## Multi-label Learning Approaches for Music Instrument Recognition

Eleftherios Spyromitros - Xioufis, Grigorios Tsoumakas and Ioannis Vlahavas



Machine Learning & Knowledge Discovery Group Department of Informatics Aristotle University of Thessaloniki Greece





ISMIS 2011 - Warsaw University of Technology, Warsaw, Poland - June 28-30, 2011

Eleftherios Spyromitros – Xioufis | espyromi@csd.auth.gr | 30/06/2011

Multi-label Learning Approaches for Music Instrument Recognition

The training sets Additional complexity The trick indings about the test set

#### The training sets



Eleftherios Spyromitros – Xioufis | espyromi@csd.auth.gr | 30/06/2011

Multi-label Learning Approaches for Music Instrument Recognition

## **Additional complexity**

- Relations between instruments of the two datasets --> complexity:
  - Examples of the specialized class could be considered as examples of the general class
    - C-Trumpet and B-FlatTrumpet are kinds of Trumpet
    - TenorTrombone is a kind of Trombone
  - Difficult to distinguish different kinds of the same instrument
    - soprano or alto saxophone?
- The following statements brought additional complexity:
  - The pairs of the training set do not occur in the test set
  - Not all 32 instruments of the training data must appear in the test data
  - Some instruments of the test set may appear only in single instruments data

The training sets Additional complexity The trick indings about the test set

#### The trick

- Lets make things more clear!
- The evaluation system allowed a trick:
  - 32 'dummy' predictions containing the same instrument for every test instance were sent
  - The resulting accuracy represented the percentage of each instrument in the validation set (35% of the test set)
  - This allowed a very close approximation of the label distribution in the full test set
- Findings

The training sets Additional complexity The trick Findings about the test set

#### Findings about the test set



Eleftherios Spyromitros – Xioufis | espyromi@csd.auth.gr | 30/06/2011

**Multi-label Learning Approaches for Music Instrument Recognition** 

Trying different inputs The final training set

### **Trying different inputs**

- Which is the best input?
  - Using only the pairs dataset
  - Using only the single-instruments dataset
  - The union of the datasets (pairs + single-instrument examples)
- The results (of a comparison using various learning methods)
  - Only pairs better than only single instruments (expected)
    - many instruments of the test set do not appear in the singleinstruments set
  - Only pairs better than the union (unexpected)
    - examples for all instruments are there

## The final training set

- Further experiments revealed that:
  - Using only examples of pairs is better than combining them with single instrument examples.
  - Using single instrument examples is beneficial only if pair examples are not available.
- The final set used to train the winning method:
  - All the 5422 example pairs
  - The 340 single-instrument examples of SynthBass and Frenchhorn
  - All the given feature attributes (except for the 5 additional attributes of the single-instruments set)

A multi-label problem Preliminary experiments The Binary Relevance method Tuning the base classifier

### A multi-label classification problem

- Single-label classification:
  - One categorical target variable
- Multi-label classification:
  - Multiple target variables (with possible associations between them)
- Recognition of instrument pairs:
  - A special multi-label case
  - Each example is associated with exactly 2 labels
- Two families of multi-label methods:
  - Problem transformation
  - Algorithm adaptation

#### **Preliminary experiments**

- Various multi-label methods of the problem transformation family
  - state-of-the-art: ECC [Read et al., ECML 09], RAKEL [Tsoumakas et al., TKDE 11]
  - baseline: Binary Relevance (BR), Label Powerset (LP)
- Coupled with various base classifiers
  - SVMs, Decision Trees, etc.
- BR was found competitive
  - especially when coupled with strong base classifiers

## **Binary Relevance (BR)**

- How it works
  - Learns one binary classifier for each label
- Trained on transformed training sets
  - The examples having λ are positive
  - All the rest are negative
- Limitations
  - 1. Does not consider label correlations
  - 2. Leads to class imbalance
- In our case
  - Limitation 1 is not important (different correlations appear in the test set)
  - Focus on limitation 2

A multi-label problem Preliminary experiments The Binary Relevance method Tuning the base classifier

| Ex# | Label set              |
|-----|------------------------|
| 1   | { <mark>λ1,λ4</mark> } |
| 2   | { <mark>λ3,λ4</mark> } |
| 3   | { <mark>λ2</mark> }    |
| 4   | { <mark>λ2,λ1</mark> } |

| Ex# | λ1 | Ex# | λ2 |
|-----|----|-----|----|
| 1   | +  | 1   | -  |
| 2   | -  | 2   | -  |
| 3   | -  | 3   | +  |
| 4   | +  | 4   | +  |

