of Partial Determination for k Variable Model

```
\(\mathrm{r}_{\mathrm{Yj} .(\text { all }}^{2}\) variables except \({ }_{\mathrm{j}}\) )
    SSR ( \(\mathrm{X}_{\mathrm{j}} \mid\) all variables except j )
\(=\overline{\operatorname{SST}-\operatorname{SSR}(\text { all variables })+\operatorname{SSR}\left(\mathrm{X}_{\mathrm{j}} \mid \text { all variables except } \mathrm{j}\right)}\)
```

Measures the proportion of variation in the dependent variable that is explained by X_{j} while controlling for (holding constant) the other independent variables

Using Dummy Variables

- A dummy variable is a categorical independent variable with two levels:
- yes or no, on or off, male or female
- coded as 0 or 1
- Assumes equal slopes for other variables
- If more than two levels, the number of dummy variables needed is (number of levels -1)

Dummy Variable Example
 $$
\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}
$$

Let:
$Y=$ pie sales
$\mathrm{X}_{1}=$ price
$\mathrm{X}_{2}=$ holiday ($\mathrm{X}_{2}=1$ if a holiday occurred during the week)
($\mathrm{X}_{2}=0$ if there was no holiday that week)

Dummy Variable Example
 Sales $=300-30$ (Price) +15 (Holiday)

Sales: number of pies sold per week
Price: pie price in \$
Holiday: $\left\{\begin{array}{l}1 \text { If a holiday occurred during the week } \\ 0 \\ 0 \text { If no holiday occurred }\end{array}\right.$
$b_{2}=15$: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Interaction Between Independent Variables

- Hypothesizes interaction between pairs of X variables
- Response to one X variable may vary at different levels of another X variable
- Contains a two-way cross product term
- $\hat{Y}=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}$

$$
=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}+\mathrm{b}_{2} \mathrm{X}_{2}+\mathrm{b}_{3}\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)
$$

Effect of Interaction

- Given: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon$
- Without interaction term, effect of X_{1} on Y is measured by β_{1}
- With interaction term, effect of X_{1} on Y is measured by $\beta_{1}+\beta_{3} X_{2}$
- Effect changes as X_{2} changes

Suppose X_{2} is a dummy variable and the estimated
regression equation is $\hat{Y}=1+2 X_{1}+3 X_{2}+4 X_{1} X_{2}$

Significance of Interaction Term

- Can perform a partial F-test for the contribution of a variable to see if the addition of an interaction term improves the model
- Multiple interaction terms can be included
- Use a partial F-test for the simultaneous contribution of multiple variables to the model

Simultaneous Contribution of Independent Variables

- Use partial F-test for the simultaneous contribution of multiple variables to the model
- Let m variables be an additional set of variables added simultaneously
- To test the hypothesis that the set of m variables improves the model:
$F=\frac{[\operatorname{SSR}(\text { all })-\mathrm{SSR}(\text { all except new set of } \mathrm{m} \text { variables })] / \mathrm{m}}{\operatorname{MSE}(\text { all })}$
(where F has m and $\mathrm{n}-\mathrm{k}-1$ d.f.)

'יוIII|||| Lecture Summary

In this lecture, we have

- Developed the multiple regression model
- Tested the significance of the multiple regression model
- Discussed adjusted r^{2}
- Discussed using residual plots to check model assumptions

Lecture Summary

In this lecture, we have

- Tested individual regression coefficients
- Tested portions of the regression model
- Used dummy variables
- Evaluated interaction effects

Some Special Topics

The F Test of a Multiple Regression Model

A statistical test for the existence of a linear relationship between Y and any or all of the independent variables $X_{1}, x_{2}, \ldots, X_{k}$:
$\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{\mathrm{k}}=0$
H_{1} : Not all the $\beta_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{k})$ are equal to 0

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F Ratio
Regression	SSR	k	$M S R=\frac{S S R}{k}$	
Error	SSE	$\mathrm{n}-(\mathrm{k}+1)$	$M S E=\frac{S S E}{(n-(k+1))}$	
Total	SST	$\mathrm{n}-1$	$M S T=\frac{S S T}{(n-1)}$	

$A(1-\alpha) 100 \%$ prediction interval for a value of Y given values of X_{i} :

$$
\hat{y} \pm t_{\left(\frac{\alpha}{2},(n-(k+1))\right)} \sqrt{s^{2}(\hat{y})+M S E}
$$

A (1- α) 100% prediction interval for the conditional mean of Y given values of $\mathbf{X}_{\mathbf{i}}$:

$$
\left.\hat{y} \pm t_{\left(\frac{\alpha}{2},(n-(k+1))\right)^{s}} \hat{E}(Y)\right]
$$

Polynomial Regression

One-variable polynomial regression model:

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\beta_{3} X^{3}+\ldots+\beta_{m} X^{m}+\varepsilon
$$

where m is the degree of the polynomial - the highest power of X appearing in the equation. The degree of the polynomial is the order of the model.

Nonlinear Models and Transformations

The multiplicative model:
$Y=\beta_{0} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} X_{3}^{\beta_{3}} \varepsilon$
The logarithmic transformation:
$\log Y=\log \beta_{0}+\beta_{1} \log X_{1}+\beta_{2} \log X_{2}+\beta_{3} \log X_{3}+\log \varepsilon$

Transformations:
 Exponential Model

```
The exponentialmodel:
```



```
The logarithm ic transformation:
logY=1og \beta
```


Multicollinearity

Orthogonal X variables provide information from independent sources. No multicollinearity.

