

Environmental Pollution Control Laboratory Department of Chemistry Aristotle University of Thessaloniki GR 541 24 Thessaloniki, Greece

PCBs in SOIL

Dimitra Voutsa Assistant Professor

10th EU Common Forum on Contaminated Land, Larnaca, 2-3 June 2003

Polychlorinated Biphenyls (PCBs)

										D	ina 2										
		0	2	3	4	23	24	25	26	34	35	234	235	236	245	246	345	2345	2346	2356	23456
	23456	116	142	160	166	173	181	185	186	190	192	195	198	199	203	204	205	206	207	208	209
	2356	65	93	112	117	134	147	151	152	163	165	177	178	179	187	188	193	201	200	202	
	2346	62	88	109	115	131	139	144	145	158	161	171	175	176	183	184	191	196	197		
	2345	61	86	106	114	129	137	141	143	156	159	170	172	174	180	182	189	194			
	345	38	76	78	81	122	123	124	125	126	127	157	162	164	167	168	169				
	246	30	50	69	75	98	100	103	104	119	121	140	148	150	154	155					
	245	29	48	67	74	97	99	101	102	118	120	138	146	149	153						
	236	24	45	59	64	84	91	95	96	110	113	132	135	136							
	235	23	43	57	63	83	90	92	94	107	111	130	133								
	234	21	41	55	60	82	85	87	89	105	108	128									
à	35	14	34	36	39	58	68	72	73	79											
<u> </u>	34	12	33	35	37	56	66	70	71	77											
	26	10	19	27	32	46	51	53	54												
	25	9	18	26	31	44	<mark>49</mark>	52					Cb	5	6		0				
	24	7	17	25	28	42	47						/	1	-		N N	<u> </u>			
	23	5	16	20	22	40								X			H		<u> </u>		
	4	3	8	13	15								4	<		⋟—	-		24	*	
	3	2	6	11										I	4		1	,			
	2	1	4											3	4		4				
	0													2			2	et 19			

Systematic numbering of the 209 chlorobiphenyls according to Ballschmiter

Brief history of PCBs

- **Developed in 1930s as heat transfer fluids**
- Trade names: Aroclor, Phenoclor, Fenclor, Clophen
- >
- **Applications: 50% in capasitors and transformers** 20% as plasticizers hydraulic fluids, lubricants, adhesives, inks
- Total global production ~1,3 million tons
- Peak production in 1970s
- **Banned in late 1970s**
- Not used in new equipment since 1986

The latitudinal distribution of global PCB usage and PCBs in surface soils (Ockenden et al., 2003)

EC Legislative Framework Council Directives

On the disposal of polychlorinated biphenyls and polychlorinated terphenyls 76 / 403 / EEC 96 / 59 / EC

On environment sound disposal / management of waste

75 / 442 / EEC 91 / 689 / EEC 75 / 439 / EEC 96 / 2002 / EC

on waste on hazardous waste on waste oils on waste electrical and electronic equipment

Council Directive 96/59/EC on the disposal of PCBs and polychlorinated terphenyls

- Preparation of inventories
- Labelling and treatment of all significant PCB holdings
- Stricter regulation of PCBs treatment facilities
- Thresholds set out for specific registration and consequent destruction are 5 dm³ of overall filling capacity for equipment and 50 ppm for contaminated substances within such equipment
- Decontamination or disposal of these PCBs material must be carried out by 2010.
- PCBs in transformers and ancillary equipment with contamination levels below 500 ppm, do not have to be removed until the end of the equipment useful life.

Characteristics of PCBs

Long term stability
 Dispersion into the environment
 Lipophilicity - biomagnification
 Potential toxicity to humans and biota

Environmental Occurence

Essentially ubiquitous

TEF values for 12 PCBs congeners

- ***** Elicitation of dioxin-specific responses / effects
- ***** Persistent and bioaccumulative

WHO TEFs for PCBs

Class	IUPAC No.	Structure	TEF
Coplanar	77	3,3′,4,4′-TCB	0.0005
(non - ortho)	126	3,3',4,4',5-PeTCB	0.1
	169	3,3',4,4'5,5'-HxCB	0.01
Coplanar	105	2,3,3',4,4'-PeCB	0.0001
(mono-ortho)	114	2,3,4,4',5-PeCB	0.0005
and the second	118	2,3,3',4,4'-PeCB	0.0001
	123	2',3,4,4',5-PeCB	0.0001
	156	2,3,3′,4,4′,5 -H×CB	0.0005
	157	2,3,3',4,4',5'-H×CB	0.0005
	167	2,3',4,4',5,5'-H×CB	0.00001
344、245-36	189	2,3,3',4,4',5,5'-HpCB	0.0001

PCBS

 High priority pollutants - Black list (EC)
 Persistent Organic Pollutants, POP - Dirty Dozen (UNEP)
 Endocrine disrupters (NRC)

PCBs in the environment

Exchange through Atmosphere

Atmospheric

Deposition

Migration through Groundwater

Urban Runoff

Food Chain

Sediment Resuspension

Commercial PCBs formulations Unproper disposal

Accidental release

Industrial discharges

Incineration of municipal solid wastes chemical wastes, clinical wastes, sewary sludge

