Simulation

11.1. Introduction

Let X = (X, ..., X,) denote a random vector having a given density function
f(x1, ..., x,) and suppose we are interested in computing

E[g(xnsz--»fg(xl,...,x,of(xl,...,x,,)dxi dxo- - dx,

for some n-dimensional function g. Forinstance, g could represent the total delay in
queue of the first [r2/2] customers when the X values represent the first [#/2] inter-
arrival and service times.* In many situations, it is not analytically possible either
to compute the preceding multiple integral exactly or even to numerically approx-
imate it within a given accuracy. One possibility that remains is to approximate
E[g(X)] by means of simulation.

To approximate E[g(X)], start by generating a random vector X@ —
(X f), o, x having the joint density f(x1, ..., x,) and then compute ¥V =
g(XMD)y. Now generate a second random vector (independent of the first) X@ and
compute Y® = g(X®@), Keep on doing this until r, a fixed number, of indepen-
dent and identically distributed random variables ¥ — gX®y, i = L,...,r
have been generated. Now by the strong law of large numbers, we know that

... (r) .
tim YT v o) - prec0

r—»o0 r

and so we can use the average of the generated Y's as an estimate of E[g(X)]. This
approach to estimating E[g(X)] is called the Monte Carlo simulation approach.
Clearly there remains the problem of how to generate, or simulate, random
vectors having a specified joint distribution. The first step in doing this is to be
able to generate random variables from a uniform distribution on (0, 1). One way

*We are using the notation [a] to represent the largest integer less than or equal to a.
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to do this would be to take 10 identical slips of paper, numbered 0, 1, ..., 9, place
them in a hat and then successively select n slips, with replacement, from the hat.
The sequence of digits obtained (with a decimal point in front) can be regarded
as the value of a uniform (0, 1) random variable rounded off to the nearest (-1—%)".
For instance, if the sequence of digits selected is 3, 8, 7, 2, 1, then the value of the
uniform (0, 1) random variable is 0.38721 (to the nearest 0.00001). Tables of the
values of ugiform (0, 1) random variables, known as random number tables, have
been extensively published [for instance, see The RAND Corporation, A Million
Random Digits with 100,000 Normal Deviates (New York: The Free Press, 1955)].
Table 11.1 is such a table.

However, this is not the way in which digital computers simulate uniform , 1)
random variables. In practice, they use pseudo random numbers instead of truly
random ones. Most random number generators start with an initial value Xg, called
the seed, and then recursively compute values by specifying positive integers a, c,
and i, and.then letting

s

Xng1 = (@X, +c¢) modulo m, nz0

where the preceding means that a X, +c is divided by m and the remainder is taken -
as the value of X,,,.1. Thus each X, iseither 0, 1,..., m~—1and the quantity X, /m
is taken as an approximation to a uniform (0, 1) random variable. It can be shown
that subject to suitable choices for a, c, m, the preceding gives rise to a sequence
of numbtrs that looks as if it were generated from independent uniform (0, 1)
random variables. _

As our starting point in the simulation of random variables from an arbitrary
distribution, we shall suppose that we can simulate from the uniform (0, 1) distri-
bution, and we shall use the term “random numbers” to mean independent random
variables from this distribution. In Sections 11.2 and 11.3 we present both general
and special techniques for simulating continuous random variables; and in Section
11.4 we do the same for discrete random variables. In Section 11.5 we discuss the
simulation both of jointly distributed random variables and stochastic processes.
Particular attention is given to the simulation of nonhomogeneous Poisson pro-
cesses, and in fact three different approaches for this are discussed. Simulation
of two-dimensional Poisson processes is discussed in Section 11.5.2. In Section
11.6 we discuss various methods for increas_iﬁg the precision of the simulation
estimates by reducing their variance; and in Section 11.7 we consider the problem
of choosing the number of simulation runs needed to attain a desired level of pre- -
cision. Before beginning this program, hSwever, let us consider two applications
of simulation to combinatorial problems.

Example 11.1 (Generating a Random Permutation) Suppose we are inter-
ested in generating a permutation of the mumbers 1, 2, ..., n that is such that all
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Table 11.1 A Random Number Table

04839 96423 24878 82651 66566 14778 76797 14780 13300 87074
68086 26432 46901 20848 39768 81536 86645 12659 02259 57102
39064 66432 84673 40027 32832 61362 98947 96067 64760 64584
25669 26422 44407 44048 37937 63904 45766 66134 75470 66520
64117 94305 26766 25940 39972 22209 71500 64568 91402 42416
87917 77341 42206 35126 74087 99547 81817 42607 43808 76655
62797 56170 86324 88072 76222 36086 34637 93161 76038 65855
95876 55293 18938 27354 26575 08625 40801 59920 29841 80150
29888 88604 67917 48708 18912 82271 03424 69774 33611 54262
73577 12908 30883 18317 28290 35797 05998 41688 34952 37888
27958 30134 04024 86385 29880 99730 55536 84855 29080 09250
90999 49127 20044 59931 06115 20542 18059 02008 73708 83517
18845 49618 02304 51038 20655 58727 28168 15475 36942 53389
94824 78171 84610 82834 09922 25417 44137 48413 25555 21246
35605 81263 39667 47358 56873 56307 61607 49518 89356 20103
33362 64270 01638 92477 66969 98420 04880 45585 46565 04102
88720 82765 34476 17032 87589 40836 32427 70002 70663 88863
39475 46473 23219 53416 94970 25832 69975 94884 19661 T2828
06990 67245 68350 82948 11398 42878 80287 88267 47363 46634
40980 (07391 58745 25774 22987 80059 39911 96189 41151 14222
83974 29992 65381 38857 50490 83765 55657 14361 31720 57375
33339 31926 14883 24413 59744 92351 97473 89286 35931 04110
31662 25388 61642 34072 81249 35648 56891 69352 48373 45578
93526 70765 10592 04542 76463 54328 02349 17247 28865 14777
20492 38391 91132 21999 59516 81652 27195 48223 46751 22923
04153 53381 79401 21438 83035 92350 36693 31238 59649 91754
05520 91962 04739 13092 07662 24822 94730 06496 35090 04822
47498 87637 99016 71060 38824 71013 18735 20286 23153 72924
23167 49323 45021 33132 12544 41035 80730 45393 44812 12515
23792 14422 15059 45799 22716 19792 09983 74353 68668 30429
85900° 98275 32388 52390 {16815 69298 82732 38480 73817 32523
42559 78985 05300 22164 24369 54224 35083 19687 11062 -9149]1
14349 82674 66523 44133 00697 35552 35970 19124 63318 29686
17403 53363 44167 64486 64758 75366 76554 31601 12614 33072
23632 27889 47914 02584 37680 20801 72152 39339 34806 08930

n! possible orderings are equally likely. The following algorithm will accomplish
this by first choosing one of the numbers 1, . .. » n atrandom and then putting that
number in position #; it then chooses at random one of the remaining n — 1 num-
bers and puts that number in position 7 — 1; it then chooses at random one of the
remaining » — 2 numbers and puts it in position 1 — 2, and so on (where choosing
a number at random means that each of the remaining numbers is equally likely
to be chosen). However, so that we do not have to consider exactly which of the
- numbers remain to be positioned, it is convenient and efficient to keep the num-
bers in an ordered list and then randomly choose the position of the number rather
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than the number itself. That is, starting with any initial ordering p1, p2,.--, Pn,
we pick one of the positions 1, ..., n at random and then interchange the number
in that position with the one in position n. Now we randomly choose one of the
positions 1, ..., n — 1 and interchange the number in this position with the one in
position n — 1, and so on.

To implement the preceding, we need to be able to generate a random variable
that is equally likely to take on any of the values 1, 2, . .., k. To accomplish this, let
U denote a random number—that is, U is uniformly distributed over (0, 1)—and
note that kU is uniform on (0, k) and so

Pli—1<kU<i}==>, i=1,...,k

&= e

Hence, if the random variable I = (kU) + 1 will be such that

P =i)=P{(kU)=i—1} =P{i~1 < kU <i}m;;~

-~

The preceding algorithm for generating a random permutation can now be written
as follows:

Step I: Letpi, p2,..., ppbeany permutation of 1, 2, . . ., n (for instance, we
" canchoose pj =j,j=1,...,n).

Step 2:'. Setk =n. )

Step 3:" Generate a random humber U and let I = (kU) + 1.

Step 4:  Interchange the values of p; and pg.

Step 5: Lletk=k—1landifk > 1 go to Step 3.

Step 6:  pi, - .., pn is the desired random permutation.

For instance, suppose # = 4 and the initial permutation is 1, 2, 3, 4. If the first
value of I (which is equally likely to be either 1, 2, 3, 4) is I = 3, then the new
permutation is 1, 2, 4, 3. If the next value of [ is / = 2 then the new permutation
is 1, 4, 2, 3. If the final value of I is I = 2, then the final permutation is 1, 4, 2, 3,
and this is the value of the random permutation.

One very important property of the preceding algorithm is that it can also be
used to generate a random subset, say of size 7, of the integers 1, ..., n. Namely,
just follow the algorithm until the positionsn,n— 1, ..., n —r +1 are filled. The '
elements in these positions constitute the random subset. &

Example 11.2 (Estimating the Number of Distinct Entries in a Large List)
Consider a list of n entries where 7 is very large, and suppose we are interested
in estimating d, the number of distinct elements in the list. If we let m; denote '



11.1. Introduction 643

the number of times that the element in position i appears on the list, then we can
express d by

To estimate d, suppose that we generate a random value X equally likely to be
either 1,2, ..., n (that is, we take X = [nU] + 1) and then let m(X) denote the
number of times the element in position X appears on the list. Then

1 11 d
E =) —— = -
m(X) —min n

Hence, if we generate k such random variables X, ..., X we can estimate d by

i n it 1/m(Xs)
k
Suppose now that each item in the list has a value attached to it—y (i) being the

value of the ith element. The sum of the values of the distinct items—call it v—can
be expressed as

— (i)
v Z @)
i=]
Now if X = [nU] + 1, where U is a random number, then
v(X) @) 1w
E = —— =
[m(X)J Z m(i)n n

[=]

Hence, we can estimate v by generating X1, ..., X, and then estimating v by
k
v(X;
v R n Z (X:)
k o m (X:)
For an important application of the preceding, let A; = {a;,,..., in ) | =

1,..., s denote events, and suppose we are interested in estimating P(U;’-”mI A;).
Since

=1 i=1 j=I

mia; ;
acUA; = (Cl;,_,)

wherem (a;, ;) is the number of events to which the point a;, j belongs, the preceding
. method can be used to estimate P(|_J] 4;).
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Note that the preceding procedure for estimating v can be effected without
prior knowledge of the set of values {v1, ..., U}. Thatis, it suffices that we can
determine the value of an element in a specific place and the number of times that
clement appears on the list. When the set of values is a priori known, there is a
more efficient approach available as will be shown in Example 11.11.

11.2. General Techniques for Simulating
Continuous Random Variables

In this section we present three methods for simulating continuous random
variables.

11.2.1. The Inverse Transformation Method

A general. méthod for simulating a random variable having a continuous
distribution—called the inverse transformation method—is based on the following
proposition.

Proposition 11.1 Let U be a uniform (0, 1) random variable. For any
continuous distribution function F if we define the random variable X by

X =F 1)

-

then the random variable X has distribution function F. [F ~1(u) is defined to
equal that value x for which F(x)=ul]

Proof
Fx(a) = P{X g_a}
= P{FY(U) < a) (11.1)

Now, since F (x) is a monotone function, it follows that F —I(U) € q if and only
if U < F(a). Hence, from Equation (11.1), we see that

Fx(a@) = P{U < F(a)}
= F(a) B

Hence we can simulate a random variable X from the continuous distribution
F, when F~) is computable, by simulating a random number U and then setting
X =F ).
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Example 11.3 (Simulating an Exponential Random Variable) If F(x)=
1 —e™*, then F~1(u) is that value of x such that

or
x = —log(l — u)

Hence, if U is a uniform (0, 1) variable, then
. FLuy = —log(1 -~ U)

is exponentially distributed with mean 1. Since 1 — U is also uniformly distributed
on (0, 1)itfollows that — log U is exponential with mean 1. Since cX is exponential
with mean ¢ when X is exponential with mean 1, it follows that —clog U is
exponential with mean c.

11.2.2. The Rejection Method

Suppose that we have a method for simulating a random variable having density
function g(x). We can use this as the basis for simulating from the continuous
distribution having density f(x) by simulating ¥ from g and then accepting this
simulated value with a probability proportional to f(¥)/g(¥).

Specifically let ¢ be a constant such that

&

£c for all y
g()

We then have the following technique for simulating a random variable having
density f.

Rejection Method

Step 1:  Simulate Y having density g and simulate a random number U.
Step2: WU < f(Y)/cg(Y) set X = Y. Otherwise return to Step 1.

Proposition 11.2 The random variable X generated by the rejection method
has density function f.
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Proof Let X be the value obtained, and let N denote the number of necessary
jterations. Then

P{X <x}=P{¥n < x}
= P{Y <x|U < f(¥)/cg@))}
_PYsxUs f@¥)/cgM)}
B K
_[PI¥<xUS F(¥)/cgMY = ylg(y) dy
‘ K

o P(f0)/caOMeB) 4y
B K
o f dy
- Kc

where K = P{U < f(¥)/cgM)} Letting x — oo shows that K = 1/c and the
proof is complete. ]

Remarks (i) The preceding method was originally presented by Von Neumann
in the special case where g was positive only in some finite interval (@, b),and ¥
was chosen to be uniform over (a, b) [thatis, Y =a + & —a)Ul.

(ii) Note that the way in which we “accept the value Y with probability
F(¥)/cg(¥)" is by generating a ‘uniform (0, 1) random variable U and then
accepting Y if U < f(¥)/cg@).

