ΜΗΧΑΝΙΚΗ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ – ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ
ΠΕΡΙΑΠΘΕΙΣ ΜΑΘΗΜΑΤΟΣ
ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ ΤΟΥ Η.Χ. ΑΥΦΑΝΤΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΘΕΣΣΑΛΟΝΙΚΗΣ
ΕΚΔΟΣΗ
ΤΜΗΜΑ ΕΚΔΟΣΕΩΝ
2007-2008
ΘΕΜΕΛΙΩΔΕΙΣ ΕΝΝΟΙΕΣ

1. ΧΩΡΟΣ – ΧΡΟΝΟΣ

Έστω σώμα το οποίο τη χρονική στιγμή \(t = 0 \) κατέχει τη θέση \(\mathcal{B}_0 \). Θεωρούμε τυχαίο τμήμα του σώματος αυτού το οποίο συμβολίζουμε με \(\mathcal{B}_t \). Η θέση του σώματος περιγράφεται από τις συντεταγμένες των σημείων \(P \) του κάθε τμήματος \(\mathcal{B}_t \) που για τη χρονική στιγμή \(t = 0 \) συμβολίζεται με \(x \).

Σε μια επομένη τυχαία χρονική στιγμή \(t \) το σώμα κατέχει τη θέση \(\mathcal{B}_t \), το τμήμα του σώματος \(\mathcal{B}_t \) κατέχει τη θέση \(\mathcal{A}_t \) και η θέση του υλικού σημείου \(P \) καθορίζεται τώρα από τη συντεταγμένη του \(x \).

\[\begin{aligned} &- \quad 0 \quad + \quad \mathcal{B}_0 \quad \mathcal{B}_t \quad P \quad \mathcal{A}_t \quad P \\ &\quad X \quad \quad \quad x \quad \quad \quad t = 0 \quad \quad \quad t = t \end{aligned} \]

Σχήμα 1.1

\(t=0: \)

θέση σώματος: \(\mathcal{B}_0 \)

τυχαίο τμήμα του σώματος: \(\mathcal{B}_t \)

υλικό σημείο \(P \)

διάνυσμα θέσης υλικού σημείου \(P \): \(X \)

\(t=t: \)

θέση σώματος: \(\mathcal{A}_t \)

το ίδιο τμήμα του σώματος: \(\mathcal{A}_t \)

υλικό σημείο \(P \)

διάνυσμα θέσης υλικού σημείου \(P \): \(x \)

Η κίνηση του υλικού σημείου περιγράφεται από την σχέση:

(i) Κίνηση

\[x = \chi(X, t), \quad \text{όπου} \quad X = \chi(X, 0) \] (1.1)

Μεγέθη που περιγράφουν την κίνηση του υλικού σημείου \(P \):

(ii) Ταχύτητα

\[u = u(X, t) = \frac{\partial \chi(X, t)}{\partial t} = \dot{x} \] (1.2)
(iii) Επιτάχυνση

\[a = a(X,t) = \frac{\partial^2 \chi(X,t)}{\partial t^2} = \ddot{\chi} \quad (1.3) \]

(iv) Η κλίση (βαθμίδα) της παραμόρφωσης ορίζεται από τη σχέση:

\[F = \frac{\partial \chi(X,t)}{\partial X} \quad (1.4) \]

Η \(F \) αποτελεί ένα μέτρο μεταβολής της τοπικής γεωμετρίας του σώματος γύρω από το σημείο \(P \) κατά την κίνησή του από το \(X \) στο \(x \). Εκφράζεται με άλλα λόγια το πόσο η απειροστή υλική ινα \(dX \) επιμηκύνεται ή συρρικνώνεται στο τελικό μήκος \(dx \).

Για σταθερό τη βαθμίδα παραμόρφωσης γράφεται:

\[F = \frac{dx}{dX}_{|_{t=σταθέρο}} \Rightarrow dx = FdX; \quad t=σταθέρο \quad (1.5) \]

(v) Ανημένη Παραμόρφωση \(\varepsilon \)

\[\varepsilon = \frac{dx - dX}{dX}_{|_{t=σταθέρο}} = \frac{dx}{dX}_{|_{t=σταθέρο}} - 1 = F - 1 \Rightarrow \varepsilon = F - 1 \quad (1.6) \]

\[\varepsilon = \frac{\partial (x - X)}{\partial X}_{|_{t=σταθέρο}} = \frac{\partial u}{\partial X} \quad (1.7) \]

(vi) Μετατόπιση \(u \)

\[u = u(X,t) = x - X = \chi(X,t) - X \quad (1.8) \]

(vii) Σχέση "υλικής" και "χωρικής" παραγώγου ως προς το χρόνο

Μακροποιούμε να μελετήσουμε το σώμα εκφράζοντας τα μεγέθη \((f) \) που περιγράφουν την κίνηση (ταχύτητα, επιτάχυνση κτλ.) και άλλες ιδιότητες του (πυκνότητα, θερμοκρασία, τάση κτλ.), είτε συναρτήσει της αρχικής του θέσης \(X \) είτε συναρτήσει της θέσης \(x \). Στη πρώτη περίπτωση λέμε ότι έχουμε περιγραφή της κίνησης κατά Lagrange \(f = \bar{f}(X,t) \) ενώ στη δεύτερη περίπτωση περιγραφή κατά Euler \(f = \tilde{f}(x,t) \). Η μετάβαση από τη μια περιγραφή στην άλλη είναι ως εξής:

\[f = \tilde{f}(x,t) = \tilde{f}(\chi(X,t),t) = \hat{f}(X,t) \quad (1.8) \]
Παραγωγίζοντας την παραπάνω σχέση ως προς το χρόνο λαμβάνουμε:

\[\dot{f} = \frac{\partial \tilde{f}}{\partial t} + \frac{\partial \tilde{f}}{\partial x} \frac{\partial x}{\partial t} = \frac{\partial \tilde{f}}{\partial t} + \nu \frac{\partial \tilde{f}}{\partial x} \Rightarrow \text{σύνθετη παραγώγιση (chain rule)} \]

όπου:

\[\dot{f}(X,t) = f : \text{"υλική" παράγωγος Lagrange (ο παρατηρητής παραμένει πάντα στο } X, t=0) \]

\[\frac{\partial \tilde{f}}{\partial t} = \frac{\partial f(x,t)}{\partial t} = \frac{\partial f}{\partial t} : \text{"χωρική" παράγωγος Euler (ο παρατηρητής ταξιδεύει μαζί με το } x, t=0) \]

Έτσι παρήγαμε τη σχέση Euler (ή θεώρημα Euler) που συνδέει την παράγωγο Lagrange ή "υλική" παράγωγο με την παράγωγο Euler ή "χωρική" παράγωγο. Δηλαδή:

\[\dot{f} = \frac{\partial f}{\partial t} + \nu \frac{\partial f}{\partial x} \quad (\text{Ταυτότητα ή θεώρημα Euler}) \]

που, συνιστούμε, δεν είναι τίποτε άλλο από τον κανόνα σύνθετης παραγώγισης του απειροστικού λογισμού που παρήχθηκε για πρώτη φορά από τον Euler.
Σημείωση: Γενικεύσεις σε 3 – Διαστάσεις

