INTRODUCTION

Sedimentation (sedimentation 3:97-392 (2007)) has been attributed to factors such as wind, water, and biological activity. In this study, we examine the potential of wind erosion as a factor in the formation of sedimentary structures. The results indicate that wind erosion plays a significant role in the formation of these structures, particularly in areas with high winds. These findings have implications for our understanding of sedimentary processes and the role of wind in shaping landscapes.

REFERENCES

A small section of an area containing ca. 5000 pleurothallid orchids growing on the side of a mountain near Quito, Ecuador. The orchids are primarily of the genus *Pleurothallis*, with a few beads of *Cattleya* and *Phalaenopsis*. The area is located in the western part of the Andes, approximately 2000 meters above sea level.

Family: Pleurothallidaceae

Genus: Pleurothallis

Species: P. montana

Location: Quito, Ecuador

Elevation: 2000 meters

Flowering season: December to March

Description: The orchids are characterized by their large, showy flowers in shades of yellow, orange, and brown. The leaves are long and narrow, with a smooth texture.

Conservation status: Least Concern

Notes: This site is a prime example of the biodiversity found in the Andean cloud forest. The orchids play a vital role in the ecosystem, providing food and shelter for various insects and birds. Research is ongoing to study the genetic diversity and evolution of these orchids in their natural habitat.

Table:

<table>
<thead>
<tr>
<th>Species</th>
<th>Abundance</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. montana</td>
<td>High</td>
<td>Forested areas</td>
</tr>
<tr>
<td>P. aurea</td>
<td>Moderate</td>
<td>Open fields</td>
</tr>
<tr>
<td>P. fulgens</td>
<td>Low</td>
<td>Mountain slopes</td>
</tr>
</tbody>
</table>

Research:

- **Objective:** To study the genetic diversity and ecological impact of Pleurothallid orchids in the Andes.
- **Methods:** DNA sequencing, field observations, and ecological surveys.

Conclusion: The site is an important biodiversity hot spot, providing valuable insights into the conservation and evolution of Pleurothallid orchids.
Common on rocky overhangs in 10 m and 41 ft. in depth.

Occurrence: C. & S.

Camposophila horrida (Duncan, 1878)

Remember at 40 deg in depth.

The scope of understanding the above paragraphs is increased by the scope of understanding the above paragraphs.

A small section (less than 5 mm diameter) with a large section of the same depth is small enough to be measured.

Occurrence: A.

Camposophila smithii Stokes & Broderip, 1839

Family CAMPOPHYLLOIDACEAE C. & E. 1846

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

Muriacina polyris (Heller, 1869)

Family POLIOHYPONINE C. & E. 1846

Order SCYTHEAPODAE P. & R. 1954

A small section (less than 5 mm diameter) with a large section of the same depth is small enough to be measured.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

2 to 10 cm long, section posterior is about 90%.

Occurrence: C. & S.

Phylloloma mowbrayi (Lance-Dunbier, 1897)

Collected during 3 m in Malawi. 20 m in depth. The colony was bushy, with cylindrical polyps in the region was pointed, with short, broad, round colonies on a rock overhanging, and fragments.

Order: T. s.

Family: Dendrophylliidae

Discussion

At various depths, 17 to 20 m.

Comm.: From a sandy bottom, on overhangs.

Comm.: Of *T. s.**

Lepidopelmaum pulvinos lance-dunbier, 1897

(67 m depth)

On a rock exposed by seaviewing, in shallow water.

Balantophyllia europaena (Risso, 1820)

- In the region was rising, 1772, mind and at. 1391,

All the species collected at Malawi were already known.
TABLE II. Species of constructed corals occurring in the Mediterranean Sea.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Symbolic Growth Form</th>
<th>Depth rage (m)</th>
<th>Distribution outside the Mediterranean Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>POCILORHINUS (Heer, 1868)</td>
<td>yes/no excr. to nodal</td>
<td>1-40</td>
<td>sub-tropical eastern Atlantic, Caribbean</td>
</tr>
<tr>
<td>FAVIIDAE (Lamia, 1876)</td>
<td>yes/no excr. to nodal</td>
<td>1-50</td>
<td>near Arctic</td>
</tr>
<tr>
<td>OCULINIDAE (De Angelis, 1878)</td>
<td>yes/no excr. to nodal</td>
<td>0.5-8</td>
<td>warm temperate southwest Atlantic, circumboreal</td>
</tr>
<tr>
<td>CARYOPHYLLIDAE (Lamia, 1876)</td>
<td>no excr. and branching</td>
<td>150-1000</td>
<td>near Arctic</td>
</tr>
<tr>
<td>DENDrophyllidae (Lamia, 1876)</td>
<td>no excr. and branching</td>
<td>250-2500</td>
<td>near Arctic</td>
</tr>
<tr>
<td>Dendrophyllidae corni (Lamia, 1876)</td>
<td>no excr. and branching</td>
<td>350-3500</td>
<td>near Arctic</td>
</tr>
</tbody>
</table>

Only large-sized species are taken into account (most available and many colonial corals are too small to be considered bioconstructions).