(iii) Since each iteration of the method will, independently, resultin an accepted
value with probability P{U < f(Y)/eg@)}=1/c it follows that the number of
iterations is geometric with mean c.

(iv) Actually, it is not necessary to generate a new uniform random number when
deciding whether or not to accept, since at a cost of some additional computation, a
single random number, suitably modified ateach iteration, can be used throughout.
To see how, note that the actual value of U is not used—only whether or not
U < f(¥)/cg(Y). Hence, if Y is rejected—that is, ifU > f(¥)/cg(Y)—wecan
use the fact that, given Y,

U — F(1)/cg®) _ cUg®) = FI)
[ )/e® 8@~ D)

is uniform on (0, 1). Hence, this may be used as a uniform random number in
the next iteration. As this saves the generation of a random number at the cost of
the preceding computation, whether it is a net savings depends greatly upon the
method being used to generate random numbers.
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Example 11.4 Let us use the rejection method to generate a random variable
having density function

fx) =20x(1 — x)3, 0<x <1

Since this random variable (which is beta with parameters 2, 4) is concentrated in
_the interval (0, 1), let us consider the rejection method with

gix) =1, D<x <1

To determine the constant ¢ such that f (x)/g(x) < ¢, we use calculus to determine
the maximum value of -

I®)  aox(1 - 2y

g(x)
Differentiation of this quantity yields

d [ fx)] N3 — )2
E[E&?]MZO[(I x)° — 3x(1 — x)7]

Setting this equal to 0 shows that the maximal value is attained when x = %, and

thus
f&) 1\ 3\’ _ 135 _
s S (Z) (Z) Ted C
Hence,
Flx) 256 1 2}
cex) 27 VT

and thus the rejection procedure is as follows:

Step I:  Generate random numbers U and U3.
Step2: U < %%gUl(l — U3, stop and set X = U,;. Otherwise return to
step 1.

The average number of times that step 1 will be performed is ¢ = -%%5-.

Example 11.5 (Simulating a Normal Random Variable) To simulate a stan-
dard normal random variable Z (that is, one with mean 0 and variance 1) note first
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that the absolute value of Z has density function

e 0<x <o (11.2)

2
(x) =
! N
We will start by simulating from the preceding density by using the rejection
method with

gx)=¢e"7%, 0<x <00

Now, note that

:: g)) — JZe/7 exp{—(x — 1)2/2} < V/2e/m

Hence, using the rejection method we can simulate from Equation (11.2) as follows:

(a) Generate independent random variables ¥ and U, ¥ being exponential with
rate 1 and U being uniform on (0, 1).
(b) I U < exp{—(¥ — 1)?/2}, or equivalently, if

—log U = (¥ = 1)*/2

set X = Y. Otherwise return to step (a).

Once we have simulated a random variable X having density function (11.2) we
can then generate a standard normal random variable Z by letting Z be equally
likely to be.either X or —X.

To improve upon the foregoing, note first that from Example 11.3 it follows
that — log U will also be exponential with rate 1. Hence, steps (a) and (b) are
equivalent to the following:

(2') Generate independent exponentials with rate 1, Y3, and Y5.
(') Set X =Yiif Y2 > (¥1 — 1)2/2. Otherwise return to (a’).

Now suppose that we accept step (0. It then follows by the lack of memory
property of the exponential that the amount by which Y7 exceeds (Y1 — 1)2/2 will
also be exponential with rate 1.

Hence, summing up, we have the following algorithm which generates an
exponential with rate 1 and an independent standard normal random variable.

Step 1: Generate Y1, an exponential random variable with rate 1.

Step 2: Generate Y3, an exponential with rate 1.

Step3: KY,—(Y1—1?%2>0set¥=Y—T1— 1)2/2 and go to step 4.
Otherwise go to step 1.

Step 4:  Generate a random number U and set

7 — Y1, ifU<
- 'j'“-Yi, if U >

et Ll L
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Remarks (i) Since ¢ = v2e[mw ~ 1.32, the preceding requires a geometric
distributed number of iterations of step 2 with mean 1.32,

we can simulate a unit normal by generating 1.64 exponentials and computing
1.32 squares.

11.2.3. The Hazard Rate Method

Let F be a continuous distribution function with ﬁ(@) = 1. Recall that A(¢), the
hazard rate function of F , 1s defined by

A(E) = f@)

D

F@)’

[where f(t) = F/ () is the density function]. Recall also that A(z) represents the
instantaneous probability intensity that an item having life distribution F will fail
at time ¢ given it has survived to that time.

Suppose now that we are given a bounded function A(t), such that
fom A(t) dt = 0o, and we desire to simulate a random variable § having A(r)
as its hazard rate function,

To do so let A be such that

ALY < A forallt >0

To simulate from AR), t >0, we will

(a) simulate a Poisson process having rate .. We will then only “accept” or
“count” certain of these Poisson events. Specifically we will
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(b) count an event that occurs at time Z, independently of all else, with
probability A(£)/A-

We now have the following proposition.

Proposition 11.3 - The time of the first counted event—call it S—isa random
variable whose distribution has hazard rate function A(t),t = 0.

Proof

Pit<S<1t+ dt]S > t}
— P{first counted event in (¢, t +dt)|no counted events prior to £}
— P{Poisson event in (t,t +dr),itis counted|no counted events prior
to t} '
— P{Poisson event in (¢, 7 + dt), it is counted}

= [Adt=+ o(dt)]}-g? = A(t) dt + o(dt)

which completes the proof. Note that the next to last equality follows from the
independent increment property of Polsson processes. B

Because the interarrival times of 2 Poisson process having rate ) are exponential
with rate A, it thus follows from Example 11 .3 and the previous proposition that the
following algorithm will generate:a random variable having hazard rate function
A(),t = 0.

Hazard Rate Method for Generating S: As(f) = A(E)

ILet A be such that A(#) < A for all t > 0. Generate pairs of random variables
U;, Xi,i 2 L, with X; being exponential with rate A and U; being uniform (0, 1},

stopping at .
n
N ==m'm{n: U, <A (ZX;-) /A}

[==1

Set

To compute E[N] we need the result, known as Wald’s equation, which states that
if Xy, X2,... ae independent and identically distributed random variables that
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are observed in sequence up to some random time N then

N
E [Z X,-] = E[N]E[X]
i=]

More precisely let X, X, . .. denote a sequence of independent random variables
and consider the following definition.

Definition 11.1 Aninteger-valued random variable N is said tobe a stopping
time for the sequence X1, X,... if the event {N = n} is independent of
Xn_{..}, Xn+2, ..dforalln = ]., 2, caes

Intuitively, we observe the X,s in sequential order and N denotes the number
observed before stopping. If N = n, then we have stopped after observing
X1, ..., Xy and before observing X1, Xp12,...foralln =1,2,....

Example 11.6 LetX,,n=1,2,..., be independent and such that
PX,=0}=PX,=1}=4, n=12,...
If we let
N =min{n: X; +---+ X,, = 10}

then N is a stopping time. We may regard N as being the stopping time of an
experiment that successively flips a fair coin and then stops when the number of
heads reaches 10. &

Proposition 11.4 (Wald’s Equation) If X}, X5, ... are independent and iden-

tically distributed random variables having finite expectations, and if N is a
stopping time for Xy, X», ... such that E[N] < oo, then

N
E [Z Xn] = E[N]E[X]
i

Proof Letting

we have that
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Hence,

N o0 o0
E [ X,;] =E [Z ann] =Y ElXnl] (11.3)
i n==1

== n=l

However, I, = 1if and only if we have not stopped after successively observ-
ing X1,..., Xp—1. Therefore, I, is determined by Xi,..., Xp—1 and is thus
independent of X,,. From Equation (11.3) we thus obtain

nz= n=1

: N 00
N E [ Xn] =Y E[X;1E{L:]
1

= E[X] )  EU]

n=I

- = E[X1E [i Inl

=]

= E[X]E[N]

Returning to the hazard rate method, we have that

-
-+

N
S = ZX;'
[=}

As N = min{n: U, < A(Q_] X:)/A} it follows that the event that N = is
independent of Xp41, Xn42s .+ - Hence, by Wald’s equation,

E[S]= E[N]E[X;]
_ E[N]
Y

or
E[N] = rE[S]

where E[S] is the mean of the desired random variable.
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11.3. Special Technigues for Simulating Continuous
Random Variables

Special techniques have been devised to simulate from most of the common
continuous distributions. We now present certain of these.

11.3.1. The Normal Distribution

Let X and Y denote independent standard normal random variables and thus have
the joint density function

1
fx,y) = o eq._(xzﬂ,z)/z’ —00 <X <00, ~-00 <Y < 00
T

Consider now the polar coordinates of the point (X,Y). As shown in
Figure 11.1,

R* =Xx%417?
® =tan"lV/X

To obtain the joint density of R? and ©, consider the transformation

d=x2+y2, 6 =tan""1y/x

AZ= X24 v
O =tan Y/X
X, "
s |
Y
5 |
X i

Figure 11.1.
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The Jacobian of this transformation is

od ad
dx dy
=120 a0
dx dy
2x 2y x y
14+y2/x2 \ 22 ) 1+y?/x* \x 24yl 24yl

Hence, front Section 2.5.3 the joint density of R? and © is given by

1 1
fR2 @(d 9) J’[ ~d/2

2
1 1
> m—.e“d/zw—, D<cd<o0,0<8 <2n
. 2 27

Thus, we can conclude that R? and © are independent with R? having an
exponential distribution with rate 5 L and © being uniform on (0, 27).

Let us now go in reverse from the polar to the rectangular coordinates. From
the precedmg if we start with W, an exponential random variable with rate —2:
(W plays the role of R?) and with V, independent of W and uniformly distributed
over (0, 27_:) (V plays the role of ®) then X = JWeosV,Y = /Wsin V will
be independent standard normals. Hence using the results of Example 11.3 we see
that if U and U, are independent uniform (0, 1) random numbers, then

X = (-2log U2 cos(2n Ua), (11.4)
Y = (—2log U2 sin2n Us) '

are independent standard normal random variables.

Remark The fact that X? + Y2 has an exponential distribution with rate % is
quite interesting for, by the definition of the chi-square distribution, X 24+Y%hasa
chi-squared distribution with 2 degrees of freedom. Hence, these two distributions
are identical.

The preceding approach to generating standard normal random variables is
called the Box—Muller approach. Its efficiency suffers somewhat from its need
to compute the preceding sine and cosine values. There is, however, a way to get
around this potentially time-consuming difficulty. To begin, note that if U/ is uni-
form on (0, 1), then 2U is uniform on (0, 2), and so 2U — 1 is uniformon (-1, 1).
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(—1! 1)/
\ W/?
(1, ~1) (1, =1)

. 250, 0)
X= V.!, VE)

(1, )

R
v2

Figure 11.2.

Thus, if we generate random numbers [/ 1 and Uy and set

Vi =2U; -1,
Vo =20 — 1

then (V1, V2) is uniformly distributed in the square of area 4 centered at (0, 0) (see
Figure 11.2).

Suppose now that we continually generate such pairs (V;, V5) until we obtain
one that is contained in the circle of radius 1 centered at (0, 0)——that is, until
(V1, Vo) is such that V12 -+ sz < 1. It now follows that such a pair (Vi, Vo) is
uniformly distributed in the circle. If we let R, © denote the polar coordinates of
this pair, then it is easy to verify that R and @ are independent, with 22 being
uniformly distributed on (0, 1), and & uniformly distributed on (0, 2m).

Since

_ _ %
sin® = Vy/R = 2
JVE+VE
._ _ 1%
cos® = V;/R = !

[2
Vi + Vg

itfollows from Equation (11.4) that we can generate independent standard normals
X and Y by generating another random number U/ and setting

X = (=2log U)'/*Vy/R,
Y = (=2log U)2vy/R
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In fact, since (conditional on vZ4+ Vi <D R2 is uniform on (0, 1) and is
independent of ®, we can use it instead of generating a new random number U;

thus showing that
_ - —2log S
X = (=2log ROV?Vi/R = _m-u-;—’—g--—vl,

_ _ 2708
y — (—2log RO)Y?Va/R = --—-—§5-Vz

are independent staridard normals, where

- o

S=R*=Vl+V;

Summing ilp, we thus have the following approach to generating a pair of
independent standard normals:

Step 1: Genperate random numbers Uy and Us.

Step2: SetVi=2U1—1, V2 =2U2—1, 5= VE+ V2.
Step 3: I § > 1, return to step 1.

Step 4:  Return the independent unit normals

—2log$§ —2log S
. X = ) ————Vi, Y = . ———V
' \/ S Vi N, 3 2

The preceding is called the polar method. Since the probability that a random
point in the square will £all within the circle is equal to /4 (the area of the circle
divided by the area of the square), it follows that, on average, the polar method will
require 4/ = 1.273 iterations of step 1. Hence, it will, on average, require 2.546
random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications
to generate 2 independent standard normals.

11.3.2. The Gamma Distribution

To simulate from a gamma distribution with parameters (72, A), where n is an
integer, we use the fact that the sum of # independent exponential random variables
each having rate A has this distribution. Hence, if Uy, ..., U, are independent
uniform (0, 1) random variables,

1 n 1 n
X= X;k}g Ui = Y log (II;Il U,')

has the desired distribution.
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When 1 is large, there are other techniques available that do not require so many
random numbers. One possibility is to use the rejection procedure with g(x) being
taken as the density of an exponential random variable with mean n/A (as this
is the mean of the gamma). It can be shown that for large n the average number
of iterations needed by the rejection algorithm is e[(n — 1)/27]'/2. In addition,
if we wanted to generate a series of gammas, then, just as in Example 11.4, we
Can arrange things so that upon acceptance we obtain not only a gamma random
variable but also, for free, an exponential random variable that can then be used
in obtaining the next gamma (see Exercise 8).

