

Linear contrasts

Pairwise comparisons of means are a special case of linear contrasts

- Comparison of one group with another group with general weights

$$
\begin{aligned}
& \mu_{1}=\mu_{2} \\
& \mu_{3}=\mu_{4} \\
& \mu_{1}=\left(\mu_{3}+\mu_{4}\right) / 2
\end{aligned}
$$

- Linear contrasts take the form of a linear combination of the means

$$
\begin{aligned}
L & =a_{1} \bar{Y}_{1}+a_{2} \bar{Y}_{2}+\ldots+a_{k} \bar{Y}_{k} \\
& =\sum a_{j} \bar{Y}_{j}
\end{aligned}
$$

Linear contrasts

Restriction

$$
\sum a_{j}=0
$$

- Suppose we had three means and wanted to compare the first and the second only. This could be done by having $a_{1}=1, a_{2}=-1$, and $a_{3}=0$

$$
L=(1) \bar{Y}_{1}+(-1) \bar{Y}_{2}+0 \bar{Y}_{3}=\bar{Y}_{1}-\bar{Y}_{2}
$$

Linear contrasts

Linear contrasts allow us to express the sum of squared differences between the means of sets of treatments (formula assumes equal sample sizes)

$$
S S_{\text {contrast }}=\frac{n L^{2}}{\sum a_{j}^{2}}=\frac{n\left(\sum a_{j} \bar{Y}_{j}\right)^{2}}{\sum a_{j}^{2}}
$$

Example

Suppose we had $\bar{Y}_{1}=1.5, \bar{Y}_{2}=2.0, \bar{Y}_{3}=3.0, n=10$

- We can easily compute

$$
\begin{aligned}
S S_{\text {treat }} & =n \sum\left(\bar{Y}_{j}-\bar{Y}\right)^{2} \\
& =10\left((1.5-2.17)^{2}+(2-2.17)^{2}+(3-2.17)^{2}\right) \\
& =10(0.44+0.028+0.694)=11.667
\end{aligned}
$$

- Let's say we wanted to compare the average of treatments 1 and 2 to treatment 3. Thus

$$
\begin{gathered}
L=\sum a_{j} \bar{Y}_{j}=(1) 1.5+(1) 2.0+(-2) 3.0=-2.5 \\
S S_{\text {contrast }_{1}}=\frac{n L^{2}}{\sum a_{j}^{2}}=\frac{10(-2.5)^{2}}{6}=10.417
\end{gathered}
$$

Example

Now suppose we wanted to compare groups 1 and 2:

$$
\begin{gathered}
L=\sum a_{j} \bar{Y}_{j}=(1) 1.5+(-1) 2.0+(0) 3.0=-0.5 \\
S S_{\text {contrast }_{2}}=\frac{n L^{2}}{\sum a_{j}^{2}}=\frac{10(-0.5)^{2}}{6}=1.25
\end{gathered}
$$

- Note that the sum of the two $S S_{\text {contrast }}$ is

$$
\begin{aligned}
& S S_{\text {treat }}=S S_{\text {contrast }_{1}}+S S_{\text {contrast }_{2}} \\
& 11.667=10.417+1.25
\end{aligned}
$$

- In this case, we can say that the contrasts completely partition $S S_{\text {treat }}$

F test for contrast

- Note that the absolute value of the contrast weights does not matter

Means: $Y_{1} \quad Y_{2} \quad Y_{3} \quad Y_{4} \quad Y_{5}$
$a_{j}:\left\{\begin{array}{lllll}2 & 2 & 2 & -3 & -3 \\ 1 & 1 & 1 & -1.5 & -1.5\end{array}\right.$

- The significance of a contrast can be tested with an F test

$$
F=\frac{M S_{\text {contrast }}}{M S_{\text {error }}}=\frac{n L^{2} / \sum a_{j}^{2}}{M S_{\text {error }}}
$$

Contrasts

The square root of the F for a simple contrast $\left(a_{1}=1, a_{2}=-1\right)$ is the same value obtained in a t test $\square \boldsymbol{t}$ tests are special cases of linear contrasts

- Note however that if you run several contrasts, the familywise error will be much larger than α
\square Bonferroni correction can be used
\square Run fewer contrasts! Only as many as needed
- If they were really a priori, probably ok without correction (some people would agree with that)

Orthogonal contrasts

Some contrasts are independent of one another, while others "share" information

- Independent contrasts are called orthogonal

$$
\begin{aligned}
\sum a_{j} & =0 \\
\sum b_{j} & =0 \\
\sum a_{j} b_{j} & =0
\end{aligned}
$$

Contrasts given by a_{j} and b_{j} are orthogonal

Orthogonal contrasts

- It is useful to have orthogonal contrasts because they exactly partition $S S_{\text {treat }}$
- However, it is not strictly necessary that all contrasts be orthogonal
■ But remember that in this case the contrasts do not convey independent information

Degrees of freedom

For a contrast, we have

$$
F=\frac{M S_{\mathrm{contrast}}}{M S_{\mathrm{error}}}
$$

- What are the numerator degrees of freedom?
- Consider $d f$ for $S S_{\text {contrast }}$
- A contrast always compares two quantities

$$
\begin{aligned}
& \mu_{1}=\mu_{2} \\
& \mu_{3}=\mu_{4} \\
& \mu_{1}=\left(\mu_{3}+\mu_{4}\right) / 2
\end{aligned}
$$

Degrees of freedom

Thus $S S_{\text {contrast }}$ has $d f=1$
Another way to think of the $d f$ is that the F for a contrast can in fact be written in the usual way

$$
F=\frac{\left(\operatorname{SSE}(R)-\operatorname{SSE}(F) /\left(d f_{R}-d f_{F}\right)\right.}{\operatorname{SSE}(F) / d f_{F}}
$$

- To determine $d f_{\mathrm{R}}$, we must determine the number of independent parameters in the restricted model which are associated with the contrast
- Consider the following null hypothesis:

$$
H_{0}: \frac{1}{3} \mu_{1}+\frac{1}{3} \mu_{2}+\frac{1}{3} \mu_{3}-\mu_{4}=0
$$

Degrees of freedom

- The corresponding restricted model is

$$
Y_{i j}=\mu_{j}+\varepsilon_{i j}
$$

where $1 / 3 \mu_{1}+1 / 3 \mu_{2}+1 / 3 \mu_{3}-\mu_{4}=0$
Model has 4 parameters but only 3 are independent

- In the general case for a groups, we would have $a-1$ independent parameters
- Thus

$$
\begin{aligned}
d f_{R}-d f_{F} & =[N-(a-1)]-(N-a) \\
& =1
\end{aligned}
$$

Bibliography

Фабоv́ $\alpha \alpha \varsigma, ~ А . ~ К . ~(2006) . ~ \Sigma \tau о \iota \chi \varepsilon i ́ \alpha ~ П \varepsilon ı \rho \alpha \mu \alpha \tau ı к \eta ́ \varsigma ~$ $\Sigma \tau \alpha \tau \iota \sigma \tau \iota \kappa \eta ́ \varsigma . ~ \Theta \varepsilon \sigma \sigma \alpha \lambda o v i ́ \kappa \eta$.

- Steel, R. \& Torrie, J. (1986). Principles and Procedures of Statistics: A Biometrical Approach. Singapore: McGrawHill Book Company.
- Gomez, K. \& Gomez, A. (1984). Statistical Procedures for Agricultural Research. Singapore: John Willey \& Sons, Inc.
- Kuehl, R. (2000). Designs of Experiments: Statistical Principles of Research Design and Analysis. Pacific Grove: Duxbury Thomson Learning.