Στις τρεις διαστάσεις το σώμα αποκτά όγκο. Το σχήμα του καθώς και η παραμόρφωσή κατά την κίνησή του φαίνεται στο ακόλουθο σχήμα:

![Αρχική διαμόρφωση (t = 0)](image1)

![Τελική διαμόρφωση (t = t)](image2)

t = 0:
- θέση σώματος: Φ_0
- τυχαίο τμήμα του σώματος: ρ_0
- υλικό σημείο P
- διάνυσμα θέσης του υλικού σημείου P: X

t = t:
- θέση σώματος: Φ_t
- το ίδιο τμήμα του σώματος: ρ_t
- υλικό σημείο P
- διάνυσμα θέσης του υλικού σημείου P: X

Σχήμα 1.2

Σε καρτεσιανές συντεταγμένες η εξίσωση της κίνησης και τα μεγέθη που περιγράφουν την κίνηση παίρνουν τη μορφή:

(i) Εξίσωση της κίνησης

$x_i = x_i(t, X, t)$ όπου $i, j = 1, 2, 3$

(ii) Ταχύτητα

$u_i = u_i(X, t) = \frac{\partial x_i(X, t)}{\partial t} = \dot{x}_i$

(iii) Επιτάχυνση

$a_i = a_i(X, t) = \frac{\partial^2 x_i(X, t)}{\partial t^2} = \ddot{x}_i$

(iv) Μετατόπιση u

$u_i = u_i(X, t) = x_i - X_i = x_i(t, X, t) - X_i$

(v) Κλίση παραμόρφωσής

$F_{\theta} = \frac{\partial x_i(X_m, t)}{\partial X_j}$, όπου $m = 1, 2, 3$ (όπως και τα i, j)
(vi) Ανημένη Παραμόρφωση

\[\varepsilon_i = \frac{1}{2} (u_{i,i} + u_{i,i}) \quad \text{όπου,} \quad u_{i,j} = \frac{\partial u_i}{\partial X_j} \]

(viii) Σχέση μεταξύ των παραγώγων Lagrange και Euler

\[\phi_i = \frac{\partial \phi_i}{\partial t} + \phi_{i,n} v_n \]

όπου:

\[\phi_i = \frac{\partial \phi_i (X_{i,j},t)}{\partial t} = \ldots = \text{Παράγωγος κατά Lagrange ή "υλική" παράγωγος} \]

\[\frac{\partial \phi_i}{\partial t} = \frac{\partial \phi_i (X_{i,j},t)}{\partial t} = \ldots = \text{Παράγωγος κατά Euler ή "χωρική" παράγωγος} \]

(ix) Επιστημονικής παρατηρήσεις

Για τον τριδιάστατο χώρο

1. \(F_i = \frac{\partial X_i}{\partial X_j} = x_{i,j} \); \(i,j = 1,2,3 \), όπου \(i,j = 1,2,3 \)

Δηλαδή

\[F_i = \begin{pmatrix} F_{i1} \\ F_{i2} \\ F_{i3} \end{pmatrix} \]

υποδηλώνουν τις συνιστώσες του ταννιστή \(F \)

Ο παραπάνω συμβολισμός με δείκτες για ταννιστώς \(F = F_i \hat{\mathbf{i}} \), όπου τα \(\hat{\mathbf{i}} \) συμβολίζουν τα μοναδιαία διανύσματα ενός καρτεσιανού συστήματος και το σύμβολο \(\otimes \) δυαδικό γινόμενο, χρησιμοποιείται και για διανύσματα. Έτσι για \(\gamma \) τυχαίο διάνυσμα έχουμε

\[u = \sum_{i=1}^{3} u_i \hat{\mathbf{i}} \]

Όπου το \(u_i \) ή κάποια άλλος δείκτης εκπαλαμβάνεται θεωρούμε ότι υπάρχει άθροισμα από \(i = 1 \) μέχρι \(i = 3 \). Συνήθως παραλείπουμε το Σ, αλλά θεωρούμε ότι είναι άθροισμα, π.χ. \(A^iu_j = A_{i1}u_1 + A_{i2}u_2 + A_{i3}u_3 \). Σ' αυτή τη γραφή με δείκτες δεν έχει έννοια ένας δείκτης να εκπαλαμβάνεται τρεις φορές (\(A_{iik} \) δεν έχει νόημα).

Το \(\delta_{ij} \) (σύμβολο του Kronecker/μοναδιαίος ταννιστής) ή είναι ίσο με μηδέν ή \(\text{i} \) ίσο με \(\text{καμία} \):

\[\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \]

Δηλαδή \(\delta_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \)

Αν υπάρχει γινόμενο με \(\delta_{ij} \) και όμοιους δείκτες σε άλλο όρο, τότε το \(\delta_{ij} \) παραλείπεται αλλάζοντας τον κοινό δείκτη του άλλου όρου

\[\pi \chi \cdot A_{ij} \delta_{ij} = A_{i1} \]

5
\textbf{grad} \phi = \nabla \phi = \frac{\partial \phi}{\partial x_1} \hat{i}_1 + \frac{\partial \phi}{\partial x_2} \hat{i}_2 + \frac{\partial \phi}{\partial x_3} \hat{i}_3 \quad \text{κλίση βαθμιατού μεγέθους}

\textbf{grad} u = u_i \hat{i}_i \otimes \hat{i}_i \quad \text{(άθροισμα 9 όρων)} \quad \text{κλίση διανύσματος}

Το \text{grad} βαθμιατού μεγέθους είναι διάνυσμα. Το \text{grad} διανύσματος είναι ταυτότητα.

\text{Îχνος}

\textbf{tr} \Gamma = T_{ii} = T_{11} + T_{22} + T_{33} \quad \text{ίχνος ταυτότητα}

\text{tr} \textbf{grad} u = \text{div} u = u_{1,i} + u_{2,i} + u_{3,i} = \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3}

Απόκλιση διανύσματος...είναι βαθμιατό μέγεθος

\textbf{grad} \Gamma = T_{ik} \hat{i}_i \otimes \hat{i}_k \quad \text{κλίση ταυτότητα}

\textbf{div} \Gamma = T_{ij} \hat{i}_i \quad \ldots \quad \text{απόκλιση ταυτότητα...είναι διάνυσμα}

\begin{bmatrix}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{bmatrix}

\begin{bmatrix}
\hat{i}_1 \\
\hat{i}_2 \\
\hat{i}_3
\end{bmatrix}
2. ΜΑΖΑ

2.1) 1 – Διάσταση

Η μάζα των τμημάτων \(p_o \) και \(p_i \) του σώματος σε χρόνους \(t = 0 \) και \(t = t \) ορίζεται από τις σχέσεις:

\[
m(p_o) = \int_{p_o} \rho(X,0) dX
\]

και

\[
m(p_i) = \int_{p_i} \rho(x,t) dx
\]

όπου \(\rho(X,0) \) η αρχική πυκνότητα του σώματος και \(\rho(x,t) \) η πυκνότητα του σώματος σε χρόνο \(t \). Επίσης για τη διευκόλυνση του συμβολισμού στα ολοκληρώματα, κ.λ.π. χρησιμοποιούμε εναλλακτικά \(\rho_0 = p_o \) και \(\rho_t = p_i \).