### **Tuning the base classifier**

- Random Forest (RF) was used as a base classifier
- How to deal with class imbalance?
  - Combine RF with Asymmetric Bagging [Tao et al, TPAMI06]
- Asymmetric Bagging Random Forest (ABRF):
  - 1. Take a bootstrap sample **only from the negative examples**
  - 2. Use the negative sample + all the positive examples and train a RF
  - 3. Repeat the above steps n times and aggregate the decisions of all the generated random trees
- The best performance
  - 10 forests (of 10 random trees each) trained on 10 balanced training sets

The usual ranking approach An alternative approach Accounting the priors Post-processing filter

## **Typical ranking approach**

- Output of an ABRF classifier for each label:
  - A confidence score for the label being true



#### Focus

- Produce an accurate ranking
- Pick the 2 top-ranked instruments
- Typical approach
  - Use the confidence scores to produce a ranking
  - e.g.
    1<sup>st</sup>
    2<sup>nd</sup>
    3<sup>rd</sup>
    4<sup>th</sup>
    Violin
    Viola
    Cello

12

#### An alternative approach

- Use the trained classifiers to generate confidence scores for all test instances
- For each test instance:
  - Find how the confidence score assigned to each label is ranked in the list of confidence scores given for that label
  - Output the 2 labels with the lowest ranks
  - Instance 1 would take the labels {Cello, Piano} or {Cello, Viola}

| Tost sot |             | # inst | Viola | Piano | Cello | # inst | Viola           | Piano           | Cello           |
|----------|-------------|--------|-------|-------|-------|--------|-----------------|-----------------|-----------------|
| Inst. #1 | ABRS        | 1      | 0.45  | 0.33  | 0.77  | 1      | 2 <sup>nd</sup> | 2 <sup>nd</sup> | 1 <sup>st</sup> |
| Inst. #2 | classifiers | 2      | 0.97  | 0.50  | 0.21  | 2      | 1 <sup>st</sup> | 1 <sup>st</sup> | 3 <sup>rd</sup> |
| Inst. #3 |             | 3      | 0.44  | 0.11  | 0.62  | 3      | 3 <sup>rd</sup> | 3 <sup>rd</sup> | 2 <sup>nd</sup> |

The usual ranking approach An alternative approach Accounting the priors Post-processing filter

#### Taking the priors into account

- However
  - Label priors was used to approximate the # examples per label in test set
  - Being 2<sup>nd</sup> out of 3 is better than 2<sup>nd</sup> out of 1
  - Output the 2 labels with the lowest "normalized" ranks



14

The usual ranking approach An alternative approach Accounting the priors Post-processing filter

#### **Post-processing filter**

- Avoid outputting instrument pairs of the training set:
  - substitute the second-ranked instrument
- Assumption:
  - the classifier is more confident for the first-ranked instrument

Summary – Future work – Software Acknowledgements

#### Conclusions

- Motivation
  - Explore the potential of multi-label learning methods
- Conclusions
  - Baseline is sometimes better than state-of-the-art
  - Pairs of instruments are better recognized using pair examples
- Future
  - Generalization to an arbitrary number of instruments playing together
- Software
  - Mulan <u>http://mulan.sourceforge.net</u>
  - Weka <u>http://www.cs.waikato.ac.nz/ml/weka/</u>

Summary – Future work – Software Acknowledgements

#### Acknowledgements

- Acknowledgements
  - To my teacher and friend Grigorios Tsoumakas for the fair play!

| I was 1 <sup>st</sup><br>only for a |   | Rank | Team 🔨 🗸                                          | Time of Submission | Preliminary 🔥 🗸 | Final 🗖 💌<br>Result |
|-------------------------------------|---|------|---------------------------------------------------|--------------------|-----------------|---------------------|
| while!                              | • | • 1  | – Eleftherios Spyromitros<br>Xioufis              | Mar 21, 22:33:11   | 0.7239          | 0.72273             |
|                                     |   |      | (lefman), Aristotle University<br>of Thessaloniki |                    |                 |                     |
| only for a                          |   | • 2  | - MOZ                                             | Mar 12, 16:42:28   | 0.7106          | 0.71133             |
| while!                              |   |      | Grigorios Tsoumakas<br>(tsoumakas)                |                    |                 |                     |

## THANK YOU!

# QUESTIONS?