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Abstract: There are modelling techniques which
may be used to assess the availability of either the
software or the hardware of distributed computer
systems. However, from the practical point of
~ view, it would be more useful to assess the avail-
ability when the system is subjected to the com-
bined effect of hardware and software faults either
during its normal operating time or repair time.
Such an availability modelling technique, for the
class of distributed computer systems which are
used for process control, is presented in this paper.
To demonstrate the use of this technique the time
function of the availability of a typical real-life dis-
tributed process control system is evaluated.

1 Introduction

The use of distributed computer systems is proliferating
in application areas where knowledge of reliability
related performance indices is of paramount importance.
Such major application areas are process control, space
defence and transaction processing. The various mathe-
matical models, which have been proposed by various
researchers for the evaluation of these reliability related
performance indices of single software packages [1-12]
or computer hardware [13-19], may also be used to
evaluate the same performance indices of distributed soft-
ware and hardware. A more accurate evaluation may be
made by models proposed especially for distributed prog-
rams [20, 217 or distributed system hardware [22-24].

All these modelling techniques, however, do not con-
sider the use of failure time distribution functions of any
general form, and they do not take into consideration the
combined effect of hardware and software faults. Of
course, developing mathematical expressions for the
reliability and availability analysis of any distributed
computer system in which failure time probability dis-
tribution functions have any general form and the com-
bined effect of hardware and software faults is taken into
consideration, is extremely difficult. It is proved, however,
in this work that such analytical expressions can be
developed with relative ease for the availability evalu-
ation of the distributed computer systems, which are used
for regulatory process control [28].
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This work is mainly a generalisation of that of Sumita
and Masuda [12] who have developed analytical mathe-
matical expressions for evaluating the time function of
the availability of a single software package, the oper-
ation or repair of which is interrupted by hardware fail-
ures. This theory has been made more appropriate for the
type of software uséd in the distributed process control
systems and has been extended by incorporating the state
of the computer hardware at time t explicitly. Also, a
heuristic algorithm has been developed for the numerical
evaluation of the derived analytical expressions. To
demonstrate the use of the proposed analysis technique,
the availability of a distributed computer system of the
type used in the process industry for regulatory control is
studied.

2 Distributed process control systems

Available distributed computer systems, which are classi-
fied as distributed process control systems, follow a hier-
archical and highly modular hardware architecture. They
are also loaded with a library of software routines which
are able to perform well defined control, monitoring and
plant management functions. Usually, such a system
consists of computer modules which are organised in four
levels, according to the dedicated function they have been
programmed to perform. These are the input/output
level, the data acquisition and control level, the network
level and the operator’s console/supervisory computer
level. At the input/output level, each computer module of
this level, usually correspondin} to a printed circuit card,
execute continuously a software routine which controls
the input and output of a number of analog and digital
signals and transfers their values through a local data bus
to a specific module of the data acquisition and control
level. Each one of the microcomputer based modules of
the data acquisition and control level performs under the
control of a routine filtering, smoothing, conversion to
engineering units of the received input signals, control
calculations for a group of process variables and data-
base updating of the modules of the operator’s console/
supervisory computer level through the modules of the
network level. The modules of the operator’s console/
supervisory computer level provide a human interface to
the operator and allow the execution of higher level
applications, such as performance optimisation, energy
management, sequencing and scheduling. A basic char-
racteristic of the system is that a data file is not trans-
ferred upon a request of the receiving routine but its
transfer is controlled entirely by the routine which gener-
ates it.

IEE PROCEEDINGS, Vol. 136, Pt. E, No. 6, NOVEMBER 1989




Table 1: Software routines of the system and the computer
modules required to run each routine.

Hardware modules
CP—i I-i 1/O—i NI-1 NP-1 SC-1

No Program
_i e [1, 6]

-

configurable *

control function

1/0 handling *

data acquisition *

network control *

data base manager *

operating system *

OB WN

The design features of the distributed process control
system described above now allow us to view the system
operation at each timing instant as the parallel running
of a number of software routines on an equal number of
computers. Obviously, if a computer failure occurs, this
will not influence the logic of a routine which runs on
another computer. The same applies for routines which
have internal errors. A routine failure influences only the

data that it may send to other routines, but it cannot-

- corrupt the other routines. In this sense, the operation of
a computer or a routine may be considered to be inde-
pendent of the operation of another computer or routine,
respectively.