(i) Αρχή διατήρησης μάζας κατά Lagrange

Σύμφωνα με την αρχή διατήρησης της μάζας, η μάζα του σώματος στις δύο αυτές θέσεις θα πρέπει να είναι η ίδια, δηλαδή:

\[
m(p_i) = m(p_o)
\]

ή

\[
\int_{p_i} \rho(x,t) dx = \int_{p_o} \rho(X,0) dX
\]

(2.1)

Γνωρίζουμε όμως ότι \(F = \frac{dx}{dX} \Rightarrow dx = FdX \), για σταθερό \(t \).

Σημείωση: Γενικότερα, \(dx = \frac{\partial X(X,t)}{\partial X} dX + \frac{\partial X(X,t)}{\partial t} dt \Rightarrow dx = FdX \), για \(t = \) σταθερό

Επομένως η μάζα του σώματος στη θέση \(x \) με αλλαγή του χωρίου ολοκλήρωσης γίνεται:

\[
m(p_i) = \int_{p_i} \rho(x,t) dx = \int_{p_o} \rho(X,t) FdX
\]
\[\int_{\rho_0}^{\rho} d\rho = \int_{0}^{t} \rho(X,t) F \, dx \] (2.2)

Εάν με \(\rho_0 \) συμβολίσουμε την πυκνότητα του σώματος στη θέση \(X \) σε χρόνο \(t=0 \), δηλαδή \(\rho_0 = \rho(X,0) \), και \(\rho = \rho(X,t) \) είναι η πυκνότητα σε τυχαία χρονική στιγμή \(t \) τότε η (2.2) γίνεται:

\[\int_{\rho_0}^{\rho} d\rho \int F dX \Rightarrow \int (\rho F - \rho_0) dX = 0 \quad \forall \rho_0 \in B_0 \]

Με την υπόθεση ότι οι \(\rho, \rho_0, F \) είναι συνεχείς συναρτήσεις του χώρου και του χρόνου συνεπάγεται ότι η ολοκληρωτική ποσότητα είναι εκ ταυτότητας μηδέν:

\[\rho = \frac{\rho_0}{F} \quad \forall (X,t) : \boxed{\text{Αρχή Διατήρησης Μάζας κατά Lagrange}} \] (2.3)

Η σχέση αυτή είναι γνωστή ως αρχή διατήρησης της μάζας κατά Lagrange και με τη βοήθεια αυτής μπορεί να υπολογίσει κανείς την πυκνότητα ενός σώματος κατά τη χρονική στιγμή \(t \) εάν γνωρίζει την αρχική του πυκνότητα και την κίνησή του, δηλαδή την \(F \). Η σχέση αυτή χρησιμοποιείται κυρίως στα στερεά.

(ii) Αρχή διατήρησης της μάζας κατά Euler

Εάν παραγωγίσουμε τη σχέση (2.3) ως προς το χρόνο παίρνουμε:

\[\frac{\partial F}{\partial t} = \rho_0 \Rightarrow \dot{\rho} F = 0 \quad (\rho_0 \ ανεξάρτητο του χρόνου) \Rightarrow \dot{\rho} F + \rho \dot{F} = 0 \] (2.4)

Όμως:

\[F = \frac{\partial \chi(X,t)}{\partial X} \Rightarrow \dot{F} = \frac{\partial}{\partial t} \left(\frac{\partial \chi(X,t)}{\partial X} \right) = \frac{\partial}{\partial X} \left(\frac{\partial \chi(X,t)}{\partial t} \right) = \frac{\partial}{\partial X} (u) = \frac{\partial x}{\partial X} \frac{\partial v}{\partial x} = F \frac{\partial v}{\partial x} \]

\[\dot{F} = F \frac{\partial v}{\partial x} \] (2.5)

Αντικαθιστώντας την (2.5) στην (2.4) έχουμε:

\[\dot{\rho} F + \rho F \frac{\partial v}{\partial x} = 0 \] (2.6)

8
Το F παίρνει τιμές πάντα μεγαλύτερες της μονάδας $F(X,0) = 1$, $F(X,t) \notin \{0, \infty\} \Rightarrow F > 1$ [], επομένως μπορούμε να το απλοποιήσουμε στην παραπάνω σχέση δηλαδή:

$$\dot{\rho} + \rho \frac{\partial v}{\partial x} = 0 \quad (2.7)$$

Λαμβάνουμε υπόψη ότι:

$$\dot{\rho} = \rho \frac{\partial}{\partial t} + \rho \frac{\partial}{\partial x} + \frac{\partial}{\partial t} \frac{\partial}{\partial x} = \frac{\partial}{\partial t} + v \frac{\partial}{\partial x}$$

η (2.7) γίνεται:

$$\frac{\partial}{\partial t} + v \frac{\partial}{\partial x} + \rho \frac{\partial v}{\partial x} = 0 \Rightarrow$$

$$\frac{\partial}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0 \quad \text{δηλαδή } \forall (x,t) \quad \text{Αρχή διατήρησης μάζας κατά Euler} \quad (2.8)$$

Η σχέση στην οποία καταλήγαμε είναι η αρχή διατήρησης της μάζας κατά Euler, η οποία χρησιμοποιείται συνήθως στα γράφια.
Σημείωση: Γενίκευση σε 3 - Διατήρηση

(i) Μάζα

\[m(p_0) = \int_{V_0} \rho \, dV \]

δηλαδή

\[m(p_t) = \int_{V_t} \rho(x, x_2, x_3, t) \, dx_1 \, dx_2 \, dx_3 \]

\[m(p_0) = \int_{V_0} \rho_0 \, dV \]

όπου, \(dV \), \(dV \) είναι ο στοιχείωδης όγκος του σώματος κατά τη χρονική στιγμή \(t = t \) και \(t = 0 \) αντίστοιχα.

Η μάζα του σώματος στις δύο χρονικές παραμένει σταθερή:

\[m(p_0) = m(p_t) \Rightarrow \int_{V_0} \rho(x, t) \, dx = \int_{V_t} \rho_0 \, dV \]

Εξαρτημένα: \[\frac{d\rho}{dV} \Rightarrow d\rho = (\det \mathbf{F}) \, dV \]

Αρα

\[\int_{V_0} \rho(x, t) \, dV \, d\mathbf{F} = \int_{V_t} \rho_0 \, dV \Rightarrow \int (\rho \, \det \mathbf{F} - \rho_0) \, dV = 0 \]

Αρα, η ποσότητα μέσα στο ολοκλήρωμα είναι συνεχής (δηλαδή, \(\rho, F \), \(\rho_0 \) συνεχείς συναρτήσεις) τότε προκύπτει ότι:

\[\rho = \frac{\rho_0}{\det \mathbf{F}} \]

Η Euler μορφή της αρχή της διατήρησης της μάζας είναι:

\[\frac{\partial \rho}{\partial t} + \text{div}(\rho \, \mathbf{u}) = 0 \Rightarrow \]

\[\frac{\partial \rho}{\partial t} + (\rho \, \mathbf{u})_t = 0 \]