11.3.3.  The Chi-Squared Distribution

The chi-squared distribation with 5 degrees of freedom is the distribution of
xf = Z% +-o Z,% where Z;,i = 1,...,n are independent standard normals,
Using the fact noted in the remark at the end of Section 3.1 we see that Z% + Z%

has an exponential distribution with rate % Hence, when # is even—say n = 2k-—

’ Xizk has a gamma distribution with parameters (k, %). Hence, —2 log(ﬂf-;l Up)
has a chi-squared distribution with 2k degrees of freedom. We can simulate a
chi-squared random variable with 2k + 1 degrees of freedom by first simulating a
standard normal random variable Z and thep adding Z? to the preceding. That is,

k
X22k+1 =Z*~2log (H Uz’)

f=]

where Z, Uy, ..., U, are independent with Z being a standard normal and the
others being uniform (0, 1) random variables.

11.3.4. The Beta (n, m) Distribution

The random variable X is said to have a beta distribution with parameters n,mif
its density is given by
(n+711 - 1)! n—1 —1
= I —x)ym=t 0 1
T8 = im0 sr<

One approach to simulating from the preceding distribution is to let
Uy, ..., Unm—1 be independent uniform (0, 1) random variables and consider
the nth smallest value of this set—call it Umy). Now Uy will equal x if, of the
It +m — 1 variables,

(i) n — 1 are smaller than X,
(ii) one equals x,
(it)) m — 1 are greater than x.
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Hence, if the 2+ m — 1 uniform random variables are partitioned into three subsets
of sizes n — 1, 1, and m — 1 the probability (density) that each of the variables
in the first set is less than x, the variable in the second set equals x, and all the
variables in the third set are greater than x is given by

(P{U < x)" L fu@)(P{U > x)" L =211 — )"

Hence, as there are (n +m — 1)l/(n — Dim — 1)! possible partitions, it follows
that Uy is beta with parameters (z, m). ,

Thus, one way to simulate from the beta distribution is to find the nth smallest
of a set of n + m — 1 random numbers. However, when n and m are large, this
procedure is nét particularly efficient.

For another approach consider a Poisson process with rate 1, and recall that given
Sp-m» the time of the (n + m)th event, the set of the first n +m — 1 event times
is distributed. independently and uniformly on (0, Sp1m)- Hence, given Sy, the
nth smallest of the first 7 4 m — 1 event times—that is S,—is distributed as the
nth smallest of a set of n + m — 1 uniform (0, S;;4,») random variables. But from
the preceding we can thus conclude that S, /S, has a beta distribution with
parameters (n, m). Therefore, if Uy, ..., Uypm are random numbers,

—log[Ticy Ui
—log [T Ui

is beta with parameters (72, m)

By writing ﬂ';e preceding as ..

—logllicy Ui
—log[]] Ui —log Hgf{l U;

we see that it has the same distribution as X /(X +Y) where X and ¥ are independent
gamma random variables with respective parameters (12, 1) and (m, 1). Hence,
when 7 and m are large, we can efficiently simulate a beta by first simulating two
gamma random variables.

11.3.5. The Exponential Distribution—The Von Neumann
Algorithm

As we have seen, an exponential random variable with rate 1 can be simulated
by computing the negative of the logarithm of a random number. Most computer
programs for computing a logarithm, however, involve a power series expansion,
and so it might be useful to have at hand a second method that is computationally
casier. We now present such a method due to Von Neumann.
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To begin let U, Ua,...be independent uniform (0, 1) random variables and
define N, N > 2, by

N = min{n: U 20> 2 Up—1 < Uy)

That is, N is the first random number that is greater than its predecessor. Let us
now compute the joint distribution of N and 7 1

1
P{N > n,U; < y) :/ P{N > n, U; < y|U; = x}dx
0 .

JJ
x/ P{N > n|U; = x}dx
0

Now, given that U; = x, N will be greater than 1 if x 22Uz - 20U, o,
equivalently, if

(a) U; < x, I=2,....n
and
(b) U2>"'>Ull

Now, (a) has probability x"~! of occurring and given (a), since all of the (n — !
possible rankings of Us,...,U, are equally likely, (b) has probability 1/(n — 1)!
of occurring. Hence,

Pt
P{N > n|U; = x} = =D
and so
y xn~—1 yn
P{N Ui €yl = = —
W>n Ui <y) fo -1
which yields that

P{N‘:n,UISy}=P{N>ﬂ-“1,U1Sy}~P{N>fl,U1<y}

_ yn-—l B Zi
n-D! n
Upon summing over all the even integers, we see that
2 3 4

N y oy
P{N iseven, Ulgy}hy_§?+§_g.“z_._...
=]—e7? (11.5)

We are now ready for the following algorithm for generating an exponential
random variable with rate 1.
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Step 1: Generate uniform random numbers Uy, Uz, ... stopping at N =
min{n: Uy 2 --- 2 Up—1 < Unl.

Step 2: If N is even accept that run, and go to step 3. If NV is odd reject the
run, and return to step 1.

Step 3:  Set X equal to the number of failed runs plus the first random number
in the successful run.

To show that X is exponential with rate 1, first note that the probability of a
successful run is, from Equation (11.5) with y = 1,

P{Niseven} =1 el

. Now, in order for X to exceed x, the first [x] runs must all be unsuccessful and
the next run must either be unsuccessful or be successful but have Uy > x — [x]
(where [x] is the largest integer not exceeding x). As

P{iN even, Uy > y} = P{N even} — P{N even, U; <}
; mlmeﬂim(l—g“}’):e“}’_‘_eml
we see that
PIX > x)=e B 4D — g7l ="

which yields the result.

LetT dené'ge the number of trials needed to generate a successful run. As each
trial is a success with probability 1 - e~ it follows that T is geometric with means
1/(1 — e~ 1). If we let N; denote the iumber of uniform random variables used on
the ith run, i > 1, then T (being the first run for which N; is even) is a stopping
time for this sequence. Hence, by Wald’s equation, the mean number of uniform
random variables needed by this algorithm is given by

T
E [Z N} = E[N]E[T]
=]

.

Now,

E[N] = Z P{N > n}

n=0

oQ
=1+ P{Ui =2 Un
n=1

o0
ml—}-Zl/ni:e

==
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and so

T
e
E[ZN,-J =Ty M43
i=1}

Hence, this algorithm, which computationally speaking is quite easy to perform,
requires on the average about 4.3 random numbers to execute.

11.4. Simulating from Discrete Distributions

All of the general methods for simulating from continuous distributions have

analogs in the discrete case. For instance, if we want to simulate a random variable
X having probability mass function

P =xj=F;,  j=1,..., Y p=1
j

We can use the following discrete time analog of the inverse transform technique.

1o simulate X for which P{X =x i} =P;
let U be uniformly distributed over 0, 1), and set

[ x1, ifU < P
X7, ifP1<U<P1+P2

- j—1 J
xj, ifZP;<U<ZP;
1 i

As,

=1 J
PiX=x}=P1Y P<U<) p}=p
1 1
we see that X has the desired distribution.

Example 11.7 (The Geometric Distribution) Suppose we want to simulate X
such that

PX=il=pA-p)~t, i1
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As
j=1
ZP{X::‘}:1-—P{X>j--1}:1....(1_.p)1—~1
i=1

we can simulate such a random variable by generating a random number U and
then setting X equal to that value j for which

1—-(1-p)y! <U<l—=(@1-=p)
or, equivalently, for which
Q=pf <1-U<@-pY"

As 1 — U has-the same distribution as U, we can thus define X by

X = min{j: (1——p)f<U}=min{f:j>

log U :\
=1+
. [bg(l — D)

As in the continuous case, speciak simulation techniques have been developed for
the more common discrete distributions. We now present certain of these.

log U }
log(1 — p)

Example 11.8 (Simulating a Binomial Random Variable) A binomial (12, p)
random variable can be most easily simulated by recalling that it can be expressed
as the sum of n independent Bernoulli random variables. That is, if Ui, .--» Un
are independent uniform (0, 1) variables, then letting

X, = 1, ifU;<p
10, otherwise

 follows that X = Y7, X; is a binomial random variable with parameters 1
and p. ~

One difficulty with this procedure i that it requires the generation of n random
aumbers. To show how to reduce the number of random numbers needed, note
first that this procedure does not use the actual value of a random number U but
only whether or not it exceeds p. Using this and the result that the conditional
distribution of U given that U < p is uniform on (0, p) and the conditional -
distribution of U giventhat U > p1s uniform on (p, 1), we now show how we can
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simulate a binomial (1, p) random variable using only a single random number:

Step 1: Leta =1/p, 8 =1/(1 - p).

Step2:  Setk =0.

Step 3:  Generate a uniform random number IJ.

Step 4:  If k = n stop. Otherwise reset k to equal k + 1.

Step5: U < pset X; =1 and reset U to equal aU. IfU > pset X, = 0
and reset U to equal B(U — P). Return to step 4.

This procedure generates X, ..., X, and X = 2 =1 X; is the desired random
variable. It works by noting whether U < p or Uy > p; in the former case it
takes Uy to equal U/ p, and in the latter case it takes Uk+1 to equal (U — p)/
I-p)* B

Example 11.9 (Simulating a Poisson Random Variable) To simulate a Pois-
son random variable with mean A, generate independent uniform (0, 1) random
variables U;, Us, ... stopping at

H
N—i—lzmin[n: H U; <e"}“}
i=]

The random variable N has the desired distribution, which can be seen by noting
that

N = max {n : Z-—Iog U; <l}

f=]

But —log U; is exponential with rate 1, and so if we interpret —log U;, [ > 1, as
the interarrival times of a Poisson process having rate 1, we see that N = N ()
would equal the number of events by time A. Hence & is Poisson with mean A.

When A is large we can reduce the amount of computation in the preceding
simulation of N (1), the number of events by time A of a Poisson process having
rate 1, by first choosing an integer m and simulating S,,,, the time of the mth event
of the Poisson process and then simulating N()) according to the conditional
distribution of N () given S,,. Now the conditional distribution of N () given S,,,
is as follows:

NSy =5 ~ m + Poisson(h — 5), ifs <A

A
N(A.)tSn; =5~ Biﬂomi&l (’Tl - 1, ;) » if 8 > A.

where ~ means “has the distribution of.” This follows since if the mth event occurs
attimes, where s < A, then the number of events by time A is m plus the number of

*Because of computer round-off errors, a single random number should not be continuously used

©  whenn is large.
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events in (s, A). On the other hand given that S, = s the set of times at which the
first m — 1 events occur has the same distribution as a set of m — 1 uniform (0, s)
random variables (see Section 5.3.5). Hence, when A < s, the number of these
which occur by time A is binomial with parameters 7 — 1 and A/s. Hence, we can
simulate NV (L) by first simulating Sy, and then simulate either P(A—Su), a Poisson
random variable with mean A — S;; when Sy, < A, or simulate Bin(n — 1, A/Sm).
a binomial random variable with parameters m — 1, and A/ S, when Sy > A5 and
then setting

[+ PG=Sw), i Sm<hA
N = {B'm(m S, A/Sw). i Sw>A

In the preceding it has been found computationally effective to let m be approx-
imately %}L. Of course, S, is simulated by simulating from a gamma (m, A)
distribution via_an approach that is computationally fast when m is large (see
Section 11.3.3). H

There aré also rejection and hazard rate methods for discrete distributions but
we leave their development as exercises. However, there is a technique available
for simulating finite discrete random variables—called the alias method—which,
though requiring some setup time, is very fast to implement.

11.4.1. THe Alias Method

In what follows, the quantities P,-P®, Q®), k < n — 1 will represent proba-
bility mass functions on the integers 1, 2. ..., n—that is, they will be n-vectors
of nonnegative numbers sumiming to 1. In addition, the vector P® will have at
most & nonzero components, and each of the Q® will have at most two nonzero
components. We show that any probability mass function P can be represented
as an equally weighted mixture of # — 1 probability mass functions Q (each hav-
ing at most two nonzero components). That is, we show that for suitably defined
QW, ..., Qu D, P canbe expressed as

P= 1 ZQUc) (11.6)

As a prelude to presenting the method for obtaining this representation, we will
need the following simple lemma whose proof is left as an exercise.

lemma 11.5 LetP ={P;, i =1,...,n}denote a probability mass function,
then

(a) there existsani, 1 <i<mn, such that P; < 1/(n — 1), and

(b) for this 7, there exists a j, j i, such that P; + Piz21/(n— D.
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Before presenting the general technique for obtaining the representation of
Equation (11.6), let us illustrate it by an example.

Example 11.10 Consider the three-point distribution P with Po= I
Po=1 p = I%' We start by choosing i and j such that they satisfy the condi-
tions of Lemma 11.5. As P < % and P; + P, > %-, We can work with i = 3 and
J = 2. We will now define a 2-point mass function Q1) putting all of its weight
on 3 and 2 and such that P wi]] be expressible as an equally weighted mixture
between Q) and a second 2-point mass function Q@ . Secondly, all of the mass
of point 3 will be contained jn QW. As we will have

Pj = % (Qf,-” + Qﬁ-z)) , i=1273 (11.7)

and, by the preceding, ng) 1S supposed to equal 0, we must therefore take

Hence, we have the degired Tepresentation in this cage. Suppose now that the
original distribution wasg the following 4-point mass function:

1 3
; Py =g, Pr=

B

P = F, Py =

Now, P; < L and P34 P > 1. Hence our initia] 2-point mass function—Q1)__
will concentrate on points 3 and 1 (giving no weights to 2 and 4). As the final
representation will give weight 2t0 QW andin addition the other QU), j = o, 3,

will not give any mass to the value 3, we must have that

Hence,

Also, we can write
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where PO, to satisfy the preceding, must be the vector

Note that P®) gives no mass to the value 3. We can now express the mass function
P® as an equally weighted mixture of 2-point mass functions Q@ and Q®, and
we will end up with

|

P=1Q®W 42 (%Q@) + %Q(s))

=1 (an +0Q@ 4 Q(s))
(We leave it ?;S an exercise for you to fill in the details.)

