

Multiple Latin Squares Analysis

Επιστημονική Επιμέλεια: Δρ. Γεώργιος Μενεξές

Τομέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Εργαστήριο Γεωργίας

ANOVA Table

Example

Two 4x4 Latin squares.

	SOV	Df
	Squares	sq - 1 = 1
*	Row(square)	sq(r-1) = 6
*	Column(square)	sq(r-1) = 6
	Treatment	r-1 = 3
	Square x Treatment	(sq-1)(r-1) = 3
*	Error	sq(r-1)(r-2) = 12 $sqr^2 - 1 = 31$
	Total	$sqr^2 - 1 = 31$

*Additive across squares.

Where sq = number of squares.

Example Three 3x3 Latin squares Square 1 $\sum R$ 81 76 41 (B) 20 (A) 22 (C) 15 (A) 24 (C) 25 (C) 32 (B) SS $Row_1 = 126.89$ SS Column₁ = 89.55 SS Treatment₁ = 368.22 SS Error₁ = 21.56 21 (B) 55 12 (A) 212 83 69 60 Square 2 $\sum R$ 58 27 (C) 28 (B) 3 (A) $SS Row_2 = 130.89$ 4 (A) 17 (C) 9 (B) 30 SS $Column_2 = 110.22$ 22 (B) 4 (A) 17 (C) 43 SS Treatment₂ = 534.22131 SS Error₂ = 14.89 Square 3 $\sum R$ 43 (B) 27 (C) 17 (A) 87 SS Row₃ = 126.89 22 (A) 34 (B) 26 (C) 82 SS Column₃ = 89.55 24 (C) 23 (B) SS Treatment₃ = 368.22 14 (A) 61 66 SS Error₃ = 21.56 $\sum C$

Calculations (1)

- Step 1. Test the homogeneity of the Error MS from each square using Bartlett's Chisquare test.
- Step 1.1 Calculate the Error SS for each square.
- Step 1.2 Calculate the Error MS for each square.

Calculations (2)

Step 1.3 Calculate the Log of each Error MS

Square	Error SS	Error df	Error MS	Log Error MS
1	21.56	2	10.78	1.0326
2	14.89	2	7.45	0.8722
3	21.56	2	10.78	1.0326
	310-311-32		$\sum s_i^2 = 29.01$	$\sum \log s_i^2 = 2.9374$

Step 1.4 Calculate the Pooled Error MS (sp²)

$$s_p^2 = \frac{\sum s_i^2}{\# sq} = \frac{29.01}{3} = 9.67$$

Calculations (3)

Step 1.5 Calculate Bartlett's χ^2

$$\chi^2 = \frac{2.3026(Errordf)\left[\left(sq\log s_p^2\right) - \sum\log s_i^2\right]}{1 + \left[\frac{\left(sq + 1\right)}{3*sq*Errordf}\right]}$$

Where Error df = df for one square.

$$\chi^{2} = \frac{2.3026(2)[(3\log 9.67) - 2.9374]}{1 + \left[\frac{(3+1)}{3*3*2}\right]}$$

$$=\frac{0.0869}{1.2222}$$

=0.0711

Calculations (4)

Step 1.6 Look up the Table χ^2 -value at the 99.5% level of confidence and df = #sq-1.

$$\chi^2_{0.005;2df} = 10.6$$

Step 1.7 Make conclusions

Since $\chi^2_{calc} < \chi^2_{table}$ we fail to reject $H_o: \sigma_1^2 = \sigma_2^2 = \sigma_3^2$ at the 99.5% level of confidence; thus, we can do the combined analysis across squares

Calculations (5)

Step 2. Calculate Treatment Totals for each square.

Treatment	Square 1	Square 2	Square 3	$\sum TRT$
A	47	11	53	111
В	94	59	100	253
C	71	61	77	209
$\sum Square$	212	131	230	573

Step 3. Calculate the Correction Factor (CF).

$$CF = \frac{Y_{\dots}^2}{sq * r^2}$$

$$=\frac{573^2}{3*3^2}$$

= 12,160.333

		E	Exa	mp	ole
Three	3x3 Latin s	quares			
Square	- 1				
- Square				$\sum R$	
	41 (B)	25 (C)	15 (A)	81	$SS Row_1 = 126.89$
	20 (A)	32 (B)	24 (C)	76	SS Column ₁ = 89.55
	22 (C)	12 (A)	21 (B)	55	SS Treatment ₁ = 368.22
$\sum C$	83	69	60	212	SS $Error_1 = 21.56$
_				į.	
Square	2			$\sum R$	
	27 (C)	28 (B)	3 (A)	58	SS Row ₂ = 130.89
	4 (A)	17 (C)	9 (B)	30	SS Column ₂ = 110.22
	22 (B)	4 (A)	17 (C)	43	SS Treatment ₂ = 534.22
$\sum C$	53	49	29	131	SS $Error_2 = 14.89$
				li .	
Square	: 3			ii.	
				$\sum R$	
	43 (B)	27 (C)	17 (A)	87	$SS Row_3 = 126.89$
	22 (A)	34 (B)	26 (C)	82	SS Column $_3 = 89.55$
	24 (C)	14 (A)	23 (B)	61	SS Treatment ₃ = 368.22
$\sum C$	89	75	66	230	SS $Error_3 = 21.56$

Calculations (6)