Of course, considering a fully parallel operation of
routines is a simplification of the actual system operation.
In fact, there are instances at which the parallel operation
is interrupted, i.e. when a routine wishes to store a data
file in the memory of another computer. The overall time,

however, of the non-parallel running of the routines may .

be ignored, as it is negligible when it is compared to the
time the routines run in parallel. This simplification and
some additional assumptions, explained in the following
and concerning the initial state of the system and the sta-
tistical characteristics of the hardware and software com-
ponents of the system, assist us in deriving a
mathematically manageable availability model.

3  Availability analysis

The availability of any system is defined as the probabil-
ity of finding the system in operation at any given time.
Depending on the way the various components of the
system interact during the system operation, this prob-
ability may be expressed as a specific function of the
probabilities of finding the individual components of the
system in operation. Therefore, the availability of a dis-
tributed process control system can be evaluated by con-
sidering the probabilities of finding its computer modules
and its software routines in operation at a given time.
These probabilities can be evaluated as follows.

First, let us assume that the time that elapses from the
moment a computer module has failed until the begin-
ning of its repair is negligible. Then the state of each
computer module in time may be expressed by the sto-
chastic process:

' 0, if the ith computer module is

() = under repair at time ¢.
7)1, if the ith computer module is

functioning at time .

The state, however, of a software routine cannot be
expressed by a single stochastic process since the routine
may be in an operational state and have internal errors.
These errors may cause a routine failure only under spe-
cific operating conditions, which may not appear during
the routine lifetime. Further, during the repair of the
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routine after a failure, new errors may be introduced,
although the error which caused the failure has been rec-
tified. Practice, however, indicates that one should expect
the reduction of the initial number of the routine internal
errors when software repair has repeatedly taken place.
Taking into consideration these routine peculiarities. we
may express mathematically the state of a software
routine by the vector of stochastic processes [1(t), M(1),
N(1)], where: .

0, if the ith software routine is

under repair at time ¢.
1(1) =

I, if the ith software routine is

functioning at tine t.

the number of failures occurred
M (1) =

in [0, ¢) in the ith software routine.

N the number of errors in the ith
877 | software routine at time .

Agcording to the system functional behaviour previously
described, the operation of any software routine does not
depend on whether the other routines are operational.
Also, the operation of any computer module is indepen-
dent of the operation of the other modules. Then, the
probability of being the entire system in an operational.
state, according to the multiplication theorem® of the
probability theory, can be expressed by:

PLI (@) =1 I, (0)=1, M(t) =m, - M) =m,,
Ny =ny - Ny)=ng, Jy(()=1--J,(t)=1]

L
= [T Pl =1, M) = m,,

i=1

N{t) = n]PLJ(0) = 1] (1)

There will be, however, more than one operational states
for each routine, each state corresponding to a different
value of the vector of stochastic processes of the routine.
Therefore, according to the addition theorem of the prob-
ability theory, the probability of being the system in any
one of its possible operational states will be:

ABLT $hte $hi <0t

a8

w L
: Z H pli. mj, ni(t)nli(t) (2)

where -
Pli, mi, o) = PLI(1) = j, M(t) = m;, N(t) = n;] (3)
() = PLI(1) =] 4)

and j=0,1,i=1,2, ..., L, L is the number of the soft-
ware routines. -

This probability, however, according to the definition
given above, is the time function of the system avail-
ability. To evaluate this function it is necessary first to
evaluate the individual pl; .. (1) and T1j(r) probgbilities.

L, mj,

4 Evaluation of state probabilities

Deriving at analytic expression for pl; . (1) directly is
rather difficult. Instead, we may derive such analytic

expressions in an easier way if we consider that these

- probabilities are the final probabilities of the states that

the random vector process, which describes the behav-
iour of a software routine, is capable of assuming. Then,
these probabilities can be expressed in terms of state
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entry rates for which analytic expressions are already
available.

If we assume that:

(@) fO;, m. (t) is the entry rate of a software routine
from the state (1, m; — 1, n,) to the state (0, m;, n;)

(b) f1;, . wft) is the entry rate of the same routine from
the state (0, m;, n,) to the state (I, m;, n,).

(c) the uptime and downtime of the routine may have
any general probability distribution, denoted by a; (1)
and r; (0, i=1,2,..., L respectively.

(d) The uptime distribution of any computer is
assumed to be e(t) = A, exp (— Aot) while down time may
have any general distribution h(t),i = 1,2,..., L.