Some degree of collinearity. Problems with regression depend on the degree of collinearity.

Perfectly collinear X variables provide identical information content. No regression.

A high degree of negative collinearity also causes problems with regression.

Effects of Multicollinearity

- Variances of regression coefficients are inflated.
- Magnitudes of regression coefficients may be different from what are expected.
- Signs of regression coefficients may not be as expected.
- Adding or removing variables produces large changes in coefficients.
- Removing a data point may cause large changes in coefficient estimates or signs.
- In some cases, the F ratio may be significant while the t ratios are not.

Variance Inflation Factor

The variance inflation factor associated with X_{h} :

$$
\operatorname{VIF}\left(X_{h}\right)=\frac{1}{1-R_{h}^{2}}
$$

where $\mathrm{R}_{\mathrm{h}}^{2}$ is the R^{2} value obtained for the regression of X on the other independent variables.

III||
 Variance Inflation Factor (VIF)

Observation: The VIF (Variance Inflation Factor) values for both variables Lend and Price are both greater than 5. This would indicate that some degree of multicollinearity exists with respect to these two variables.

'III|||
 Partial F Tests and Variable Selection Methods

Full model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\varepsilon
$$

Reduced model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

Partial F test:
$\mathrm{H}_{0}: \beta_{3}=\beta_{4}=0$
$\mathrm{H}_{1}: \boldsymbol{\beta}_{3}$ and $\boldsymbol{\beta}_{4}$ not both 0
Partial F statistic:

where $S S E_{R}$ is the sum of squared errors of the reduced model, $S S E_{F}$ is the sum of squared errors of the full model; $M S E_{F}$ is the mean square error of the full model $\left[\mathrm{MSE}_{\mathrm{F}}=\right.$ $\left.\operatorname{SSE}_{\mathrm{F}}(\mathrm{n}-(\mathrm{k}+1))\right] ; r$ is the number of variables dropped from the full model.

Variable Selection Methods

- Stepwise procedures
\checkmark Forward selection
- Add one variable at a time to the model, on the basis of its F statistic
\checkmark Backward elimination
- Remove one variable at a time, on the basis of its F statistic
\checkmark Stepwise regression
- Adds variables to the model and subtracts variables from the model, on the basis of the F statistic

Stepwise Regression

Influential Points

- Outliers (univariate, multivariate)
- Leverage Points (Distances)
- Influence Statistics

Distances

- Mahalanobis: A measure of how much a case's values on the independent variables differ from the average of all cases. A large Mahalanobis distance identifies a case as having extreme values on one or more of the independent variables.
- Cook's: A measure of how much the residuals of all cases would change if a particular case were excluded from the calculation of the regression coefficients. A large Cook's D indicates that excluding a case from computation of the regression statistics, changes the coefficients substantially.
- Leverage values: Measures the influence of a point on the fit of the regression. The centered leverage ranges from 0 (no influence on the fit) to $(\mathrm{N}-1) / \mathrm{N}$.

Influence Statistics (1)

- DfBeta(s): The difference in beta value is the change in the regression coefficient that results from the exclusion of a particular case. A value is computed for each term in the model, including the constant.
- Std. DfBeta(s): Standardized difference in beta value. The change in the regression coefficient that results from the exclusion of a particular case. You may want to examine cases with absolute values greater than 2 divided by the square root of N , where N is the number of cases. A value is computed for each term in the model, including the constant.
- DfFit: The difference in fit value is the change in the predicted value that results from the exclusion of a particular case.

Influence Statistics (2)

- Std. DfFit: Standardized difference in fit value. The change in the predicted value that results from the exclusion of a particular case. You may want to examine standardized values which in absolute value exceed 2 divided by the square root of p / N, where p is the number of independent variables in the equation and N is the number of cases.
- Covariance Ratio: The ratio of the determinant of the covariance matrix with a particular case excluded from the calculation of the regression coefficients to the determinant of the covariance matrix with all cases included. If the ratio is close to 1 , the case does not significantly alter the covariance matrix.

Bibliography

- Steel, R. \& Torrie, J. (1986). Principles and Procedures of Statistics: A Biometrical Approach. Singapore: McGraw-Hill Book Company.
- Gomez, K. \& Gomez, A. (1984). Statistical Procedures for Agricultural Research. Singapore: John Willey \& Sons, Inc.
- Kuehl, R. (2000). Designs of Experiments: Statistical Principles of Research Design and Analysis. Pacific Grove: Duxbury Thomson Learning.
- Jacoby, W. (2000). Loess: a nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, 19, 577-613.
- Zar, J. (1996). Biostatistical Analysis. New Jersey: PrenticeHall International, Inc.
- Kirk, R. (1995). Experimental Design: Procedures for the Behavioral Sciences. Pacific Grove: Brooks/Cole Publishing Company.
- Kleinbaum, D., Kupper, L., Muller, K. \& Nizam, A. (1998). Applied Regression Analysis and Other Multivariable Methods. Pacific Grove: Duxbury Press.