The preceding example outlines the following general procedure for writing the
n-point mass function P in the form of Equation (11.6) where each of the Q®
are mass functions giving all their mass to at most 2 points. To start, we choose i
and j satisfying the conditions of Lemma 11.5. We now define the mass function
Q) concentrating on the points i and j and which will contain all of the mass

for point i by noting that, in the representation of Equation (11.6), Q,@ = 0 for
k=2,...,n~=1,implying that . _

o =@ —-1PF, and so Q?) =1-@n—-DF
Writing

= Zpt—D (11.8)

where PO~ 1 represents the remaining mass, we see that

Pi(n‘._l)zoi
—1 1 n—1 1
POV 2 (P MY 2= (p 4Py —— ],
Y n—2\""7 nw—lQ-’ n—2 Y n—1
-1
p"—l}:me, k£ iorj
L n_zk ¥ 1 J

That the foregoing is indeed a probability mass function is easily checked—for

instance, the nonnegativity of P}"“l) foltows from the fact that j was chosen so
that P; + P; =2 1/(n — 1).
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We may now repeat the foregoing procedure on the (n — 1)-point probability
mass function P¥~1) tg obtain

po-D 1 oo =356
n-—2 n—2
and thus from Equation (1 1.8) we have
P=—' QWi L g0, =300
n—1 n—1 n—1

We now repeat the procedure on P2 and so on until we finally obtain

1
n—1

P=

(@04 qu-1)

In this way we are able to represent P as an equally weighted mixture of 7, — 1
2-point mass functions. We can pow easily simulate from P by first generating a
random integer NV equally likely tobe either 1,2, ..., n — 1. If the resulting value
N is such that Q™) puts positive weight only on the points i) and jy, then we
can set X equal to iy if a second random number is less than Qfﬁ ) and equal to
Jn otherwise. The random variable X will have probability mass function P. That
is, we have the following procedure for simulating from P.

Step 1:  Generate U; and set N = | +[(n — U]
Step 2:  Generate U, and set

x=line U< Qi(ﬁ)
N, otherwise

Remarks (i) The preceding is called the alias method because by arenumbering
of the Qs we can always arrange things so that for each k, Q,ﬁk) > 0. (That is, we
can arrange things so that the kth 2-point mass function gives positive weight to
the value k.) Hence, the procedure calls for simulating N, equally likely to be
1,2,...,n — 1, and then if N = kit either accepts k as the value of X, or it
accepts for the value of X the “alias” of k (namely, the other value that Q® gives
positive weight).

(i) Actually, it is not necessary to generate a new random number in step 2.
Because N — 1 is the integer part of (n — DU, it follows that the remainder
(n—1DUL — (N —1)is independent of U; and is uniformly distributed in O, .
Hence, rather than generating a new random number Uz in step 2, we can use
m—-NU;~(N—-1)= (n—-DU; - [(n — DUl
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Example 11.1T Letusreturn to the problem of Example 11.1 which considers
a list of n, not necessarily distinct, items. Each item has a value—uv (i) being the
value of the item in position i—and we are interested in estimating

n

=Y v(i)/m(i)

i=l]

where m (i) is the number of times the item in position [ appears on the list. In
words, v is the sum of the values of the (distinct) items on the Iist.
To estimate v, note that if X is a random variable such that

-P{X:i}zv(i)/zv(j), i=1,...,n
1

then

L Enmen) = 22000 / >0

Hence, we can estimate v by using the alias (or any other) method to generate

independent random variables X1, ..., X; having the same distribution as X and
then estimating v by
1 n k
. v JZ; v(j)Z; 1/m(X;)
=i ==

11.5. Stochastic Processes

We can easily simulate a stochastic process by simulating a sequence of random
variables. For instance, to simulate the first ¢ time units of a renewal process
having interarrival distribution ¥ we can simulate independent random variables
X1, X2,...having distribution F, stopping at

N=mn{n: X+ ---+ X, > ¢}

The X;,i{ > 1, represent the interarrival times of the renewal process and so the
preceding simulation yields V — 1 events by time t—the events occurring at times
X, Xp+ X0, 0, X1+ + Xy-1. ”

Actually there is another approach for simulating a Poisson process that is quite
efficient. Suppose we want to simulate the first # time units of a Poisson process
having rate A. To do so, we can first simulate N (¢), the number of events by t,
and then use the result that given the value of N(¢), the set of N(t) event times
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N (s) = number of Ui: tU; < 5

and so to compute the function N (8),s < ¢, it is best to first order the values
i»{ = 1,..., 1 before multiplying by . However, in doing so you should not

11.5.1. Simulating a Nonhomogeneous Poisson Process
We now present three methods for simulating a nonhomogeneous Poisson process

having intensity function Ar), 0< ¢t < o0,

*One queueing model that assumes g nonhomogeneous Poisson arrival process and is mathematically
tractable is the infinite server mode].
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Method 1. Sampling a Poisson Process

To simulate the first 7 time units of a nonhomogeneous Poisson process with
intensity function A(¢), let A be such that

A(R) <A foral: < T

Now as shown in Chapter 5, such a nonhomogeneous Poisson process can be
generated by a random selection of the event times of a Poisson process having
rate A. That is, if an event of a Poisson process with rate A that occurs at time ¢ is
counted (independently of what has transpired previously) with probability A(2)/A
then the process of counted events is a nonhomogeneous Poisson process with
intensity functién A(¢), 0 < t < T. Hence, by simulating a Poisson process and
then randomly counting its events, we can generate the desired nonhomogeneous
Poisson process. We thus have the following procedure: ‘

Generate independent random variables X1, Uy, X2, Ua, ... where the X; are
exponential Wiﬂ} rate A and the U; are random numbers, stopping at

n
szin{n: ZX,- >T}

=]

Nowlet,forj=1,...,N —1,

Y

i
1, i U; gk(zx,-) /A
- i=1

0, otherwise

Ij =

and set
J={j:1; = 1}

Thus, the counting process having events at the set of times Do X jelJ)
constitutes the desired process.

The foregoing procedure, referred to as the thinning al gorithm (because it “thins”
the homogeneous Poisson points) will clearly be most efficient, in the sense of hav-
ing the fewest number of rejected event times, when A(t) is near A throughout the
interval. Thus, an obvious improvement is to break up the interval into subintervals
and then use the procedure over each subinterval. That is, determine appropriate
values k,0 < t] <tp <--- <ty <T, Ay, .. -y Agr1, such that

Als) < A when t;_; <s <t i=1,...,k+1 (wherefp = 0, the1 =T)
(11.9)
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Now simulate the nonhomogeneous Poisson process over the interval (.-, ;) by
generating exponential random variables with rate A; and accepting the generated
event occurring at time 5, 5 € (1, ;), with probability A(s)/A;. Because of the
memoryless property of the exponential and the fact that the rate of an exponential
can be changed upon multiplication by a constant, it follows that there is no loss
of efficiency in going from one subinterval to the next. In other words, if we are
at f €[t;1, 1;) and generate X, an exponential with rate A;, which is such that
!+ X > t; then we can use A;[X — (#; — £)1/Ai41 as the next exponential with
rate A;y1. Thus, we have the following algorithm for generating the first ¢ time
units of a nonhomogeneous Poisson process with intensity function A(s) when the
relations (11.9) are satisfied. In the algorithm, ¢ will represent the present time and
I the present interval (that is, / = { when -] St <)

Stepl: t=0,I=1.

Step 2:  Generate an exponential random variable X having rate A;.

Step3: Ift+X < i, resett =+t + X, generate a random number U/, and
accept the event time ¢ if U < A(¢)/A;. Return to step 2.

Step4:  (Step reached if £ + X > ). Stop if I = k + 1. Otherwise, reset
X=X —t/+0A1/Ajp1. Alsoresett = t; and | = J + 1, and go
to step 3.

Suppose now that over some subinterval (ti—1, &;) it follows that A; > 0 where
A; = infimum {A(s): t;1 < 5 < £;)

In such a situation, we should not use the thinning algorithm directly but rather
should first simulate a Poisson process withrate A; over the desired interval and then
simulate a nonhomogeneous Poisson process with the intensity function A(s) =
A(s) — A; when s € (1, ;). (The final exponential generated for the Poisson
process, which carries one beyond the desired boundary, need not be wasted but
can be suitably transformed so as to be reusable.) The superposition (or, merging)
of the two processes yields the desired process over the interval. The reason for
doing it this way is that it saves the need to generate uniform random variables
for a Poisson distributed number, with mean A; {ti — t;1) of the event times. For
instance, consider the case where

A(s) = 10 4+, 0<s<1

Using the thinning method with A = 11 would generate an expected number of
11 events each of which would require a random number to determine whether
or not to accept it. On the other hand, to generate a Poisson process with rate 10
and then merge it with a generated nonhomogeneous Poisson process with rate
A(s) =s, 0 <5 < 1, would yield an equally distributed number of event times
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but with the expected number needing to be checked to determine acceptance being
equal to 1. _
Another way to make the simulation of nonhomogeneous Poisson processes

more efficient is to make use of superpositions. For instance, consider the process
where ' .

exp{t®}, O0<t<15

A(t) = { exp{2.25}, 15 <t <25
exp{(4 —1)?}, 25<t<4

A plot of this intensity function is given in Figure 11.3. One way of simulating
this process up to time 4 is to first generate a Poisson process with rate 1 over this
interval; then generate a Poisson process with rate e — 1 over this interval and
accept all events in (1, 3) and only accept an event at time ¢ which is not contained
in (1, 3) with probability [A(z) — 1]/(e — 1); then generate a Poisson process with
rate e>2> — e over the interval (1, 3), accepting all event times between 1.5 and 2.5
and any event time ¢ outside this interval with probability [A(z) — e]/(e*%> — e).
The superposition of these processes is the desired nonhomogeneous Poisson pro-
cess. In other words, what we have done is to break up A(¢) into the following
ponnegative parts:

A(t) = A1) +A2(t) + A3(), O<t<4
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where

r@) =1,

fk(t)—~1, O<t <1
lz(l‘):<e-~—1, l<t<3
A(E) — 1, 3<t<4

(A(t) —e, l<r<15

225 _
A3(t)x<e e, 15<t <25
A(t) — e, 25<t<3
0, 3<t<4

and where the thinning algorithm (with a single interval in each case) was used to
simulate the constituent nonhomogeneous processes.

F(s) = P{time < s|counted}
P{time < s, counted}
- P {counted}
fOT Pltime < s, counted|time = x} dx/T
h P {counted}

T
Floy =28 o T,  m(T) =f A(s) ds (11.10)
m(T) 0
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Example 11.12 If A(s) = cs, then we can simulate the first 7' time units of
the nonhomogeneous Poisson process by first simulating N(T), a Poisson random
variable having mean m(T) = [T csds = CT?/2, and then simulating N(T)
random variables having distribution

52
F(S)=":Z;"§, O<s<T

Random variables having the preceding distribution either can be simulated by
use of the inverse trapsform method (since F e T+/U) or by noting that F
is the distribution function of max(7 Uy, TUz) when Uj and U, are independent
random numbers. &

If the distribution function specified by Equation (11.10) is not easily invertible,
we can always simulate from (11.10) by using the rejection method where we
either accept oreject simulated values of uniform (0, T) random variables. That
is, let h(s) = 1/T,0 <s < T. Then

f(s) _ TA(s) < AT

= < =C
h(s) m(TY ~ m(T)

”

where Aisa bé}lnd on A(s), 0 < s < T. Hence, the rejection method is to generate
random numbers U; and Us then actept TU | if

_ fauy
2R TS
Ch(TUy)

or, equivalently, if

AMTUY)
A

S

Method 3. Simulating the Event Times

The third method we shall present for simulating a nonhomogeneous Poisson
process having intensity function 1(2), £ 2> 0is probably the most basic approach—
namely, to simulate the successive event times. Solet X1, X3, ...denote the event
times of such a process. As these random variables are dependent we will use the
conditional distribution approach to simulation. Hence, we need the conditional
distribution of X; given X1, ..., Xi-1.
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To start, note that if an event occurs at time x then, independent of what
has occurred prior to x, the time until the next event has the distribution F;
given by

Fe@t) = P{0 events in (x, x + ¢)|event at x)

= P{0Oeventsin (x, x + 1)} by independent increments

t
=—exp{—~/ A(x+y)dy}
0

Differentiation yields that the density corresponding to ];"Jr is

t
@) =Mx +1)exp {“fo Ax +y) d}’}

implying that the hazard rate function of F, is

Ao
Fo(t) = 70 =Alx +1)

We can now simulate the event times X, Xo, ... by simulating X | from Fy; then
if the simulated value of X is x|, simulate X 2 by adding x; to a value generated
from Fy,, and if this sum is x, simulate X 3 by adding xy to a value generated
from Fy,, and so on. The method used to simulate from these distributions should
depend, of course, on the form of these distributions. However, it is interesting
to note that if we let A be such that A(t) < A and use the hazard rate method to
simulate, then we end up with the approach of Method 1 (we leave the verification
of this fact as an exercise). Sometimes, however, the distributions F, can be easily
inverted and so the inverse transform method can be applied. '

Example 11.13  Suppose that A(x) = 1/(x + a), x > 0. Then

t x+a4t
fl(x+y) dy = log (w————tm)
0 x+a
Hence,
; t
F@=1-—12 _
x+a+t X-+a+1t
and so

Fol ) = (x + @) —

l—u
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We can, therefore, simulate the successive event times X1, X», ... by generating
Uy, U, ... and then setting

aly
X = ,
S 7
Us
X7 = (X X
2 (1+a)1dU2+ 1
and, in general,
Uj
Xi=WXj-1+a) + X1, j=2
1-U;

11.5.2. Simulating a Two-Dimensional Poisson Process

A point process consisting of randomly occurring points in the plane is said to be
a two-dimen’sional Poisson process having rate A if

(a) the number of points in any given region of area A is Poisson
distributed with mean AA; and
(b) the numbers of points in disjoint regions are independent.