Αρχή διατήρησης μάζας κατά Euler

Σημείωση 2: \[\frac{d\mathbf{u}}{dV} = \frac{1}{6} \varepsilon^{ijkl} \mathbf{F}_{ik} \mathbf{F}_{jk} \mathbf{F}_{kl} ; \quad \varepsilon_{ij} = \begin{cases} 1, & i = j \\ -1, & i = k \end{cases} \]

\[\text{div}_2 = v_{ij} = \sum_{i=1}^3 \frac{\partial v_i}{\partial x_j} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3} \]
3. ΔΥΝΑΜΗ-ΟΡΜΗ

3.1) 1 - Διάσταση

3.1.1) Δύναμη

![Diagram](image)

Σχήμα 3.1

Οι δυνάμεις που ασκούνται σε ένα σώμα μπορούν να διακριθούν σε δύο κατηγορίες:

(i) Δυνάμεις συνοχής (contact forces) που οφείλονται στη φύση του σώματος και περιγράφονται τον τρόπο με τον οποίο συγκρατούνται οι δομικές μονάδες, π.χ. μόρια μέσα στο σώμα. Ορίζονται ως αμοιβαίες δυνάμεις μεταξύ γειτονικών σημείων στο σημείο x του ρυμού R. Σε διάφορες ειδικές δυνάμεις ορίζονται γενικά ως δυνάμεις ανά μονάδα επιφάνειας και φαινομενολογικά παριστάνουν το μέσο όρο μοριακών δυνάμεων μεταξύ γειτονικών υλικών σημείων. Οι δυνάμεις αυτές συμβολίζονται με $f_{c} = T_{2} - T_{1}$ και φαίνονται στο σχήμα.

(ii) Μαζικές δυνάμεις (body forces). Οι δυνάμεις αυτές, οι οποίες συμβολίζονται με $b(x,t)$, οφείλονται σε εξωτερικά από το σώμα αίτια, όπως βαρυτικό ή ηλεκτρομαγνητικό πεδίο και όχι στο ίδιο το σώμα. Οι δυνάμεις αυτές εκφράζονται ως δύναμη ανά μονάδα μάζας και φαινομενολογικά παριστάνουν το μέσο όρο των δυνάμεων που ασκούνται στα μόρια της γειτονικής ενός υλικού σημείου από ένα εξωτερικό πεδίο:

$$b = \frac{f_{b}}{dm} = \frac{f_{b}}{\rho dx} \Rightarrow f_{b} = b \rho dx; \quad b \equiv b(x,t)$$
Η συνολική δύναμη που ασκείται στο τμήμα \(p_i \) του σώματος είναι:

\[
f(p_i) = f_z(p_i) + f_n(p_i) = (T_2 - T_1) + \int_{x_i}^{x_2} \rho b(x, t) dx
\]

(3.1)

όπου: \(x_i, x_2 \) τα σημεία που οριοθετούν το τμήμα \(p_i \) του σώματος. Όμως:

\[
T_2 - T_1 = \int_{x_i}^{x_2} \frac{\partial T}{\partial x} dx
\]

(3.2)

Αρα από τις σχέσεις (3.1) και (3.2) προκύπτει:

\[
f(p_i) = \int_{x_i}^{x_2} \frac{\partial T}{\partial x} dx + \int_{x_i}^{x_2} \rho b(x, t) dx \Rightarrow f(p_i) = \int_{x_i}^{x_2} \left(\frac{\partial T}{\partial x} + \rho b \right) dx
\]

(3.3)
3.1.2) Ορμή

Η ορμή του τμήματος \(p_i \) του σώματος \(B_i \) ορίζεται από τη σχέση:

\[
\ell(p_i) = \int_{p_i} \rho \, u \, dx
\]

όπου: \(\rho \) είναι η πυκνότητα και \(u \) είναι η ταχύτητα.

(i) Αρχή διατήρησης της ορμής κατά Euler

Σε αναλογία με τον πρώτο νόμο του Νέφτσονα όπου \(f = ma = \frac{du}{dt} \) ο Euler διατύπωσε ένα αντίστοιχο νόμο διατήρησης της ορμής για τη μηχανική του συνεχούς μέσου γνωστό ως το πρώτο αξίωμα του Euler:

\[
f(p_i) = \dot{\ell}(p_i)
\]

(3.5)

Η σχέση αυτή αποτελεί την ολοκληρωτική μορφή του αξιώματος της αρχής διατήρησης της ορμής. Την εξίσωση αυτή μπορούμε να τη μετασχηματίσουμε σε διαφορική, η οποία θα μας δώσει τη λειτουργική διαφορική μορφή της διατήρησης της ορμής ή εξίσωση πεδίου. Από τον όρισμό έχουμε:

\[
\int_{p_i} \left(\frac{\partial T}{\partial x} + pb \right) dx = \frac{d}{dt} \int_{p_i} \rho u \, dx
\]

Στη παραπάνω σχέση διατήρησης της ορμής, για να περάσουμε τη παραγωγικότητα μέσα στο ολοκλήρωμα πρέπει να μετατρέψουμε το ολοκλήρωμα στο \(p_i \) σε ολοκλήρωμα στο \(p_o \). Έτσι:

\[
\frac{d}{dt} \int_{p_i} \rho \, u \, dx = \frac{d}{dt} \int_{p_o} \rho \, u \, F \, dx = \int_{p_o} \rho \, u \, dX = \int_{p_o} \dot{\rho} \, u \, dX; \quad (\rho = \rho_o / F)
\]

το οποίο πρέπει επίσης να μετατρέψουμε σε ολοκλήρωμα στο \(p_i \) επειδή το αξίωμα διατήρησης της ορμής διατυπώθηκε στο \(p_i \). Ως \(\rho_o dX = d\rho dX = dm \), οπότε το ολοκλήρωμα της ορμής γίνεται:

\[
\dot{\ell}(p_i) = \int_{p_o} \dot{\rho} \, u \, dX = \int_{p_o} \rho \, u \, dx
\]

(3.6)

Τελικά η αρχή διατήρησης της ορμής παίρνει τη μορφή:

\[
f(p_i) = \dot{\ell}(p_i) \Rightarrow \int_{p_i} \left(\frac{\partial T}{\partial x} + pb \right) dx = \int_{p_o} \rho \, u \, dx \Rightarrow \int_{p_o} \left(\frac{\partial T}{\partial x} + pb - \rho \, u \right) dx = 0, \quad \forall \rho_i \in B_i
\]

(3.6)

Υποθέτοντας ότι η ποσότητα μέσα στο τελευταίο ολοκλήρωμα είναι συνεχής συνάρτηση προκύπτει:
\[
\frac{\partial T}{\partial x} + \rho b = \rho \dot{v}
\]

(3.7)

η οποία αποτελεί τη διαφορική μορφή της αρχής διατήρησης της ορμής κατά Euler.