(e) The probability that there are n; errors remaining
in a software routine after a repair, given that there were
k errors just before the beginning of the repair is py,

(f) The maximum number of latent errors that may
exist in a software routine is limited to a number K, then
it is proved [12] that:

a,

SO, i, ) = \[)fh, -1, nlX = Y0aefli ) dy (5)

K t
fll, mi, n,(t) = kzlpk"‘ J fol, my, k(x - Y)
= 0

x reff; (y) dy  (6)

where aeff; (1) and reff; (1) are the effective software up
and down time distributions respectively, computed by
the relations:

afli o0 = ¥ j (exp (=Tlo) %,ﬂ)

X, ,(hP(x — y) dy (7)

. i
Z/OED) j <exp(—zox) (—q—f’—) e

g=0 JO

x hiP(x — y) dy (8)

where h{?(t) is the g-fold convolution of hy(t) with itsell
h{Xt) = (1) and g € [0, ] now represents the number of
computer module failures. .

Now, the state probabilities can be easily related to the
entry rates by subtracting from the probabilistic flow that
went into a state, the flow that went out of this state.
That is:

pli,m;,m(t) = jfli.mg.m(x) dx — J dx J fll,mf.n;(x = Y)
o 0 0
x aeff; (y) dy (9)
pol. mi, m(l) ia J foi. mi, ,”(x) dx — j dx j fOi, m;.n;(x -
0 0 0

x reff; .(y) dy (10)

Similar expressions can be derived for the probabilities
I11,(t) if we assume that:

(@) $1/1) is the entry rate of the ith computer module
from its operational state to the failed state, and

(b) $0(r) is the entry rate of the same module from the
failed state to the operational state.

For a computer module to enter a failed state at time ¢
it should have entered the operational state at time t — x,
the up-time of which expires at x, 0 < x < t. This implies
that:

- 90(0) = Lqﬂ.-(x — y)e(y) dy (1
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Similarly, for a computer module to enter the operational
state it should have entered a failed state at t — x, the
down time of which expires at x, 0 < x < t. Therefore, it
will be:

P10 = quc.{x)h.{x —»dy (Y

Then, the state probabilities of the module will be:

10/r) = J'qsoi(x) dreon j i f'd)l.-(x gy dys19)
0 0 0

o) = Ld)li(X) dx — de J’Oqﬁh(x — ye(y) dy (14)

Having found analytical expressions for the state prob-
abilities it is now possible to express the time function of
the system availability in terms of these probabilities and
evaluate it in the way demonstrated in the next section.

5 Computation procedure

As one can note the evaluation of the various state prob-
abilities involves the computation of multiple convolu-
tions. An algorithmic framework for the evaluation of
multiple convolutions is provided by the Laguerre trans-
form [25]-[27]. For example, if we assume that a(x) is a
square integrable rapidly decreasing function, then this
function can be expressed in the series form:

ax) = ¥ ar L) (15)
n=0
where
af =Y a, (16)
B

L,(x) is the Laguerre function defined as:
L,(x) = exp (—x/2)(exp(x)/n! + (d/dx)"x" exp (—x)) (17

and a,,, m=0, 1, -~ n, are the so-called Laguerre sharp
coeflicients the values of which can be found by equating
the terms of the same power of u in the relationship:

Y a,u" = A(u) ' (18)
n=0 -
A(u) is the function that is derived if in the Laplace trans-
form of a(x), say A(s), we let s = (1 + u)/2(1 — ).
For the convolution c(x) = [§ a(x — y)b(y) dy holds:

¢, = ia"_,ﬁ, (19)

where &, and b, are respectively the sharp coefficients of
¢(x) and b(x).

Also, it is proved that the sharp coefficients of the inte-
gral W(x) = [Ta(y) dy are related to the sharp coefficients
of a(x). That is:

W, = —2a,+ 4 Y (—1)a,., (20)
i=0

It has been shown [12] that the Laguerre sharp coeffi-
cients of f1; .+ 1.() can be obtained from the recursive
formula:

5 i K
fll. mit 1, = Z Z fl.', mg,k:l‘;‘(,k:j—l (21)

1=0 k=0
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where %, ,.;-; is the j—1[ sharp coefficient of the
Laplace transform function:

Z, () = Aefly 5)*Reff; () 22)

To apply this recursive formula initial values must be
given to the coefficients f; o ..o and f o, .- Such values
can be found by considering the.fact that at system
delivery all the routines are in an operational state and
the latent errors of each routine can cause a routine
failure at a later time when the system will operate under
actual plant operating conditions. Therefore, it will be:

fiomo=1 and f o ,.=0 (23)

Once the coefficients of f'1; . () are found the corre-
sponding coefficients of f0, ,. () can be computed by

applying (19). Similarly, by considering (19), (11) and (12)
one easily derives that:

ji—1 i-1

Z ¢li:qéj—l—-q + éO Z ¢Oi:qﬁi:j-—l—q
' =9 :

p0;,; = 1=2 ez 24
¢01.j i— éo hi;o ( )
i-1 j-r
Z ¢Oi:qﬁi:]’~l~q & ﬁO Z (pli:qéj—-l—q
£ : =g=0 4=0
¢ll:j 1 e @0 ﬁi;o (25)
It is also:
1] .
J\a(y) dy = W(0) — W(t) + a(0) (26)
(1]

Then, by using (19), (20) and (26) and setting
Plio.k(0) = 1, O p, o(0) = 0

for m; € [1, K] and
M1, . .0) =1, [00)=0,

for the reasons explained previously, the integral func-
tions (9), (10), (13) and (14) can be evaluated for all the
computer modules and software routines, if a finite
number of terms is defined for the infinite series trunca-
tion.