Burning of wood and coal

Traffic

Crematoria

Accidental fires / fires in landfills

Industrial Processes **Cement kilns**

Sinter plants

Steal production

Combustion Processes

Sources of PCBs in soil

Leackages from PCBs containing materials at waste dump sites/landfills Accidental release from waste containing PCBs Accidental fires of PCB containing equipment > Illegal dumping of waste containing PCBs Accidental fires in landfills Agricultural activities / application of sewage sludge Emissions / wastes from industrial processes, combustion sources

Atmospheric deposition

European Distribution

Country	Transformers	Big capacitors
Belgium	10.000	<2.000
France	45.000	>2.500
Germany	30.000	12.000
U.K.	3.000	<6.000
Ireland	100	<250
Spain	22.000	3.000
Portugal	25.000	500
Italy	45.000	<7.000
Greece	2.500	500

Total amount > 200.000

Factors govern the presence of PCBs in soils

- Ambient temperature
 Soil properties (moisture, organic matter, structure etc)
- Physicochemical properties (subcooled liquid vapor pressure, log octanol-air)

Source: EMEP

A secondary

emmision source

of PCB?

Estimated annual releases of PCBS to the UK atmosphere

Source	ΣPCB (kg yr ⁻¹)
Volatilisation from soil	40.000
Capacitor leaks	3.500 - 4.200
Transformer leaks	200 - 300
Scrap metal recovering	240
Volatilisation from land applied sewage	85
Total	44.000 - 46.000

Different approaches in site characterisation

- **R**₀: Background values
- **R₁:** Upper limit of acceptable risk in a conservative derivation
- **R₂:** Upper limit of acceptable risk in a realistic derivation
- R₃: Upper limit of acceptable risk in a realistic derivation and exposure scenarios that are not affected by site specific variabilities

Risk assessment for contaminated sites, 1998

PCBs criteria for contaminated soil cleanup

Level considered to be contaminated (Quebec, Bernier, 1985)	>0.5 µg/g dw	
Further investigation	1 μg/g dw	
Urgent remediation	10 µg/g dw	
(Holland, NMHPE, 1983)		
Further investigation	1 µg/g dw	
Remediation (France,	5 µg/g dw	
Beaulieu,1985)		

Environmental Pollution Control Laboratory

Research activities concerning PCBs

Atmosphere

Wastewater / Sludge

Water / Sediment / Soil

Remediation of contaminated soil

Selection of PCBs for analysis

- 7 monitoring congeners was proposed by EC Community Bureau of References
- This selection was based on their ...
- Abundance
- Persistence
- Representation
 of each key
 level of chlorination
- GC separation

PCB 28 2,4,4'-trichlorobiphenyl PCB 52 2,2'5,5'-tetrachlorobiphenyl PCB 101 2,2',4,5,5'-pentachlorobiphenyl **PCB 118** 2,3',4,4',5 pentachlorobiphenyl PCB 138 2,2',3,4,4',5'-hexachlorobiphenyl PCB 153 2,2',4,4',5,5'-hexachlorobiphenyl PCB 180 2,2',3,4',5,5'-heptachlorobiphenyl

Atmosphere

- Possible sources
- Accidental releases of technical mixtures
- Inproper disposal of PCB containing equipments
- Accidental fires
- ✓ Vehicles
- Combustion sources
- Redistribution from soil

Studies concerning the presence of PCBs in:

- Airborne particulate matter
- Emission from combustion sources (vehicles, oil and coal burning for health facilities)

Atmospheric concentrations relatively low

Wastewater

Possible sources

- Atmospheric deposition
- Urban / agricultural runoff
- Domestic effluents (old devices)
- Industrial discharges

Leachability of PCBs from sludge using current leaching tests (MSC)

Soil - Water - Sediments

Possible sources

- Atmospheric deposition
- Urban and agricultural runoff
- ✓ Wastewaters
- Leackages from PCBs sources
- Uncontrolled burn of wastes/ biomass

Distribution of PCBS in aquatic environment

 Determination of PCBs in soil, water, suspended matter and sediments

Levels of PCBs in Greece

Atmosphere					
Urban	0.5 – 30 pg/m ³ (TSP)				
Semi-rural	0.5 – 16 pg/m ³ (TSP)				
Waters					
Sea water					
Gulfs in N. Greece	15 – 92 ng/l				
River water	ale a los de la seconda de la seconda de				
N. Greece	20 – 65 ng/l				
Sediments					
Marine sediments	45 – 147 ng/g				
River sediments	75 ng/g				
Mussels	57-167 ng/gr ww				

Kouimtzis et al., 2002 / Kamarianos et al., 2002

Suggestions...

- Inventory of materials / equipment containing PCBs that are currently in use
- Inventory of suspected contaminated sites
- Inventory of possible PCBs-sources (industry, traffic etc)
- Data base concerning the background levels of PCBs in air, soil, water in urban, industrial and rural areas