Υποθέτουμε ότι στην παραπάνω σχέση \(\dot{v} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \)

(ii) Αρχή διατήρησης της ορμής κατά Lagrange

Κύριος στόχος μας είναι να εκφράσουμε την έκφραση του πρώτου αξιώματος του Euler συναρτήσει του \(X \). Για το σκοπό αυτό αντικαθιστούμε τον όρο \(\frac{\partial T}{\partial x} \) της σχέσης (3.7) με:

\[
\frac{\partial T}{\partial x} = \frac{\partial T}{\partial X} \frac{\partial X}{\partial x} = \frac{\partial T}{\partial X} \frac{1}{F}
\]

δηλαδή:

\[
\frac{\partial T}{\partial X} \frac{1}{F} + \rho b - \rho \dot{v} = 0
\]

και πολλαπλασιάζουμε με \(F \):

\[
\frac{\partial T}{\partial x} + \rho F b - \rho F \dot{v} = 0
\]

Εάν λάβουμε υπόψη τη σχέση \(\rho = \frac{\rho_0}{F} \) (αρχή διατήρησης της μάζας κατά Lagrange) και με απαλοιφή του \(F \) (\(F > 1 \)) παίρνουμε τελικά:

\[
\frac{\partial T}{\partial X} + \rho_0 b = \rho_0 \dot{v}
\]

(3.8)
Σημείωση: Γενίκευση σε 3 - Διαστάσεις

Σε τρεις διαστάσεις η συνολική δύναμη που ασκείται σ' ένα σώμα διαμορφώνεται ως εξής:

\[f(p_t) = \int_{S} f(x,t)ds + \int_{\Omega} \rho_b dv \]

όπου: \(ds \) η στοιχειώδης επιφάνεια που περικλείεται στο \(\partial \Omega \), \(dv \) ο θεωρούμενος στοιχειώδης όγκος, \(f \) οι δυνάμεις επαφής και \(b(x,t) \) οι δυνάμεις πεδίου.

Οι δυνάμεις επαφής σε μια επιφάνεια με κάθετο σε αυτή μοναδιαίο διάνυσμα \(\vec{h} \) εκφράζονται με τη βοήθεια του τανυστή της τάσης ως εξής:

\[f_3(x,t) = T^T(\vec{h},t) \]

όπου: \(T \) ο τανυστής της τάσης και \(\vec{h} \) το κάθετο μοναδιαίο διάνυσμα στην επιφάνεια. Έτσι, η σχέση που δίνει τη συνολική ασκούμενη δύναμη σε ένα στοιχειώδη όγκο \(\Omega \) που περιβάλλεται από μια από μια στοιχειώδη επιφάνεια \(ds \) γράφεται ως εξής:

\[f(p_t) = \int_{S} T^T(\vec{h},t)ds + \int_{\Omega} \rho_b dv \]

και εφαρμογή του Θεορήματος της Απόκλισης (Divergence Theorem) στο επιφανειακό ολοκλήρωμα της παραπάνω σχέσης μας δίνει tελικά:

\[f(p_t) = \int_{\Omega} \text{div} T^Tdv + \int_{\Omega} \rho_b dv \]

Σημειώνεται εδώ ότι η ισορροπία ροπών (αρχή διατήρησης της στροφομής) επιβάλλει τη συμμετρία του τανυστή της τάσης, δηλαδή \(T = T^T \).

Η ορμή δίνεται από τη σχέση:

\[f(p_t) = \int_{\Omega} \rho_b dv \]

Ομοι.: \(f(p_t) = \dot{\mathbf{e}}(p_t) \ldots \)

1ο αξίωμα Euler: διατήρηση γραμμικής ορμής
\[\int \text{div} \mathbf{T} \, dv + \int \rho \text{h} \, dv = \int \rho \text{v} \, dv \Rightarrow \int (\text{div} \mathbf{T} + \rho \mathbf{b} - \rho \text{v}) \, dv = 0; \quad \forall \mathbf{p} \Rightarrow \]

Αρχή διατήρησης της ορμής κατά Euler:

\[\text{div} \mathbf{T} + \rho \mathbf{b} = \rho \mathbf{v} \quad \text{ή} \quad T_{ij} + \rho b_i = \rho v_i \quad \text{σε γραφή με δείκτες} \]

Αν \(\dot{\mathbf{v}} = 0, \quad \dot{\mathbf{b}} = 0 \Rightarrow \text{div} \mathbf{T} = T_{ij} = 0 \quad \text{εξισώσεις ισορροπίας} \]

Σημείωση 1:

\((\text{div} \mathbf{T})_{,i} = T_{ij} \) δηλαδή η \(\text{div} \) ταννοτή έχει διάνυσμα και η γραφή με δείκτες έχει υποθέσει

Σημείωση 2:

Σε συντεταγμένες Lagrange η διαφορική εξίσωση διατήρησης ορμής γίνεται

\[\text{div} \mathbf{T} + \rho_0 \mathbf{b} = \rho_0 \mathbf{v} \quad \text{ή} \quad T_{ij} + \rho_0 b_i = \rho_0 v_i \]

Σημείωση 3:

\[T_{,i,j} = 0 \quad \text{για} \quad i = 1, 2, 3 \Rightarrow \]

\[
\begin{align*}
\frac{\partial T_{11}}{\partial x_1} + \frac{\partial T_{12}}{\partial x_2} + \frac{\partial T_{13}}{\partial x_3} &= 0 \\
\frac{\partial T_{21}}{\partial x_1} + \frac{\partial T_{22}}{\partial x_2} + \frac{\partial T_{23}}{\partial x_3} &= 0 \\
\frac{\partial T_{31}}{\partial x_1} + \frac{\partial T_{32}}{\partial x_2} + \frac{\partial T_{33}}{\partial x_3} &= 0
\end{align*}
\]

Σημείωση 4:

Ανάλυση Τάσης (Cauchy)

Μια στοιχειώδης επιράνεια ορίζεται από το στοιχειώδης εμβαδόν \(dA \) και το κάθετο μοναδιαίο διάνυσμα σε αυτήν \(\hat{\mathbf{n}} \). Ισχύουν οι ακόλουθες σχέσεις (Θεώρημα Cauchy)

\[T_3 (s, t) = T (s, t) = T^T (s, t) \hat{\mathbf{n}} \]

\[T_3 = T^T \quad \text{ή} \quad T_{ij} = T_{ji} \]

δηλαδή το διάνυσμα τάσης \(T_3 \) είναι γραμμική συνάρτηση του \(\hat{\mathbf{n}} \) και ο συντελεστής αναλογίας είναι ο ταννοτής της τάσης. Επίσης αποδεικνύεται ότι ο ταννοτής της τάσης είναι συμμετρικός.
4. ΕΝΝΟΙΑ ΤΗΣ ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ

Για τη περιγραφή λοιπόν της κίνησης ενός σώματος σε μια διάσταση είδαμε ότι πρέπει να γνωρίζουμε τρεις βασικές ποσότητες:
(i) την εξίσωση της κίνησης \(x = \chi(X,t) \), από την οποία θα προσδιοριστεί στη συνέχεια η ταχύτητα \(v \), η επιτάχυνση \(a \), η μετατόπιση \(u \) και η ανησυχήμα επαρμόρφωση \(e \) του σώματος.
(ii) τη πυκνότητα \(\rho = \rho(x,t) \).
(iii) τη δύναμη επαφής \(T = T(x,t) \). (οι μαζικές δυνάμεις μπορούν να μετρηθούν πειραματικά και θεωρούνται δεδομένες). Για το προσδιορισμό του τριών αξιώστων έχουμε στη διάθεση μας δύο αξιώματα:

(1) Το αξίωμα διατήρησης της μάζας:

\[
\rho \frac{\partial \rho}{\partial t} + \rho \frac{\partial (\rho v)}{\partial x} = 0 \quad (\text{μορφή Euler})
\]

(2) Το αξίωμα διατήρησης της ορμής:

\[
\frac{\partial T}{\partial X} + \rho_e b = \rho_e \dot{u} \quad (\text{μορφή Lagrange}) \quad ή
\]

\[
\frac{\partial T}{\partial x} + \rho b = \rho \dot{v} \quad (\text{μορφή Euler})
\]

Η ύπαρξη τριών αναγκότων και δύο μόνο εξισώσεων επαβάλλει (μαθηματική αναγκαιότητα) την διατήρηση μιας τρίτης εξίσωσης. Η εξίσωση αυτή δεν μπορεί να είναι τόσο γενική όσο οι αριθμοί της εισήγαγουμε (οι αριθμοί ισχύουν για όλα τα υλικά) αλλά αντιπροσωπεύει το υλικό στο οποίο αναφερόμαστε. Με αυτόν τον τρόπο θα καταλήγουμε κάθε φορά σε λύσεις συγκεκριμένες (και για γραμμικά συστήματα μοναδικές) που χαρακτηρίζουν την κίνηση του κάθε υλικού σημείου ενός συγκεκριμένου σώματος και το διαχωρίζουν από τα υπόλοιπα. Οι εξισώσεις αυτές είναι γνωστές ως καταστατικές εξισώσεις. Συνεχίζουν, η τάση (δύναμη επαφής) με την παραμόρφωση και υποδεικνύουν πως τα υλικά διαφέρουν μεταξύ τους (φυσική αναγκαιότητα). Χωρίς τις καταστατικές εξισώσεις δεν είναι δυνατόν να διαχωρισθούν τα διάφορα υλικά μεταξύ τους, καθώς οι υπόλοιπες εξισώσεις διατήρησης μάζας και ορμής ισχύουν για όλα τα υλικά ανεξαρτήτως της φύσης τους. Οι καταστατικές εξισώσεις συνδέουν την απόκριση (αποτέλεσμα) με τα αίτια, π.χ. την κίνηση ή την παραμόρφωση με τη δύναμη ή τη τάση που τα προκαλεί. Στη συνέχεια θα εξεταστούν μερικές κατηγορίες υλικών και θα παρουσιαστούν οι καταστατικές εξισώσεις που τις περιγράφουν.
5. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΑΤΑΣΤΑΤΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

5.1) Γραμμικό ελαστικό στερεό

Κύρια χαρακτηριστικά των στερεών αυτών είναι ότι η τάση μεταβάλλεται γραμμικά με την ανιχνευμένη παραμόρφωση ε. Με άλλα λόγια τα στερεά αυτά περιγράφονται από καταστατικές εξισώσεις της μορφής:

\[T = k \varepsilon \]

όπου \(\varepsilon = \frac{\Delta \ell}{\ell} = \frac{\ell - \ell_o}{\ell_o} \) και

\(k \) το μέτρο ελαστικότητας

Σχήμα 5.1

Στη περίπτωση αυτή το σύστημα των εξισώσεων που έχουμε να λύσουμε για να περιγράψουμε την κίνηση του σώματος διαμορφώνεται ως εξής:

\[T = k \varepsilon \] (5.1)

\[\frac{\partial T}{\partial X} + \rho_o \frac{b}{\rho_o} = \rho_o \dot{v} \] (5.2)

\[\rho = \frac{\rho_o}{F} \] (5.3)

Από (5.2), (5.3) παίρνουμε:

\[\frac{\partial (k \varepsilon)}{\partial X} + \rho_o b = \rho_o \dot{v} \]

Όμως: \(\varepsilon = \frac{\partial u}{\partial X}; \quad v = \frac{\partial X}{\partial t} = \dot{x} = \frac{\partial}{\partial t}(X - x) = \dot{u} \) (\(X \) ανεξάρτητο του χρόνου)

Άρα:

\[\frac{\partial}{\partial X} \left(k \frac{\partial u}{\partial X} \right) + \rho_o b = \rho_o \dot{u} \]

Αν \(k = \) σταθερό τότε:

\[k \frac{\partial^2 u}{\partial X^2} + \rho_o b = \rho_o \dot{u} \] (5.4)

Η λύση της διαφορικής αυτής εξίσωσης θα μας δώσει το \(u \) και συνεπώς το \(\varepsilon \) και το \(F \), ενώ ακολούθως από τις (5.2) και (5.3) θα υπολογίσουμε τα \(T \) και \(\rho \).
Εάν θεωρήσουμε τα εξωτερικά πεδία ως αμελητέα (b = 0) και θέσουμε \(c^2 = \frac{k}{\rho_0}\) (όπου c η ταχύτητα του ήχου στα στερεά) η διαφορική εξίσωση (5.4) διαμορφώνεται σε:

\[
\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0
\]

(5.5)

Η διαφορική αυτή εξίσωση είναι γνωστή ως εξίσωση κύματος μιας διάστασης ή ως εξίσωση D' Alembert, και η γενική λύση της προσδιορίζεται παρακάτω.

Ο D' Alembert πρώτος διαπίστωσε ότι κάθε συνάρτηση της μορφής \(f(x - ct)\) είναι λύση της παραπάνω εξίσωσης. Συγκεκριμένα, αν η \(f\) είναι συνάρτηση δύο φορές παραγωγής, τότε:

\[
\frac{\partial}{\partial t} f(x - ct) = -cf'(x - ct) \quad , \quad \frac{\partial^2}{\partial t^2} f(x - ct) = c^2 f''(x - ct)
\]

\[
\frac{\partial}{\partial x} f(x - ct) = f'(x - ct) \quad , \quad \frac{\partial^2}{\partial x^2} f(x - ct) = f''(x - ct).
\]

Επισημένως είναι προφανές ότι για κάθε \(u = f(x - ct)\) η εξίσωση κύματος μιας διάστασης ικανοποιείται. Το ίδιο αποδεικνύεται εύκολα και για κάθε \(u = g(x + ct)\). Αφού όμως η εξίσωση είναι μια γραμμική διαφορική εξίσωση με μερικές παραγώγους, συνεπάγεται ότι η γενική της λύση θα είναι ένας γραμμικός συνδυασμός των δύο παραπάνω ειδικών λύσεων, και έτσι καταλήγουμε στη λύση του D' Alembert

\[u(x, t) = f(x - ct) + g(x + ct)\]

όπου οι συναρτήσεις \(f\) και \(g\) προσδιορίζονται από τις συνοριακές συνθήκες του προβλήματος.
5.2) Εξίσωση ελαστικότητας σε τρεις διαστάσεις

Σε τρεις διαστάσεις η καταστατική εξίσωση του γραμμικού ελαστικού μέσου είναι:

\[T = C \varepsilon \quad \Leftrightarrow \quad T_{ij} = C_{ijkl} \varepsilon_{kl} \]
\[(5.6) \]

Στη περίπτωση που το υλικό είναι ισότροπο, τότε και ο τανυστής \(C_{ijkl} \) είναι ισότροπος και μπορεί να γραφτεί ως εξής:

\[C_{ijkl} = a_i \delta_{ij} \delta_{kl} + a_j \delta_{ik} \delta_{jl} + a_k \delta_{ij} \delta_{jl} \]

Ο τανυστής \(C_{ijkl} \) είναι συμμετρικός ως προς \(i,j \) (επειδή ο \(T_{ij} \) είναι συμμετρικός) και ως προς \(k,l \) (γιατί το \(\varepsilon_{kl} \) είναι συμμετρικό).