A heuristic algorithm may be used to truncate the
various state probabilities in such a way that the overall
truncation error of the availability is bounded by a speci-
fied error tolerance ¢ This algorithm is developed on the
basis of the following observations.

K

E<1-Y - i i i ﬁpla‘-,m.-,n.-

n =0 nL=0 m=0 mp=0 i=1

x (O)*TTlaft) <& (27)

where E is the overall truncation error and pla, . ,.(t)
and nla(t) are the truncated time series of the respective
state probabilities of the software routines and computer
modules. This relationship will be true if:

= 1 —¢
l_l plai, mi, m(t)*n 1(1,-([))

TN (28)
=1 «+12L—1

Then, the heuristic algorithm can perform a stepwise
increase of an initial number of truncation terms up to
the point of finding the number of truncation terms
which make each truncated state probability to satisfy
the relationship (28).
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6 An application example

Let us consider the distributed computer control system
shown in Fig. 1. In Table 1, the computer modules
required to run each- software routine are shown.
Without any loss of generality but in order to provide
reasonable graphical representation of the estimated state
probabilities, we assume that all the computer modules
and hardware modules have the same statistical charac-
teristics. They are provided in Table 2. Programming the
already discussed algorithmic procedure on an IBM
4381/13 mainframe computer in Fortran 77, it was made
possible to evaluate the time function of the availability
of the considered distributed computer system with a
+0.001 error tolerance. Graphical representation of this
function and the corresponding state probabilities are
given in Fig. 2 and 3, respectively.

supervisory
computer
(sC-1)

network
processor
(NP-1)

network
interface
(NI-1)

intertace 1 interface 16
(I-1) (1-16)

control control

processor 1 processor 16
(CP-1) (CP-16)

input/output input/output
interface 1 interface-16
(1/0-1) (1/0-16)

Fig. 1 Block diagram of the distributed computer control system.

Table 2: Statistical features of the distributed processing
system (i =1,2,---,86)

h,(t) = 0.5[exp (~t) + 2 exp (~21)]

t
r,a(l) = m exp (=t) n,=1,2,r, ,(t)=0
_ VB,
a; ,(t)= )_»——B (exp (=y,t) ~exp (=B,1)).n,=1,2
a, o(t)=0
¥a, =15 8,=1817forn,=1,2
Ao =0.1

1.000 0.000 0.000
P=(P,,)=10.600 0.350 0.050
0.450 0.520 0.030
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Each curve in Fig. 2 corresponds to a different number
of errors in each software routine. Specifically the
number 1 curve was obtained by considering that each
one of the six software routines may have up to 2 errors.
The number 2 curve considers that there are only two
routines with up to 2 errors whereas the others are free of
errors. The last curve refers to a system having only one
routine with two errors. These different curves demon-
strate the expected strong dependence of the system
availability on the number of routines with errors.

1.000

3
2
0.100
< 0.010 |
<«
1
0.001 L )
0 1 L ]
0 5 10 =15
t
Fig. 2  System availability curves.
015
l:;'10(t):0
010 v Pyaaft)
Pia,2)
0.05¢
0 2 1 ]
0 5 10 15
t
0.301
F?,z,o(t)
0.25¢
0.20t

0.10

0.05

Fig. 3  State probabilities of a sofiware package.
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7 Conclusions

It has been proved that the availability of the distributed
process control systems, which constitute a class of the
general category of distributed computer systems, can be
evaluated within prespecified error bounds by expressing
analytically the operational state probabilities of each
software and hardware module of the system, and com-
puting them by a heuristic algorithm. The algorithmic
computations utilise the Laguerre transform to evaluate
the multiple convolutions of the analytical expressions.
The initially considered number of errors in each soft-
ware module influences the system state space which
becomes enormous for large numbers. This, combined
with a very small truncation error of the availability esti-
mation results to large memory requirements. The
memory capacity requirement may be reduced by trading
the number of errors per software package with the accu-
racy of the availability estimation, which defines the
number of terms in their series approximation.
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