For a given fixed point O in the plane, we now show how to simulate events
occurring according to a two-dimensional Poisson process with rate A in a circular
region of radius r centered about O. Let R;, i > 1, denote the distance between O

and its 7th nearest Poisson point, and let C (a) denote the circle of radius a centered
at O. Then ..

P {JIR% > b} =P {Ri > \/—;l:‘-} =P {no poinfsin C(\/]}—/;)} — oM

Also, with C(az) — C(ay) denoting the region between C (az) and C(a1):

P {JTR% - JTR% > blRl = r}

=P {Rz > \/(b-i—ftrz)/rrIRl = r]

=P [no points in C (\/(b + frrz)/n') —C@)|R1 = r}

= P [no points in C (\/(b + ?f;‘z)/ft) — C'(r)] by (b)

— oM

In fact, the same argument can be repeated to obtain the following.
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Proposition 11.6 Wi Ry =0,
R} —7RY i1,
are independent exponentials with rate ).

In other words, the amount of area that needs to be traversed to encompass a
Poisson point is exponential with rate A. Since, by symmetry, the respective angles
of the Poisson points are independent and uniformly distributed over (0, 27), we

Step I:  Generate independent exponentials with rate 1, X 1, X2,..., stop-
ping at -

N:min{n: X1+'”+Xn >r2J

ATT

Step2: XN = 1, stop. There are no points in C(r). Otherwise, for i =
I...,N—1,set : :

Ri*\/(X1+--'+X£)/1?I

Step 3:  Generate independent uniform (0, 1) random variables [J ooy Un—q.
Step 4 Return the N — 1 Poisson points in C(r) whose polar coordinates are

(R;, 27 Uy), I=1,....,.N~-1

The preceding algorithm requires, on average, 1 - Azrr2 €xponentials and an
equal number of uniform random numbers. Another approach to simulating points
in C(r) is to first simulate N , the number of such points, and then use the fact
that, given N, the points are uniformly distributed in ¢ (r). This latter procedure
requires the simulation of NV, a Poisson random variable with mean A r?; we must
then simulate N uniform points on C(r), by simulating R from the distribution
Fg(a) = a®/r? (see Exercise 25) and 6 from uniform (0, 27 ) and must then sort
these NV uniform values in increasing order of R. The main advantage of the first
procedure is that it eliminates the need to sort.

The preceding algorithm can be thought of as the fanning out of a circle centered
at O with a radius that expands continuously from 0 to . The successive radii
at which Poisson points are encountered is simulated by noting that the addi-
tional area necessary to encompass a Poisson point is always, independent of the
past, exponential with rate A. This technique can be used to simulate the process
over noncircular regions. For instance, consider a nonnegative function g(x), and
Suppose we are interested in simulating the Poisson process in the region between
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/\// "

Figure 11.4.

the x-axis and g with x going from 0 to T (see Figure 11.4). To do so we can start
at the left-hand end and fan vertically to the right by considering the successive
areas [y g(xYdx. Now if X3 < Xz < -~ denote the successive projections of
the Poisson poiiits on the x-axis, then analogous to Proposition 11.6, it will fol-
Jow that (with Xo = 0)  [5 g(x)d¥,i > 1, will be independent exponentials
with rate 1. Hence, we should simulate €1, €2, .- -, independent exponentials with
rate 1, stopping at

T
- N=min{n:e;+---+én>kf g(x)dx}
. 0 .

-
L]

and determine X1, ..., XN—1 bY
X1
)Lf gx)dx = ey,
0

X2
A f o(x)dx = &,
Xy

.

XN—1
lf g(x) dx = €n-1

Xy-2

If we now simulate Uj,...,U n—1—independent uniform (0, 1) random
sumbers—then as the projection on the y-axis of the Poisson point whose
x-coordinate is X;, is uniform on (0, g(X 1)), it follows that the simulated Poisson
points in the interval are (X;, Uig(X), i=1,..., N —1.

Of course, the preceding technique is most useful when g is regular enough so
that the foregoing equations can be solved for the X;. For instance, if g(x) =y
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(and so the region of interest is a rectangle), then

Xinel+"'+ef, i=1,....N—1
Ay

and the Poisson points are

(Xi, yUi), i=1,....,N—1

11.6. Variance Reduction Techniques

Let X3, ..., X, have a given joint distribution, and suppose we are interested in
computing

0= ElgX1,...,X)]

where g is some specified function. It is often the case that it is not possible to
analytically compute the preceding, and when such is the case we can attempt

to use simulation to estimate . This is done as follows: Generate X gl), e X ,(IU
having the same joint distribution as X1, ..., X,, and set

1
¥; mg(X§ ),...,X,(II))

Now, simulate a second set of random variables (independent of the first set)
x?, ..., X having the distribution of X1, ..., X, and set

Y2 =g (ng), vy X,(lz))

Continue this until you have generated k (some predetermined number) sets,
and so have also computed Y, Yo,..., Y. Now, ¥|,..., ¥} are independent
and identically distributed random variables each having the same distribution
of g(X1,..., Xy,). Thus, if we let ¥ denote the average of these k random
variables—that is,

k
Y=Y Y/k
{=1
then
E[Y] =8,
E [(ff — @)2] = Var(¥)
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Hence, we can use Y as an estimate of §. As the expected square of the difference
between Y and @ is equal to the variance of ¥, we would like this quantity to be
as small as possible. [In the preceding situation, Var(Y) = Var(¥;)/k, which is
usually not known in advance but must be estimated from the generated values
Y1, ..., Y:.] We now present three general techniques for reducing the variance
of our estimator.

11.6.1. Use of Antithetic Variables

In the preceding situation, suppose that we have generated Y7 and Y3, identically
distributed random variables having mean 8. Now,

Var (Y‘ ",: Yz) - %{Var(m + Var(¥,) + 2 Cov(¥1, ¥2)]

_ Var(Yy) Cov(Yy, Y2)
_ =72 2
Hence, it would be advantageous (in the sense that the variance would be reduced)
if Yy and Yo rather than being independent were negatively correlated. To see
how we could arrange this, let us suppose that the random variables X, ..., X,
are independent and, in addition, that each is simulated via the inverse transform
technique. That is, X; is simulated from FI.""I(UI-) where U; is a random number
and F; 1s the §istribution of X;. Hence, Y1 can be expressed as

Y=g (F{ O, - FrH(Ow)

Now, since 1 — U is.also uniform over (0, 1) whenever U is a random number
(and is negatively correlated with U) it follows that Y, defined by

vy =g (F'(1—UD,..., F (1 - Uw)

will have the same distribution as ¥;. Hence, if ¥; and Y> were negatively cor-
related, then generating Y, by this means would lead to a smaller variance than
if it were generated by a new set of random numbers. (In addition, there is a
computational savings since rather than having to generate n additional random
numbers, we need only subtract each of the previous n from 1.) The following the-
orem will be the key to showing that this technique—known as the use of antithetic
variables—will lead to a reduction in variance whenever g is a monotone function.

Theorem 11.1 If X1,..., X, are independent, then, for any increasing
functions f and g of n variables,
E[fX)gX)] =z E[f(X)]E[gX)] (11.11)

where X = (X1, ..., X,).
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Proof The jt):roof is by induction on 1. To prove it when n = 1, let f and g be
increasing functions of a single variable. Then, for any x and y,

(FO) = FONE) —g()) > 0

sinceifx > y (x < y) then both factors are nonnegative (nonpositive), Hence,
for any random variables X and Y,

(FX) = FINEX) —g(¥) >0
implying that
ELfX) = fFON(X) - g(¥)] >0
or, equivalently,
Elf(X)e(X)]1+ Elf(V)g(¥)] > E[f(X)gM)]+ E[f(¥)g(X)]

If we suppose that X and ¥ are independent and identically distributed then, as in
this case,

Elf(X)e(X)] = ELf ()g(7)],
Elf(X)e(M)] = ELf(¥)g(X)] = E[f(X)]E[g(X)]

we obtain the result when 1 = 1.
So assume that (11.11) holds for 1 — 1 variables, and now suppose that
Xi,..., X, are independent and £ and g are increasing functions. Then

E[fX)gX)|X, = x,]
=Elf (X1, ..., Xnot, x)g (X, . ... Xn—1, %) Xy, = x]
=E[f(X1,..., X4, xn)g(X1, ..., Xy, Xp)] by independence
Z ELf (X1, ..., Xpet, x)1E[g(Xy, . .. Xn—1, x,)]
by the induction hypothesis
= E[fX)|Xn = x]E[g(X) (X, = x,]

Hence,

E[fX)gX)|X,] > ELfXIXn]E[g(X)|X ]

and, upon taking expectations of both sides,

E[fX)gX)] > E[ELfX)Xy]E[g(X)]X,]]
Z E[fX)]E[g(X)]
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The last inequality follows because E[f(X)|Xn] and E [g(X)|X,] are both
increasing functions of X, and so, by the result for z = 1,

E[E[f X)X ElgX)Xn]] 2 E[ELF K| X NEE[gX)Xn]]
= E[fX)]E[gX)] B

Corollary 11.7 IfU,,...,Unare independent, and k is either an increasing
or decreasing function, then

Cov(k(U1, ..., Un), k(1 = U1, ..., 1= Un)) S 0

Proof Supg;dse k is increasing. As —k(1 — Uy, ..., 1 = U,) is increasing in
Ui, ..., Uy, then, from Theorem 11.1,

£ Cov(k(Ut, -+ -5 Un)s —k(1=Up,...,1=Ux)) 20

-

When k is decreasing just replace & by its negative. H

Since Fi“l(U,-) is increasing in U; (as Fi, being a distribution function, is
increasing) it follows that g(F, 1 W), Fy L(U,)) is a monotone function of
Uy, ..., U, whenever g is monotone. Hence, if g is monotone the antithetic vari-
able approach of twice using each set of random numbers U1, ..., Un by first
computing g(F{"' (U1, .-, F7'(Up)) and then g(F7 (1 = U, Fy (L —
U,)) will reduce the variance of the.estimate of E{g(X1, ..., X,)]. That is, rather
than generating k sets of n random numbers, we should generate k/2 sets and use

each set twice.

Example 11.14 (Simulating the Reliability Function) Consider a system of
n components in which component i, independently of other components, works
with probability pi, j=1,...,n.Letting

1, if component { works
Xi=10 therwi
, otherwise

suppose there is a monotone structure function ¢ such that

L if the system works under X1,..., Xn
X1, .- Xn) = {O, otherwise

We are interested in using simulation to estimate

r(pi: '-'spn) = E[(;b(X}, $Xﬂ)] = P{qb(Xlr'-’!XII) = 1}
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Now, we can simulate the X; by generating uniform random numbers Uy, ..., U,
and then setting

X = 1, if Ui < pi
0, otherwise

Hence, we see that
¢(X1: ---rXH.) = k(Uls LEEL | Ull)

where k is a decreasing function of Uy, ..., U,. Hence, .
Cov(k(U), k1 - 1)) <0

and so the antithetic variable approach of using Uy, ..., U, to generate both
k(Up,...,U,) and k(1 — Uy, ..., 1 — Up,) results in a smaller variance than if
an independent set of random numbers was used to generate the second k. B

Example 11.15 (Simulating a Queueing System) Consider a given queueing
system, and let D; denote the delay in queue of the ith arriving customer, and
suppose we are interested in simulating the system so as to estimate

6 = E[D1+---+ Dy]

Let Xy, ..., X, denote the first n interarrival timesand S, . . ., S, the firstn service
times of this system, and suppose these random variables are all independent. Now
in most systems D +- - -+ D, will be a function of X1, ..., Xy, 51, ..., Sy——5ay,

D1+"‘+Dn=8(X1,---,anSl,---,Sn)

Also g will usually be increasing in S; and decreasing in X;,i = 1,...,n. If we
use the inverse transform method to simulate X;, S,, i=1,..., n—say, X; =

Fl(1 =y, S = G7H(Ty) where Uy, ..., Uy, Up, ... U, are independent
umform random numbers—then we may write

Dy+-+ Dy =k, ..., Un, Ur, ..., Un)

where k is increasing in its variates. Hence, the antithetic variable approach will
reduce the variance of the estimator of §. [Thus, we would generate U;, Ui, i =
1,...,n and set X; = ”1(1 — U;) and ¥; = G;'(U;) for the first run, and

X; = F. (U,) and ¥; = G; (1 — ;) for the second.] As all the U; and U; are
independent, however, this is equivalent to settmg X; =F I(UI) Yi = G"1 (U
in the first run and using 1 — U; for U; and 1 — U; for U; in the second. H
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11.6.2. Variance Reduction by Conditioning
Let us start by recalling (see Proposition 3.1) the conditional variance formula
Var(Y) = E[Var(Y|Z)] + Var(E[Y|Z]) (11.12)

Now suppose we are interested in estimating E[g(X1, ..., X;)] by simulating
X = (Xj,..., X,) and then computing ¥ = g(X1,..., X,.). Now, if for some
random variable Z we can compute E[Y|Z] then, as Var(Y|Z) = 0, it follows
from the conditional variance formula that

- Var(E[Y|Z]) < Var(Y)

implying, since E[E[Y|Z]] = E[Y], that E[Y|Z] is a better estimator of E[Y]
thanis Y.

In many situations, there are a variety of Z; that can be conditioned on to obtain
an improved estimator. Each of these estimators £ [Y|Z;] will have mean E[Y]and
smaller variance than does the raw estimator Y. We now show that for any choice
of weights A;, A; >0, 5 A =1,); AE[Y|Z;] is also an improvement 0ver Y.