Μαθηματικά επακόλουθο της συμμετρίας αυτής είναι:

\[C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) \]
\[(5.7) \]

Αντικαθιστώντας την (5.7) στην (5.6) παίρνουμε:

\[T_{ij} = [\lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})] \varepsilon_{kl} = \lambda \delta_{ij} \delta_{kl} \varepsilon_{kl} + \mu \delta_{ik} \delta_{jl} \varepsilon_{kl} + \mu \delta_{il} \delta_{jk} \varepsilon_{kl} \]
\[(5.8) \]

Ισχύει όμως: \(A_{ij} \delta_{lm} = A_{mjk}, \quad A_i \delta_{ij} = A_j, \quad \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \)

Αρα η (5.8) απλοποιείται και γίνεται ως εξής:

\[T_{ij} = \lambda e_{ik} \delta_{ij} + \mu (e_{ij} + e_{ji}) \]

και επειδή ο τανυστής \(\varepsilon \) είναι συμμετρικός προκύπτει τελικά:

\[T_{ij} = \lambda e_{ik} \delta_{ij} + 2 \mu e_{ij} \]
\[\text{Νόμος του Hooke} \]

(5.9)

Εάν τη μορφή αυτή του τανυστή της τάσης την αντικαταστήσουμε στη διαφορική εξίσωση της διατήρησης της ορμής έχουμε:

\[T_{ij,j} + \rho_0 b_i = \rho_0 \ddot{u}_i \Rightarrow (\lambda e_{ik} \delta_{ij} + 2 \mu \varepsilon_{ij})_{,j} + \rho_0 b_i = \rho_0 \ddot{u}_i \Rightarrow \]
\[\Rightarrow \lambda e_{ik,j} \delta_{ij} + 2 \mu \varepsilon_{ij,j} + \rho_0 b_i = \rho_0 \ddot{u}_i \Rightarrow \]
\[\lambda e_{ik,j} + 2 \mu \varepsilon_{ij,j} + \rho_0 b_i = \rho_0 \ddot{u}_i \]
\[(5.10) \]

20
Όμως:
\[\varepsilon_{kk} = \frac{1}{2} (u_{k,k} + u_{k,k}) \Rightarrow \varepsilon_{kk,j} = \frac{1}{2} (u_{k,k} + u_{k,k})_j = u_{k,k,j} \]

και

\[\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \Rightarrow \varepsilon_{ij,j} = \frac{1}{2} (u_{i,j} + u_{j,i})_j = \frac{1}{2} (u_{i,j} + u_{j,i}) = \frac{1}{2} (u_{i,j,j} + u_{j,i,j}) \]

Οι δείκτες \(k,j \) που εμφανίζονται επαναλαμβανόμενοι στους παραπάνω όρους, είναι ανθαίρετοι και επιλέγονται κάθε φορά κατά βούληση χωρίς να έχουν ιδιαίτερη φυσική σημασία, αφού ένας δείκτης επαναλαμβανόμενος δύο φορές υποδηλώνει άθροισμα διπλάδη: \(A_{kk} = A_{ii} = A_{ii} + A_{ii} + A_{ii} \). (\(k,j \) are dummy indices). Ωστόσο στη σειρά περίπτωση μας τα \(u_{k,k} \) και \(u_{j,j} \) στα οποία καταλήξαμε αντικροσσώνουν ακριβώς την ιδια ποσότητα. Για διευκόλυνση των πράξεων θα γράφουμε \(u_{j,j} \) αντί για \(u_{k,k} \). Άρα:

\[T_{i,j} = \lambda (\varepsilon_{kk,j}) + 2 \mu \varepsilon_{ij,j} = \lambda u_{k,k,j} + 2 \mu \left(\frac{1}{2} u_{i,j,j} + \frac{1}{2} u_{j,i,j} \right) = \lambda u_{k,k,j} + \mu u_{i,j,j} + \mu u_{j,i,j} \Rightarrow \]

\[T_{i,j} = \mu u_{i,j,j} + (\lambda + \mu) u_{j,i,j} \]

Τελικά η (5.10) γίνεται:

\[\mu u_{i,j,j} + (\lambda + \mu) u_{j,i,j} + \rho \omega b_t = \rho \omega \ddot{u}_j \Rightarrow \mu \nabla^2 \dddot{u}_j + (\lambda + \mu) (\text{div}\text{v})_j + \rho \omega b_t = \rho \omega \ddot{u}_j \]

Σημείωση: \(\nabla^2 \varphi = \varphi_{,ii} \) και \(\text{div}\text{v} = u_{j,j} \)

οπότε τελικά:

\[\mu \nabla^2 \dddot{u} + (\lambda + \mu) \text{grad}\text{(div}\text{v}) + \rho \omega \dddot{u} = \rho \omega \ddot{u} \]

που επίσης είναι γνωστές και ως εξισώσεις του Lame.

Σημείωση

Μια εξίσωση ανάλογη της (5.11) υσχεί για τη ρευστομηχανική. Συγκεκριμένα η καταστατική εξίσωση Νευτωνικού υγρού είναι

\[\dot{T} = -p \mathbf{I} + \lambda (\nabla \cdot \text{v}) \mathbf{I} + 2 \mu (\nabla \text{v} + (\nabla \text{v})^T) \]

όπου \(D_{ij} = \frac{1}{2} (u_{ij,j} + u_{ji,j}) \)

Αντικαθιστώντας την εξίσωση κίνησης κατά Euler, δηλαδή \(\text{div}\text{T} + \rho \ddot{b} = \rho \dddot{u} \) ή \(T_{ij,j} + \rho \ddot{b}_j = \rho \left(\frac{\partial \ddot{u}}{\partial t} + u_{ij,j} \right) \)

\(-\text{grad}\rho + \mu \nabla^2 \dddot{u} + \text{grad}(\text{div}\text{v}) = \rho \left(\frac{\partial \ddot{u}}{\partial t} + u_{ij,j} \right) \)

οι σχέσεις είναι οι αντίστοιχες εξισώσεις Navier-Stokes της ρευστομηχανικής.
5.3) Μοντέλο Kelvin – Voigt (K-V)

Στο μοντέλο αυτό, σε αντίθεση με το γραμμικό ελαστικό στερεό, θεωρούμε ότι η τάση που ασκείται σε ένα σημείο του σώματος εξαρτάται όχι μόνο από την παραμόρφωση F και την αντιγραμμένη παραμόρφωση e αλλά και από την ιστορία της παραμόρφωσης (ρυθμός παραμόρφωσης). Μπορούμε επιπλέον, να φανταστούμε ότι η κίνηση ενός σωματιδίου περιγράφεται από το μηχανικό μοντέλο:

![Schema 5.2](image)