Step 4. Calculate the Total SS

TotalSS =
$$(41^2 + 25^2 + 15^2 + ... + 23^2) - CF$$

= 2,620.67

Step 5. Calculate the Square SS

$$SquareSS = \frac{\sum Sq^2}{r^2} - CF$$

$$=\frac{\left(212^2+131^2+230^2\right)}{3^2}-CF$$

= 618.0

	Example					
Three 3x3 Latin squares						
Squ	are 1			$\sum R$		
	41 (B) 20 (A) 22 (C)	25 (C) 32 (B) 12 (A)	15 (A) 24 (C) 21 (B)	81 76 55	SS Row ₁ = 126.89 SS Column ₁ = 89.55 SS Treatment ₁ = 368.22	
Σ		69	60	212	SS Error ₁ = 21.56	
Squ	are 2			$\sum R$		
	27 (C) 4 (A)	28 (B) 17 (C)	3 (A) 9 (B)	58 30	SS Row ₂ = 130.89 SS Column ₂ = 110.22	
Σ	22 (B) 53	4 (A) 49	17 (C) 29	131	SS Treatment ₂ = 534.22 SS Error ₂ = 14.89	
Squ	are 3					
	43 (B) 22 (A) 24 (C)	27 (C) 34 (B) 14 (A)	17 (A) 26 (C) 23 (B)	$\sum_{87} R$ 87 82 61	SS Row ₃ = 126.89 SS Column ₃ = 89.55 SS Treatment ₃ = 368.22	
Σ^{0}		75	66	230	SS Error ₃ = 21.56	

Calculations (7) Step 6. Calculate the Row(Square) SS (Additive across squares) Row(Square) SS = Row₁ SS + Row₂ SS + Row₃ SS = 384.67

Calculations

Step 2. Calculate Treatment Totals for each square.

Treatment	Square 1	Square 2	Square 3	$\sum TRT$
A	47	11	53	111
В	94	59	100	253
C	71	61	77	209
$\sum Square$	212	131	230	573

Step 3. Calculate the Correction Factor (CF).

$$CF = \frac{Y_{\dots}^2}{sq * r^2}$$

$$=\frac{573^2}{3*3^2}$$

Calculations (8)

Step 7. Calculate the Column(Square) SS (Additive across squares)

$$\begin{aligned} & Column(Square) \; SS = Column_1 \; SS + Column_2 \; SS + Column_3 \; SS \\ &= 289.32 \end{aligned}$$

Step 8. Calculate the Treatment SS

$$TrtSS = \frac{\sum TRT_i^2}{sq*r} - CF$$

$$=\frac{\left(111^2+253^2+209^2\right)}{3*3}-CF$$

Calculations (9)

Step 9. Calculate the Square X Treatment SS.

$$Sq*TrtSS = \frac{\sum (SqXTrt)^{2}}{r} - CF - SquareSS - TrtSS$$

$$= \frac{\left(47^{2} + 94^{2} + 71^{2} + ... + 77^{2}\right)}{3} - CF - SquareSS - TrtSS$$

$$=96.45$$

Step 10. Calculate Error SS (Additive across squares)

$$Error SS = Error_1 SS + Error_2 SS + Error_3 SS$$

Error
$$SS = 58.01$$

Calculations (10)

Step 11. Complete the ANOVA Table.

SOV	Df	SS	MS	F (Squares and Trt are Fixed effects)
Square	Sq-1 = 2	618.0		Non-valid F-test
Row(Sq)	Sq(r-1) = 6	384.67		Non-valid F-test
Column(Sq)	Sq(r-1) = 6	289.32		Non-valid F-test
Trt	r-1=2	1174.22	587.11	Trt MS/Error MS = 60.73^{**}
Sq X Trt	(sq-1)(r-1) = 4	96.45	24.11	$Sq X Trt MS/Error MS = 2.49^{ns}$
Error	Sq(r-1)(r-2) = 6	58.01	9.67	-
Total	$Sqr^2-1 = 26$	2620.67		

Conclusions

Conclusions:

1. The non-significant Square X Treatment interaction indicates that treatments responded similarly in all squares.

Table 1. Mean for the square x treatment interaction.

		Treatment	į	
Square	A	В	C	
1	15.7	31.3	23.7	
2	3.7	19.7	20.3	
3	17.7	33.3	25.7	
LSD(0.05))nsns			

2. The significant F-test for Treatment indicates that averaged across all squares, there were differences between treatments.

Calculations (11)

Table 2. Mean for the treatment main effect averaged Across squares.

Treatment	Mean
A	12.3
В	28.1
C	23.2
LSD(0.05)	3.6

Step 12. Calculate LSD's

Calculations (12)

<u>Square X Trt</u>: Normally, you would not calculate this LSD because the F-test for the interaction was non-significant. However, if it would have been significant, you would have calculated the LSD using the following method:

$$LSD_{SqXTrt} = t_{a/2;errordf} \sqrt{\frac{2ErrorMS}{r}}$$

$$= 2.447\sqrt{\frac{2(9.67)}{3}}$$
$$= 6.2$$

This LSD would be used for comparisons only in Table 1.

Calculations (13)

Treatment:

$$LSD_{Trt} = t_{a/2;errordf} \sqrt{\frac{2ErrorMS}{sq*r}}$$

$$= 2.447 \sqrt{\frac{2(9.67)}{3*3}}$$
$$= 3.6$$

This LSD would only be used for comparisons in Table 2.

Bibliography

- Steel, R. & Torrie, J. (1986). Principles and Procedures of Statistics: A Biometrical Approach. Singapore: McGraw-Hill Book Company.
- Gomez, K. & Gomez, A. (1984). Statistical Procedures for Agricultural Research. Singapore: John Willey & Sons, Inc.
- Cochran, W. & Cox, G. (1953). Experimental Designs. New York: John Willey & Sons, Inc.
- Cox, D. R. (1958). Planning of Experiments. New York: John Willey & Sons, Inc.