Proposition 11.8 Forany A; >0, 372 & = L,
(a) E[Z&E[lei]] = E[Y]

(b) Var(ZT'AfE[YIZ,-]) < Var(¥)

Proof The proofof (a) is immediate. To prove (b), let IV denote an integer valued
random variable independent of all the other random variables under consideration
and such that

P(N=i}=x, i1
Applying the conditional variance formula tw‘ice yields
| Var(¥) > Var(E[Y|N, Zy))
> Var(E[E[Y|N, Zn1iZ1, .- D)
=Var Y ME[Y|Zi] B
i

Example 11.16 Consider a queueing system having Poisson arrivals and
suppose that any customer arriving when there are already N others in the system
is lost. Suppose that we are interested in using simulation to estimate the expected
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number of lost customers by time ¢. The raw simulation approach would be to
simulate the system up to time ¢ and determine L, the number of lost customers
for that run. A better estimate, however, can be obtained by conditioning on the
total time in [0, #] that the system is at capacity. Indeed, if we let T denote the time
in [0, ¢] that there are N in the system, then

E[L|T] = AT

where A is the Poisson arrival rate. Hence, a better estimate for E[L] than the
average value of L over all simulation runs can be obtained by multiplying the
average value of T per simulation run by A. If the arrival process were a nonho-
mogeneous Poisson process, then we could improve over the raw estimator L by
keeping track of those time periods for which the system is at capacity. If we let
I1, ..., I¢ denote the time intervals in [0, ¢] in which there are NV in the system,
then

C
E[L\L, ..., Ic] = fo A(s) ds
i=I i

where A(s) is the intensity function of the nonhomogeneous Poisson arrival pro-
cess. The use of the right side of the precedmg would thus lead to a better estimate
of E{L] than the raw estimator L. B

Example 11.17 Suppose that we wanted to estimate the expected sum of the
times in the system of the first # customers in a queueing system. That is, if W;
is the time that the ith customer spends in the system, then we are interested in

estimating
1)
i=1

Let Y; denote the “state of the system” at the moment at which the ith cus-
tomer arrives. It can be shown* that for a wide class of models the estimator
Z? 1 EIW;|Y;] has (the same mean and) a smaller variance than the estimator

1_1 W;. (Itshould be noted that whereas it is immediate that E{W;|Y; ] has smaller
variance than W;, because of the covariance terms involved it is not immediately
apparent that  ;_; E[W;|Y;] has smaller variance than Y *_, W;.) For instance,

*S. M. Ross, “Simulating Average Delay— Variance Reduction by Conditioning,” Probability in the
Engineering and Informational Sciences 2(3), (1988), pp. 309-312.
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in the model G/M/1
E[W;|¥i]1= (Vi + D/p

where N; is the number in the system encountered by the ith arrival and 1/u 1s
the mean service time; the result implies that S N+ D/ is a better estimate
of the expected total time in the system of the first n Customers than is the raw
estimator 3 g Wi- B

Example 11.18 (Estimating the Renewal Function by Simulation) Consider
a queueing model in {vhich customers arrive daily in accordance with a renewal
process having iriterarrival distribution F. However, suppose that at some fixed
time 7', for instance 5 PM., 00 additional arrivals are permitted and those customers
that are still in the system are serviced. At the start of the next, and each succeed-
ing, day customers again begin to arrive in accordance with the renewal process.
Suppose we are interested in determining the average time that a customer spends
in the system. Upon using the theory of renewal reward processes (with a cycle
starting every T’ time units), it can be shown that

average time that a customer spends in the system

_ E[sum of the times in the system of arrivals in (0, 1T)]

" m(T)

where m(T) is'the expected number of renewals in (0, T).

If we were to use simulation to estimate the preceding quantity, a run would
consist of simulating a single day, and as partof a simulation run, we would observe
the quantity N (T, the number of arrivals by time T .-Since EIN(M)] = m(T),
the natural simulation estimator of m(T") would be the average (over all simulated
days) value of NV (T) obtained. However, Var(NV(T)) is, for large T, proportional
to T (its asymptotic form being To?/ 113, where o2 is the variance and u the mean
of the interarrival distribution F), and so, for large T, the variance of our estimator
would be large. A considerable improvement can be obtained by using the analytic
formula (see Section 7.3)

m(T) = -:Z-: -1+ ELY (Ml
12 22

(11.13)

where Y (T') denotes the time from 7" until the pext renewal—that s, itis the excess
life at T. Since the variance of Y (T) does not grow with 7' (indeed, it converges
to a finite value provided the moments of F are finite), it follows that for T large,
we would do much better by using the simulation to estimate E [Y(T)] and then
use Equation (11.13) to estimate (.
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Figure 11.5. A(T) = x.

However, by employing conditioning, we can improve further on our estimate
of m(T'). To do so, let A(T') denote the age of the renewal process at time T—that
is, it is the time at T since the last renewal. Then, rather than using the value of
Y(T), we can reduce the variance by considering E[Y (T)|A(T)]. Now knowing
that the age at T is equal to x is equivalent to knowing that there was a renewal at
time T — x and the next interarrival time X is greater than x. Since the excess at
T will equal X — x (see Figure 11.5), it follows that

E[Y(T)|A(T) = x] = E[X — x]X > x]
:me{Xw—x>r} gt
0 P{X>x}

=[°° [1—F(@+x)] gt
0 1— F(x)

which can be numerically evaluated if necessary.

As an illustration of the preceding note that if the renewal process is a Poisson
process with rate A, then the raw simulation estimator N (7") will have variance
AT, since Y (T') will be exponential with rate A, the estimator based on (11.13)
will have variance A* Var{Y(T')} = 1. On the other hand, since Y(T) will be
independent of A(T) (and E[Y (T)|A(T)} = 1/1), it follows that the variance of
the 1mproved estimator E[Y (T)[A(T)] is 0. That is, conditioning on the age at
time T yields, in this case, the exact answer. B

Example 11.19 Consider the M/G/1 queueing system where customers
arrive in accordance with a Poisson process with rate A to a single server hav-
ing service distribution G with mean E[S]. Suppose that, for a specified time 1,
the server will take a break at the first time ¢ > 1y at which the system is empty.
That is, if X (¢) is the number of customers in the system at time ¢, then the server
will take a break at time

T = min{t = t5: X({¢) =0}

To efficiently use simulation to estimate E[T'], generate the system to time #p; let
R denote the remaining service time of the customer in service at time fg, and let
X equal the number of customers waiting in queue at time #. (Note that R is
equal to 0 if X(f9) = 0, and Xg = (X () — 1)™".) Now, with N equal to the
number of customers that arrive in the remaining service time R, it follows that if
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N =nand Xg = ng, then the additional amount of time from zy + R until the
server can take a break is equal to the amount of time that it takes until the system,
starting with n + ng customers, becomes empty. Because this is equal to the sum
of n + ng busy periods, it follows from Section 8.5.3 that

E[S]
1 ’ = R P ————
E[TIR N XQ] o + +(N+XQ)1-—).E[S]
Consequently,
E[T|R, Xgl = E[E[T|R, N, Xo]IR, X]
] E[S]
E[S]
=t + R+ (AR e
- 0+ R+ AR+ Xo) 57

Thus, rather ‘than using the generated value of T as the estimator from a sim-
ulation run, it is better to st0p the simulation at time #p and use the estimator
to+ (AR + XQ)—I—REEJE?—}-

11.6.3. Control Variates

Again suppose we want to use simulation to estimate E[g(X)] where
X=(Xy,....X,). But now suppose that for some function f the expected value
of f(X) is known—say, E[f(X)] = u. Then for any constant a we can also use

W = g(X) + a(f(X) — u)
as an estimator of E[g(X)]. Now,
Var(W) = Var(g(X)) + a* Var(f (X)) + 2a Cov(g(X), £ (X))

Simple calculus shows that the preceding is minimized when

_ —Cov(f (X), gX))
Var(f (X))

and, for this value of ¢,
[Cov(f(X), gX))]?
Var(f (X))

Because Var(f (X)) and Cov(f(X), g(X)) are usually unknown, the simulated
data should be used to estimate these quantities.

Var(W) = Var(g(X)) —
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Dividing the preceding equation by Var(g(X)) shows that

Var(W) _
Var(g(X))

1 — Corr? (£ (X), g(X))

where Corr(X, Y ) is the correlation between X and 7. Consequently, the use
of a control variate will greatly reduce the variance of the simulation éstimator
whenever £(X) and &(X) are strongly correlated.

Example 11.20 Consider a continuous time Markov chain which, upon enter-
ing state i, spends an exXponential time with rate v; in that state before making a
transition into some other state, with the transition being into state j with proba-
bility P; ;,i > 0, J # i. Suppose that costs are incurred at rate C(j) > 0 per unit
time whenever the chain isin state i, > 0. With X (¢) equal to the state at time ¢,
and a being a constant such that 0 < @ < 1, the quantity

then generate the states of the continuous time Markov chain up to time 7', to obtain
the unbiased estimator fOT C(X (1)) dt. Because al the costs rates are nonnegative
this estimator is strongly positively correlated with T, which will thus make an
effective control variate. B

Example 11.21 (A Queueing System) Let Dy denote the delay in queue
of the n + 1 customer in a queueing system in which the interarrival times are
independent and identically distributed (iid.) with distribution F having mean
#r and are independent of the service times which are ii.d. with distribution G
having mean KG. If X; is the interarrival time between arrival / and ; -+ 1, and if
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S; is the service time of customer i, > 1, we may write
Dﬂ-}-l mg(Xl!'--!an Sls--an)

To take into account the possibility that the simulated variables X;, S; may by .
chance be quite different from what might be expected we can let

. n
FX1 oo Xy S1u e, Sa) = ) (S — Xi)
f==1

As E[f(X,S)] =n(ug — ur) we could use
§(X,5) +alf (X, 8) - nlug — ur)]

as an estimator of E [Dy41]. Since D, 4. and f are both increasing functions of
Si, —X;,i = 1,...,n it follows from Theorem 11.1 that f(X, S) and D,,;; are
positively correlated, and so the simulated estimate of a should turn out to be
negative. ¢ -

If we wanted to estimate the expected sum of the delays in queue of the first
N({T) arrivalé,; then we could use Zi({ )S,- as our control variable. Indeed as the
arrival process is usually assumed independent of the service times, it follows
that

N(T)

E| > S | = E[SIEIN(T)]

v f==|

where E[N (T)] can either be computed by the method suggested in Section 7.8 or
it can be estimated from the simulation as in Example 11.18. This control variable
could also be used if the arrival process were a nonhomogeneous Poisson with rate
A(t); in this case,

T
EIN(T)] = f A() dr
0

11.6.4. Importance Sampling

Let X = (X1,..., X,) denote a vector of random variables having a joint density
function (or joint mass function in the discrete case) f(x) = f{x1,...,xn), and
suppose that we are interested in estimating

9 = E[h(X)] = f h(x) f (%) dx

where the preceding is an n-dimensional integral. (If the X; are discrete, then
interpret the integral as an n-fold summation.)
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Suppose that a direct simulation of the random vector X, 8o as to compute
values of h(X), is inefficient, possibly because (a) it is difficult to simulate a
random vector having density function f(x), or (b) the variance of 1 (X) is large,
or (c) a combination of (a) and (b).

Another way in which we can use simulation to estimate 6 is to note that if g(x)
is another probability density such that S (%) = 0 whenever g(x) = 0, then we can
express & as

8 :fwg(x)dx

g(x)
h(X)f(X)}
=E, | —2L 11.14
g[ g(X) (11.14)

where we have written E ¢ to emphasize that the random vector X has joint
density g(x).

It follows from Equation (11. 14) that  can be estimated by successively gen-
erating values of a random vector X having density function g (X) and then using
as the estimator the average of the values of / (X) f(X)/g(X). If a density func-
tion g(x) can be chosen so that the random variable 1 (X) f(X) /&(X) has a small
variance then this approach—referred to as importance sampling—can result in
an efficient estimator of 4.

Let us now try to obtain a feel for why importance sampling can be useful. To
begin, note that £(X) and g(X) represent the respective likelihoods of obtaining
the vector X when X is a random vector with respective densities f and g. Hence,
if X is distributed according to g, then it will usually be the case that £(X) will
be small in relation to g(X) and thus when X is simulated according to g the
likelihood ratio f(X)/g(X) will usually be small in comparison to 1. However, it
is easy to check that its mean is 1:

F®T o _ ~
Eg ["g*('——}()"]-—— ?2—(;(3' (x)dx-.ff(x)dxml

Thus we see that even though f(X)/g(X) is usually smaller than 1, its mean is
equal to 1; thus implying that it is occasionally large and so will tend to have a
large variance. So how can & X) f(X)/g(X) have a small variance? The answer is
that we can sometimes arrange to choose a density g such that those values of x for
which f(x)/g(x) is large are precisely the values for which % (x) is exceedingly
small, and thus the ratio 4 (X) F(X)/g(X) is always small. Since this will require
that 4(x) sometimes be small, importance sampling seems to work best when
estimating a small probability; for in this case the function & (x) isequal to I when
X lies in some set and is equal to 0 otherwise.
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We will now consider how to select an appropriate density g. We will find that

the so-called tilted densities are useful. Let M (t) = Ef[e'] = [ &' f(x) dx be
the moment generating function corresponding to a one-dimensional density f.

Definition 11.2 A density function

e f(x)
M)

fi(x) =
is called a filted density of f, —oc0 <t < 00.

A random variable with density f; tends to be larger than one with density £ when
t > 0 and tends to be smaller when ¢t < 0.

