Computational Neuroscience - Lecture 1

Kugiumtzis Dimitris

Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Greece
e-mail: dkugiu@auth.gr http:\\users.auth.gr\dkugiu

8 May 2018
Outline

1. Brief introduction to computational neuroscience
2. Brain signal measuring
3. Acquisition of EEG
4. Referencing EEG methods
1 Brief introduction to computational neuroscience
1. Brief introduction to computational neuroscience
2. Brain signal measuring
1 Brief introduction to computational neuroscience
2 Brain signal measuring
3 Acquisition of EEG
1. Brief introduction to computational neuroscience
2. Brain signal measuring
3. Acquisition of EEG
4. Referencing EEG methods
Main aspects:

1. Computer processing and analysis of medical images of the brain (single-photon emission computed tomography (SPECT), positron emission tomography (PET), Magnetic resonance imaging (MRI) and functional MRI (fMRI)).

2. Experimental data analysis of brain signals

3. Models for micro-/macro- structures and dynamics (from neuro to brain level)
Brain signals:

- **scalp electroencephalograms (EEG):**
 - Electric field generated by neural activity through electrodes attached to the scalp.
 - The electrode at each position records the difference in potential between this electrode and a reference one.
 - Enables the localization of all possible orientations of neural sources.
 - The recorded electrical activity is affected by conductivity from brain to scalp.

- **magnetoencephalograms (MEG):**
 - Recording based on ultrasensitive superconducting sensors (SQUIDS), which are placed on a helmet-shaped device.
 - The magnetic fields are generated by the neural activity (coherent activity of dendrites of pyramidal cells).
 - No conductivity boundaries.
 - Only vertical to scalp orientations of neural sources can be recorded.

- **Electrocorticograms (ECoG), interictal EEG (iEEG)**
Electrodes:

low-impedance electrical contact with the scalp, placement (10-20 system, other variations for high-density EEG), numbering / notation, recording reference.

source: https://www.bci2000.org/mediawiki/
Amplifiers:
magnify the size of the signal (from microvolts up to several volts),
gain: ratio of output to input signal (e.g. 100000),
Differential amplifiers:
most sources of electrical noise are of similar amplitude in nearby regions of the body,

common-mode signals: potentials similar at different electrode sites,

recording reference: a reference signal to subtract

differential-mode signal: obtained from subtracting “active” from “reference”
Filters (prior to digitation)

High-pass filter

Low-pass filter

Notch filter: eliminates the frequencies matching that of the power line, e.g., 50 Hz in Europe.

Broad bandpass filter: combination of high- and low-pass filter, e.g., 0.1 to 70 Hz.
Filters (prior to digitation)

High-pass filter

Low-pass filter

Broad bandpass filter: combination of high- and low-pass filter, e.g. 0.1 to 70 Hz
Filters (prior to digitation)

High-pass filter

Low-pass filter

Broad bandpass filter: combination of high- and low-pass filter, e.g. 0.1 to 70 Hz

Notch filter: eliminates the frequencies matching that of the power line, e.g. 50 Hz in Europe.
Aliasing

Nyquist theorem limits the sources at higher frequencies that can be captured.

Higher frequencies can give artifacts in the digitized output.
Aliasing

Nyquist theorem limits the sources at higher frequencies that can be captured.
Higher frequencies can give artifacts in the digitized output.

anti-aliasing filter: low-pass filter with cut-off at the Nyquist frequency
Electroencephalogram: Acquisition process - 6

Analog-to-Digital Conversion

sampling frequency, e.g. 200 Hz, (Nyquist theorem)
amplitude, e.g. 24 bits preictal activity
Analog-to-Digital Conversion
sampling frequency, e.g. 200 Hz, (Nyquist theorem)
amplitude, e.g. 24 bits preictal activity
Analog-to-Digital Conversion

ictal activity
Digital EEG acquired at **referential montage** (recording reference), e.g. ear, normal-like activity

+ ideal for generalized abnormalities
- contaminated by local abnormal activity, e.g. temporal lobe for ear REF.
Montage reformatting: common average

Excluding first corrupted channels?

+ ideal for focal activity - contaminated with generalized abnormal activity
Montage reformatting: *common average*

Excluding first corrupted channels?

+ ideal for focal activity
- contaminated with generalized abnormal activity
Montage reformatting: Bipolar montage

+ Sharp distinction
- Distortion of wave, widespread potentials may be canceled, end of chain problem
Example:

source: http://www.mc.vanderbilt.edu
No 2 Hz activity

2 Hz activity

2 Hz activity

No 2 Hz activity

No 2 Hz activity