In certain cases the tilted distributions f; have the same parametric form as
does f. g

Example 11 22 If f is the exponential density with rate A then
fi(x) = Ce*re™ = ACeP1*
where C = 1/M(t) does not depend on x. Therefore, for t < A, f; is an

exponential deamsity with rate A — ¢.
If f is a Bernoulli probability mass function with parameter p, then

-

FR=p"1-p~F,  x=0,1

Hence, M(f) = Ef[e'®] = pe’ + 1 — p and so

fi(x) = (pe'Y* (1 — p)i=~*

M()

3 ( pe’ x ;0 1 — p [—x
C\pet+1-p) \pet+1-p
That is, f; is the probability mass function of a Bernoulli random variable with
parameter

pe

pt:pe‘-i*lwp

We Ieave it as an exercise to show that if f is a normal density with parameters p
and o2 then ft is a normal density mean y + o?¢ and variance o2, B
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In certain situations the quantity of interest is the sum of the independent
random variables X1, ..., Xn. In this case the joint density £ is the product of
one-dimensional densities. That is,

fx1, cee, Xp) = JiGxy) - JuCxn)

where f; is the density function of X;. In this situation it is often useful to generate
the X; according to their tilted densities, with a common choice of ¢ emiployed.

Example 11.23 1.t x I»-.., X be independent random variables having
respective probability density (or mass) functions f;, for ; = 1,..., n. Suppose
we are interested in approximating the probability that their sum is at least as large
as a, where a is much larger than the mean of the sum. That is, we are interested
in

¢ = P{S > a)

where S = 37 X;, and where ¢ > 2_i=1 E[X;]. Letting I{S > a} equal 1 if
S > a and letting it be 0 otherwise, we have that

0 = E¢[I{S > a}]

where f = ( S1o ooy f). Suppose now that we simulate X; according to the tilted
mass function f;;,i = 1, ..., n, with the value of t,t > O left to be determined.
The importance sampling estimator of @ would then be
. (X,
6 =1{S> a) Ji(X;)
Ji,:(X3)
Now,
f;( H — Mi(t)e'—'?x;
Ji,0(X;)
and so

0 =I{S > a) M(t)e™*S

where M (¢) = T'1M; () is the moment generating function of . Since ¢ > 0 and
I{S > a} is equal to 0 when § < a, it follows that

I{S > a}e™S g gta
and so

6 < M@)e—t@
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To make the bound on the estimator as small as possible we thus choose ¢, ¢ > 0, to
minimize M (t)e~'%. In doing 5o, we will obtain an estimator whose value on each
iteration is between O and min, M (#)e™"@. It can be shown that the minimizing ?,
call it *, is such that

Ens[S]= Ep [ZX{‘ =a
i==1

where, in the preceding, we mean that the expected value is to be taken under the
assumption that the distribution of X; is fieefori =1,...,n.

For instance, suppi)se that X1, ..., X, are independent Bernoulli random vari-
ables having respective parameters p;, fori = 1,...,n. Then, if we generate the
X; according to their tilted mass functions pi ., i =1, ..., n then the importance

sampling estimator of § = P{S > a} is

f n
- 6=1{S> a}e_tSH (pie +1— pi)

i==1

Since p;; is the mass function of a Bernoulli random variable with parameter
pie /(pie' + 1 — p;) it follows that

I I ¢
pi€
I E X -_—

=1

The value of ¢ that makes the prece&ing equal to a can be numerically approxi-
mated and then utilized in the simulation.
As an illustration, suppose that n = 20, p; = 0.4, and a = 16. Then

0.4¢’

S =20———m—
El5] 0.4et + 0.6

Setting this equal to 16 yields, after a little algebra,
e =6

Thus, if we generate the Bernoullis using the parameter

0.4e’

—_—— ="0.8
0.4et* + 0.6

then because

M@*) = 0.4e” +0.6° and &5 = (1/6)°
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we see that the importance sampling estimator is
6 = I{S > 16}(1/6)53%
It follows from the preceding that
4 < (1/6)163%° = 81/26 = 0.001236

That is, on each iteration the value of the estimator is between 0 and 0.001236.
Since, in this case, 6 is the probability that a binomial randoin variable with
parameters 20,0.4 is at least 16, it can be explicitly computed Wif:h the result
¢ = 0.000317. Hence, the raw simulation estimator /; which on each iteration

takes the value 0 if the sum of the Bernoullis with parameter 0.4 is less than 16
and takes the value 1 otherwise, will have variance

Var(I) = 6(1 — ) = 3.169 x 10™*

On the other hand, it follows from the fact that 0 < @ < 0.001236 that
(see Exercise 33)

Var(§) < 2.9131 x 107

Example 11.24 Consider a single-server queue in which the times between
successive customer arrivals have density function f and the service times have
density g. Let D,, denote the amount of time that the nth arrival spends waiting in
queue and suppose we are interested in estimating « = P{D,, > a} when a is much
larger than E[D, ]. Rather than generating the successive interarrival and service
times according to f and g, respectively, they should be generated according to
the densities f_, and g,, where ¢ is a positive number to be determined. Note that
using these distributions as opposed to f and g will result in smaller interarrival
times (since —# < 0) and larger service times. Hence, there will be a greater chance
that D, > a than if we had simulated using the densities f and g. The importance
sampling estimator of & would then be

& = I{Dy > a}e’ S~ [Me(—) M, (1)]"

where S, is the sum of the first # interarrival times, Y, is the sum of the first n
service times, and M y and M, are the moment generating functions of the densities
Jf and g, respectively. The value of ¢ used should be determined by experimenting
with a variety of different choices.

]
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11.7. Determmir&g the Number of Rumns

Suppose that we are going to use simulation to generate r independent and identi-
cally distributed random variables Yy, .y having mean y and variance a2,

We are then going to use

A T 'dt))
¥

r

as an estimate of . The precision of this estimate can be measured by its variance
Var(%,) = E[(F, — w)’]

= 62/1‘

Hence we would want to choose r, the number of necessary runs, large enough so
that o2 /r iséacceptably small. However, the difficulty is that o2 is not known in
advance. To get around this, you should initially simulate & runs (where k& > 30)
and then use the simulated values YD . Y% to estimate o by the sample
variance

k
3 @9 - 1)/t - 1)
i=1

Based on this estimate of o the value of r that attains the desired level of precision
can now be determined and an additional r — k runs can be generated.

11.8. Coupling from the Past

Consider an irreducible Markov chain with states 1, ..., m and transition proba-
bilities P;,; and suppose we want to generate'the value of a random variable whose
distribution is that of the stationary distribution of this Markov chain. Whereas we
could approximately generate such a random variable by arbitrarily choosing an
initial state, simulating the resulting Markov chain for a large fixed number of time
periods, and then choosing the final state as the value of the random variable, we
will now present a procedure that generates a random variable whose distribution
is exactly that of the stationary distribution. ™

If, in theory, we generated the Markov chain starting at time —o0 in any arbitrary
state, then the state at time O would have the stationary distribution. So imagine that
we do this, and suppose that a different person is to generate the next state at each
of these times. Thus, if X (—n), the state at time —n, is {, then person —n would
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generate a random variable that is equal to J with probability P; i i=1,...,m,
and the value generated would be the state at time —(z — 1). Now suppose that
person —1 wants to do his random variable generation early. Because he does
not know what the state at time —1 wil] be, he generates a sequence of random
variables N_; (i), i = 1, -+, m, Where N_; (i), the next state fX(—1) =1, is
equal to j with probability Fii, j=1,...,m. Ifit results that X (~1) = i, then
person —1 would report that the state at time 0 is

S.i@ =N_1G), i=1,....m

(That is, S_;(?) is the simulated state at time 0 when the simulated state at time
—11isi.) .

Now suppose that person —2, hearing that person —1 is doing his simula-
tion early, decides to do the same thing. She generates a sequence of random
variables N_(i), i = 1,...,m, where N_3(i) is equal to j with probability
Fijj=1,...,m. Consequently, if it is reported to her that ¥ (—2) = i, then
she will report that X (—1) = N_»(). Combining this with the early generation
of person —1 shows that if X (=2) =i, then the simulated state at time Q1is

S—2() = S_1 (N2(1)), i=1,...,m

Continuing in the preceding manner, suppose that person —3 generates a
sequence of random variables N_3(i), i =1,...,m, where N_3(i) is to be the
generated value of the pext state when X (=3) =1i. Consequently, if X (—=3) =i
then the simulated state at time 0 would be

S—3() = 8S_, (N-3()), i=1,...,m

Now suppose we continue the preceding, and so obtain the simulated
functions

S—1(), S—2(i), S_30), ... i=1,...,m

Going backward in time in this manner, we will at some time, say —r, have a
simulated function S_, ({) that is a constant function. That is, for some state j,

—r(t) will equal j for all states ; — 1, ..., m. But this means that no matter what
the simulated values from time —00 t0 —r, we can be certain that the simulated
value at time O is ;. Consequently, j can be taken as the value of a generated
random variable whose distribution is exactly that of the stationary distribution of
the Markov chain.
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Example 11. 25 Consider a Markov chain with states 1,2,

simulation yielded the values
3, ifi=1
N_1() =12, ifi=2
2, if i=3
and
- 1, if i =
N_o@) =13, if i =2
1, ifi=3
Then .
3, if i =1
S_5() =12, if i =
3, ifi=3
If .
3, if i =1
N =11 ifi=2
1, ifi=3
then
3, ifi=1
S_3() =133 ifi=2
i=3

3 and suppose that

Therefore, no matter what the state is at time —3, the state at time O will be 3.

Remark The procedure developed in this section for geperating a random
variable whose distribution is the stationary distribution of the Markov chain 18
called coupling from the past.
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Exercises

*1. Suppose it is relatively easy to simulate from the distributions F;,
i=1,...,n. Ifnissmall, how can we simulate from

n
Fx)=) PFG&), P»0, Y R=17
j==] i

Give a method for simulating from

l—e 219
63+x, O<x <1
F(x) = o
-
3 , l<x <o

2. Give a method for simulating a negative binomial random variable.
*3. Give a method for simulating a hypergeometric random variable.

4. Suppose we want to simulate a point located at random in a circle of radius r
centered at the origin. That is, we want to simulate X, ¥ having joint density

1
fey=—,  2+y*<r?
ir

(@) Let R = vX2+7Y2 6 = tan™! ¥/X denote the polar coordinates.
Compute the joint density of R, @ and use this to give a simulation method.
Another method for simulating X, Y is as follows:

Step 1: Generate independent random numbers Uj, U and set L=
2rUy —r, Zy = 2rUz — r. Then Z,, Z, is uniform in the square
whose sides are of length 2r and which enclose the circle of radius r
(see Figure 11.6).

Step 2: I (Zy, Z5) lies in the circle of radius r—that is, if Z?+ 22 < r2—set
(X, Y} = (21, Z3). Otherwise return to step 1.

(b) Prove that this method works, and compute the distribution of the number
of random numbers it requires.

5. Suppose it is relatively easy to simulate from F; for eachi = 1,. .., n. How
can we simulate from

@ F(x) =T, F(x)?
d) F(x) =1-—]T (1 = E(x))?

H
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- Figure 11.6.

(c) Give ‘two methods for simulating from the distribution F(x)=x",
0<x <]~

*6. In Examiple 11.4 we simulated the absolute value of a standard normal by
usingthe Von Neumann rejection procedure on exponential random variables with
rate 1. This raises the question of whether we could obtain a more efficient algo-
rithm by using a different exponential density—that is, we could use the density
g(x) = Ae™™. Show that the mean number of iterations needed in the rejection
scheme is minimized when A = 1.

7. Give an algorithm for simulating a random variable having density function
fx) = 30(x? Z2x3 x4), 0<x<1

8. Consider the téchn,ique of simulating a gamma (n, A) random variable by
using the rejection method with g being an exponential density with rate A /n.

(a) Show that the average number of iterations of the algorithm needed to
generate a gamma is e /(n — 1)

(b) Use Stirling’s approximation to show, that for large » the answer to part (a)
is approximately equal to e{(n — 1)/ Qm)12,

(c) Show that the procedure is equivalent to the following:

Step 1: Generate Y; and Y,, independent exponentials with rate 1.
Step2: T Y < (@— 1Yy —log(Y2) — 1], return to step 1.
Step 3:  Set X =nYp/A.

(d) Explain how to obtain an independeﬁnt exponential along with a gamma
from the preceding algorithm.

9. Setup the alias method for simulating from a binomial random variable with
parameters n = 6, p = 0.4.
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10. Explain how we can number the Q® in the alias method so that k is one of
the two points that Q%) gives weight,

Hint: Rather than name the initial Q, Q()) what else could we call it?

11.  Complete the details of Example 11.10.
12, LetXj,..., X; be independent with

1
PXi=j}== j=1,...ni=1,. .k
It

If D is the number of distinct values among X7y, ..., X; show that

EID] = [; - (%= I)k}

k2 k2
R e when — is small
2n n

13.  The Discrete Rejection Method: Suppose we want to simulate X having
probability mass function P{X = i} = P,i =1,...,n and suppose we can
easily simulate from the probability mass function 0i,);0i=1,0;>01LetC
besuchthat P; < CQ;,i = 1,..., n.Show that the following algorithm generates
the desired random variable:

Step 1:  Generate Y having mass function Q and U an independent random
number.
Step2: T U< Py/CQy,set X =Y. Otherwise return to step 1.

V4. The Discrete Hazard Rate Method: Let X denote a nonnegative integer
valued random variable. The function AM)=P{X=n|X> n},n >0, is called
the discrete hazard rate function.

(2) Show that P{X = n} = A(n) [T'23(1 — A(3)).
(b) Show that we can simulate X by generating random numbers I/ .Uz, ...
stopping at

X =min{n: U, < A(n)}

(c) Apply this method to simulating a geometric random variable, Explain,
intuitively, why it works.

(d) Suppose that A(n) < p < 1 for all n. Consider the following algorithm for
simulating X and explain why it works: Simulate Xi,Ui,i 2 1 where X; is
geometric with mean 1/ p and U; isarandom number. Set Se = X1+ +X;
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and Jet

X = min{S: Ur < A(Sk)/p}

15. Suppose you have just simulated a normal random variable X with mean u
and variance o2, Give an easy way to generate a second normal variable with the
same mean and variance that is negatively correlated with X.

*16. Suppose n balls having weights wi, w2, ..., wn are in an urn. These
balls are sequentially removed in the following manner: At each selection, a
given ball in the urn is chosen with a probability equal to its weight divided by
the sum of the weights of the other balls that are still in the urn. Let Iy, I, ..., In

denote the order in which the balls are removed—thus I3, ..., 1, is 2 random
permutation with weights.
(a) Givea method for simulating I, ..., In.
(b) Let X} be independent exponentials with rates w;, i = 1, ..., n. Explain
how X; can be utilized to simulate Iy, ..., I».
17. Order Statistics: Let X1, . .., X, be i.i.d. from a continuous distribution F,
and let X(;) denote the ith smallest of X;,..., Xn,[ = 1,...,n. Suppose we
want to simulate Xy < X@) < --- < X(u). One approach is to simulate n

values from F, and then order these values. However, this ordering, or sorting,
can be time consuming when » is large.
I

(2) Suppose that A(1), the hazard rate function of F, is bounded. Show how the
hazard rate method can be applied to generate the » variables in such a manner
that no sorting is necessary.

Suppose now that F~! is easily computed.

(b) Argue that X(yy, ..., X(n) can be generated by simulating Uy < U <
.++ < Ugy—the ordered values of n independent random numbers—and then
setting X5y = F~1(Ug). Explain why this means that X(;) can be generated
from F~(B;) where B; is beta with parameters i, n + i + 1.

(c) Argue that Uy, ..., Uy can be generated, without any need for sorting,
by simulating i.i.d. exponentials Y}, ..., Y1 and then setting
Y +--- Y; -
Ugy = ! + 1 , i=1,...,n
Yi+ o+ Yoy

-

Hint: Given the time of the (n + 1)st event of a Poisson process, what can be
said about the set of times of the first n events?

(d) Show that if Uy, = y then Uqy, . - -, Ugu—1) has the same joint distribution
as the order statistics of a set of # — 1 uniform (0, y) random variables.
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(e) Use part (d) to show that Uy, ..., U(n) can be generated as follows:

Step 1:  Generate random numbers Uy, . . ., U,.
Step 2:  Set
U = U, | U1y = Ugny (U)V#=D,
Ugj-1 = U(f)(Un-_jH)l/U”}‘), j=2,...,n-1
18. LetXq,..., X, be indepen&ent exponential random variables each having
rate 1. Set
Wi = X /n,
X.
W; = W;_ e  =2,...,
-1 n—i+1’ : "
Explain why Wy, ..., W, has the same joint distribution as the order statistics of

a sample of n exponentials each having rate 1.

19. Suppose we want to simulate a large number # of independent exponen-
tials with rate 1—call them X1, X2, ..., X, If we were to employ the inverse
transform technique we would requue one logarithmic computation for each
exponential generated. One way to avoid this is to first simulate S,,, a gamma
rando;:n variable with parameters {(n, 1) (say, by the method of Secuon 11.3.3).
Now interpret S, as the time of the nth event of a Poisson process with rate
1 and use the result that given S, the set of the first » — 1 event times is
distributed as the set of n — 1 independent uniform (0, S,;) random vatiables.
Baséd on this, explain why the following algorithm simuilates r independent
exponentials:

Step 1:  Generate S,,, a gamma random variable with parameters (11, 1).
Step 2:  Generate n — 1 random numbers Uy, Uy, ..., Up—1.
Step 3: Orderthe U;,i=1,...,n — 1 to obtain Un<Ug < --- <Ugm-p.
Step 4: Let U(g) = (, U(n) == 1 and set X; = §,(Ugy — Ui-1),
i=1,.

When the ordering (step 3) is performed according to the algorithm described in
Sec&on 11.5, the preceding is 4n efficient method for simiulating ‘exponentials
wheri all n are simultaneously required. If memory space is liinited, however, and
the expcnentlals can be employed sequentially, discarding each exponential from
memory once it has been used, then the preceding may not be appropriate.

20. Consider the following procedure for randomly choosing a subset of size &
from the numbers 1, 2, . .., n: Fix p and generate the first » time units of 4 renewal
process whose interarrival distribution is geometric with mean 1/ p—that is,
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P {interarrival time = k} = p(l — pY~1 k= 1,2,.... Suppose events occur
at times i} < ip < -+ < Iy < n. If m = k, stop; i1, ..., Lm is the desired
set. If m > k, then randomly choose (by some method) a subset of size k from
i1,...,im and then stop. f m < k, take i1, ..., im as part of the subset of size
k and then select (by some method) a random subset of size k — m from the set
(1,2,...,n}—(1, - - - im}. Explain why this algorithm works. As E[N(n)] = np
a reasonable choice of p is to take p ~ k/n. (This approach is due to Dieter.)

21. Consider the following algorithm for generating a random permutation of
the elements 1, 2, ..., . In this algorithm, P ({) can be interpreted as the element
in position i

Step 1: Sefk = 1.

Step2: Set P(1) = 1.

Step 3:  Ifk = n, stop. Otherwise, letk = k+ 1.

Step 4:  Generafe a random number U, and let

-~

.- P(k) = P(lkU]+ 1),
) P(kUl+ 1) =k.
Go to step 3

(2) Explain in words what the algorithm is doing.
(b) Show that at iteration k—that is, when the value of P (k) is initially set—that
P(1), P(2),..., P(k) is arandqm permutation of 1,2, ..., k.

Hint: Use induction and argue that

Pelit,in, . oo ij—1, K By e oy lk—2, 1}

. .., .1
= Pr—1{it. iz, s ljmla b djs s, ”‘“2}};

| o :
=4 by the induction hypothesis

The preceding algorithm can be used even if » is not initially known.

22. Verify that if we use the hazard rate approach to simulate the event times
of a nonhomogeneous Poisson process whose intensity function A(f) is such that
A(t) < A, then we end up with the approach given in method 1 of Section 11.5.

*23. For a nonhomogeneous Poisson process with intensity function A(¢),
t = 0, where f0°° A dt = oo, let X1, X, ... denote the sequence of times
at which events occur.
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(a) Show that fgxl A(t) dt is exponential with rate 1.

(b) Show that f X,-i_ | At)dt,i > 1, are independent exponentials with rate 1,
where Xg = 0.

In words, independent of the past, the additional amount of hazard that must be
experienced until an event occurs is exponential with rate 1.

24, Give an efficient method for simulating a nonhomogeneous Poisson process
with intensity function
1
At) =b + , t=20
I +a ’
25. Let (X, Y) be uniformly distributed in a circle of radius r about the origin.
That is, their joint density is given by

1
f(X,Y)x;r‘;'z-, 0<x?+y2<r?

Let R = +/X? 4+ Y2 and = arctan ¥/X denote their polar coordinates. Show
that R and @ are independent with @ being uniform on (0, 27) and P{R < al =
a’/r?,0<a<r.

26. Let R denote a region in the two-dimensional plane. Show that for a two-
dimensional Poisson process, given that there are points located in R, the
points are independently and uniformly distributed in R—that is, their density
is f(x,y) = ¢, (x,y) € R where ¢ is the inverse of the area of R.

27. let Xi,...,X, be independent random variables with E [X:1=86,
Var(X;) = O’I-z i=1,...,n, and consider estimates of 8 of the form Z?ml A X;
where ) /_; A; =1. Show that Var(3_%_; A; X;) is minimized when

A= (1/o-i2)/(z 1/6}), i=1,...,n.

j=l1
Possible Hint:  If you cannot do this for general n, try it first when n = 2.
The following two problems are concerned with the estimation of foi gx)dx =
Elg(U)] where U is uniform (0, L.

28. The Hit-Miss Method.: Suppose g isbounded in [0, 1]—for instance, suppose
0<glx) <bforx e[0,1]. Let Uy, U, be independent random numbers and set
X = Uy, Y = bUy—so the point (X, Y) is uniformly distributed in a rectangle of
length 1 and height . Now set

oL Y <gmm
0, otherwise

That is accept (X, Y) if it falls in the shaded area of Figure 11.7.



706 11 Simulation

0, b 1, b

g(x)

0,0 // 1,0
Figure 11.7.

(2) Show that E[bI] = [, g(x) dx.

(b) Show that Var(bI) > Var(g(U)), and so hit—miss has larger variance

than simply computing g of a2 random number.
29. Stmtiﬁed Sampling: Let Uy, ..., U, be independent random numbers
and set f@-mf(],- +i — 1)/n,i=1,...,n. Hence, I_]f,i},l, is uniform on
(G —1)/n,i/n). Y., g(U;)/n is called the stratified sampling estimator of

Jo gx)dx.
(a) Show that E[Y ", g(U;)/n] = [, g(x) dx.
(b) Show that Var[}_}_; g(Ui)/n] < Var[Y [, ¢(U)/nl.

Hint: Lét U be uniform (0, 1) and define N by N=i if (i — 1)/n<
U<i/n, i=1,...,n. Now use the conditional variance formula to
obtain

Var(g(U)) = E[Var(g(U)|N)] + Var(E[g(U)|N])
> E[Var(g(U)|N)]
5\ Var(g(U)IN = i) < Var[g(U)]

. n )
i==1 i=l

30. If f is the density function of a normal random variable with mean @ and
variance o2, show that the tilted density f; is the density of a normal random

variable with mean p + o2t and variance o2

31. Comnsider a queueing system in which each service time, independent of
the past, has mean . Let W, and D, denote, respectively, the amounts of time
customer » spends in the system and in queue. Hence, D, = W,, — §,, where S,
is the service time of customer n. Therefore,

E[D,] = E[W,]—u
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If we use simulation to estimate E [ Dy ], should we

(a) use the simulated data to determine Dy, which is then used as an estimate
of E[D,]; or

(b) use the simulated data to determine W, and then use this quantity minus “n
as an estimate of E[D,]?

Repeat if we want to estimate E [W,].
*32. Show thatif X and ¥ have the same distribution then

Var((X + Y)/2) < Var(X) .

Hence, conclude that the use of antithetic variables can never increase variance
(though it need not be as efficient as generating an independent set of random
numbers).

33. If0 < X < a, show that
(a) E[X?] < aE[X],

(b) Var(X) < E[X](a — E[X)),
(c) Var(X) < a?/4.

34. Suppose in Example 11.19 that no new customers are allowed in the system
after time 9. Give an efficient simulation estimator of the expected additional time
after 79 until the system becomes empty.
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746 Appendix Solutions to Starred Exercises

Chapter 11

1.  (a) LetU bearandom number. If Z;:ll P <U < Zii..—_l P; then simulate

from F;. (In the preceding Z;;ll Pj =0wheni =1.)
(b) Note that

1 2
F(x) = §F1(X) -+ -3—F2(x)

where
, F;(x)=1—-e2x, 0<x <00
- x, O<x<1
Fyx) = {1, 1<x
Hence, using part (a), let Uy, U,, Us be random numbers and set
’ - ].Og U2 . 1
- X = __...2“._,,, if Uy < 3
T Us, if Uy > 3§

The preceding uses the fact that —log Us /2 is exponential with rate 2.

3. If arandom sample of size n is chosen from a set of N + M items of which N
are acceptable, then X, the number of acceptable items in the sample, is such that

woeee=n= (0 / ()

To simulate X, note that if

[ = {1, if the jth selection is acceptable
j =

0, otherwise
then
‘ CN-Yn
PlI; =1lh,...,1j-1} = 1
{j Il _]1} N-F»Mm(j"-l)
Hence, we can simulate Iy, . . ., I, by generating random numbers Uy, ..., Uy and
then setting
j—1
1, ifU;< N—) —
I; = N+M-({G-1
0, otherwise

and X = 7_; I; has the desired distribution.
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1, the jth acceptable item is in the sample
Xj= )
0, otherwise
and then simulate X Li-.., Xy by generating random numbers Ui,...,Uy and
then setting
j=1
1—>7 X
1, iU < — Z@f
Xj= N+M—-(G-—1)
0, otherwise
and X = Z?i:l X j then has the desired distribution.
The former method is preferable when n < N and the latter when N < n.
6. Let
F(x) 2 —x?
2 . {AZ}
= X e
W P2
Hence,

d A2 1
Z{C(A) =+/2/mexp {-ém} [1 - —-—]

Hence (d/dA)c(L) = 0 when A =1 and

minimal value of ¢()).
16.

such that

Pi=ij=-"

(a) They can be simulated in the same
are defined. That is, first generate the

}\,2

it is easy to check that this yields the

sequential fashion in which they
value of a random variable I

¥

S, i=1,....n
j=1Wj

Then, if I; = k, generate the value of I where

Plh=ij=— " itk

and so on. However, the a

(b) Let? ; denote the

Zj;ek wj,

pproach given in part (b) is more efficient.
index of the jth smallest X;.
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23, letm(t) = f(; A(s)ds, and let m~1(¢) be the inverse function. That is,
m(m=1(@)) =1.

(8) P{m(X1) > x} = P{X; > m™1(x))
= P{Nm 1(x)) = 0}
— g~ (X))
Pt e_,x
(b) Pim(Xi) —m(Xi—1) > xim(X1), ..., m(X;-1) — m(Xi—z))
= P{in(X;) —m(X;_1) > x|X1,..., Xi—1)
= P{m(X;) —m(X;_1) > x|X;_1)

= Pim(Xy) —m(Xi—1) > xjm(X; 1)}
Now,

T PO — m(Xim) > 21Xis = y)
- Xi
“ =P [f A)de > x| X1 = }’}
y

c
= P{X; > c|X;—] = y} wheref Alt)ydt =x
¥y

v =P{N)-N») =0|Xi-, =y}
~ = PN(@) — N(y) =0}

= exp {m[cl(t)-dt}
¥

—-X

=
32. Var{(X + Y)/2] = §{[Var(X) + Var(¥) + 2Cov(X, )]
_ Var(X) + Cov(X, )
2
Now it is 'always true that
Cov(V, W)

<
+/ Var (V) Var (W).
and so when X and Y have the same distribution Cov(X,Y) < Var(X).