Αυτό αποτελείται από ελατήριο σταθεράς k σε παράλληλη διατάξη με έναν αποσβεστήρα μ. Οι καταστατικές εξισώσεις που ισχύουν για το ελατήριο και τον αποσβεστήρα είναι:

(i) Ελατήριο: $T_k = ke_k$ \hfill (5.11)
(ii) Αποσβεστήρας: $T_\mu = \mu e_\mu$ \hfill (5.12)

Σημείωση

Είναι γνωστό ότι για τα Νευτωνικά υγρά ισχύει ότι η διατηρητική τάση μεταξύ του υγρού και μιας πλάκας που κινείται με σταθερή ταχύτητα είναι ίση με: $T_k = \mu \frac{dv}{dx}$

Όπου μ είναι αρχικής του υγρού

Εύκολα επιπλέον αποδεικνύεται ότι $\frac{dv}{dx} = \varepsilon$ αφού

$\frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = \frac{dv}{dx} \frac{dx}{\hat{t}} \rightarrow \frac{dv}{\hat{t}} = \frac{dv}{dx} \frac{dx}{\hat{t}} = \varepsilon$,

όμως $\frac{dv}{dx} = \varepsilon \Rightarrow \frac{dv}{\hat{t}} = \frac{dx}{\hat{t}} = \varepsilon$

Η παραμόρφωση e_k του ελατήριου (λόγω της τάσης T) είναι ίση με την αντιστοιχή παραμόρφωση e_μ του αποσβεστήρα, λόγω της παράλληλης διατάξης τους, δηλαδή $e_k = e_\mu = \varepsilon$ και η συνολική τάση που ασκείται σε ένα στοιχείο διαρκείας από το άθροισμα των επιμέρους ασκούμενων σε αυτό τάσεων T_k και T_μ, δηλαδή:

$T = T_k + T_\mu = ke_k + \mu e \Rightarrow T = ke_k + \mu e$ \hfill (5.13)

Γνωρίζουμε όμως ότι:

22
\[
\frac{\partial T}{\partial X} + \rho_o \frac{b}{u} \frac{\partial u}{\partial X} = \frac{\partial}{\partial X} \left(\frac{\partial u}{\partial X} + \mu \frac{\partial u}{\partial X} \right) = \rho_o \frac{\partial u}{\partial X} = k u_{xx} + \mu u_{xx} = \rho_o \frac{\partial u}{\partial X} \tag{5.14}
\]

Η διαφορική εξίσωση στην οποία καταλήξαμε είναι η εξίσωση κόμματος με έναν επιπλέον όρο, αυτόν της απόσβεσης και είναι γνωστή ως εξίσωση κόμματος με απόσβεση. Η γραφική παράσταση ενός τέτοιου κόμματος δίνεται στα ακόλουθα σχήματα 5.3 και 5.4 και περιλήψη της σχετικής ανάλυσης περιέχεται στη Σημείωση 1.

Σχήμα 5.3

Εάν η απόσβεση μ είναι αρκετά μεγάλη το συμπέρασμα δεν θα προέλθει και να ταλαντωθεί όποιος φαινείται στο ακόλουθο σχήμα:

Σχήμα 5.4

Σημείωση 1

Οι γραφικές παραστάσεις στα Σχήματα 5.3 και 5.4 αποτελούν λύση της κυματικής εξίσωσης με απόσβεση για ένα ελαστικό μήκους \(L_1 \), \(0 \leq X \leq L \) με μηδενικές οριακές συνθήκες στα δύο άκρα του \(u(0,t) = u(L,t) = 0 \), μηδενική αρχική μετατόπιση \(u(0,x) = 0 \) και αρχική ταχύτητα \(u_x = \dot{u}(X,0) = \sin \left(\frac{\pi X}{L} \right) \). Οι λεπτομέρειες δίνονται παρακάτω.

Συνοριακές συνθήκες: για \(0 < X < L \)

Αρχικές συνθήκες

(συναρτήσεις του \(X \)) \(u(X,0) = 0 \) , \(u(X,0) = \sin \left(\frac{\pi X}{L} \right) \)

Οριακές συνθήκες \(u(0,t) = 0 \) , \(u(L,t) = 0 \)

23
(συναρτηση του t)

Αναφερόμενη μια λύση χωρίζομενων μεταβλητών η οποία να ικανοποιεί τις συνοριακές συνθήκες:

\[u(x, t) = U(t) \sin \frac{\pi x}{L} \quad (\ast) \]

Αντικαθιστώντας τη πιο πάνω λύση (\ast) στην αρχική εξίσωση:

\[ku_{xx} + \mu u_{xx} = \rho_o \ddot{u} \]

\[k \left(\frac{\pi}{L} \right)^2 U + \mu \left(\frac{\pi}{L} \right)^2 \dot{U} + \rho_o \ddot{U} = 0 \]

Η πιο πάνω εξίσωση για \(U(0) = 0 \) και \(\dot{U}(0) = 1 \) έχει λύσεις της μορφής:

\[u(x, t) = \sin\left(\frac{\pi x}{L} \right)e^{-\omega t} \left\{ \begin{array}{ll}
\frac{1}{\alpha} \sinh(\alpha t) & (i) \text{ Για } \alpha \text{ πραγματικό (} \alpha \in \mathbb{R} \text{)} \\
\frac{1}{|\alpha|} \sinh(|\alpha| t) & (ii) \text{ Για } \alpha \text{ φανταστικό (} \alpha \in \mathbb{I} \text{)}
\end{array} \right. \]

Οπου \(\omega = \frac{\mu}{2\rho_o} \left(\frac{\pi}{L} \right)^2 \), \(\alpha = \omega \sqrt{1 - \frac{4\rho_o K}{\mu^2 \left(\frac{\pi}{L} \right)^2}} \)

Η λύση (i) της εξίσωσης

Η λύση (ii) της εξίσωσης
Σημείωση 2: Φαινόμενο Ερπυσμού στο Μοντέλο K-V

Υπάρχει άμεση συσχέτιση του μοντέλου K-V με το φαινόμενο ερπυσμού. Διατηρώντας σταθερή την τάση \(T = T_0 \), δηλαδή αν η ιστορία φόρτισης είναι της μορφής

\[
T = T_0 = \mu \varepsilon + k \varepsilon \Rightarrow \varepsilon + \frac{k}{\mu} \varepsilon = \frac{T_0}{\mu} \\
\varepsilon(t = 0) = 0
\]

αποδεικνύεται ότι η ανησυχητική παραμόρφωση συμβαίνει με το χρόνο.

Συγκεκριμένα,

\[
\varepsilon(t) = \frac{T_0}{k} (1 - e^{-\frac{t}{\tau}})
\]

\(\tau = \mu/k \) (χαρακτηριστικός χρόνος ερπυσμού)

Η γραφική παράσταση της παραπάνω λύσης της διαφορικής εξίσωσης έχει τη μορφή του σχήματος και αναπαριστά το γνωστό φαινόμενο του ερπυσμού.
5.4) Μοντέλο Maxwell

Είναι ένα μοντέλο με μεγάλο εύρος εξάρτησης από την ιστορία της παραμόρφωσης (ολοκληρωτικό μοντέλο). Στο μοντέλο αυτό θεωρούμε ότι κάθε σωματίδιο X λειτουργεί σαν ένας μηχανισμός από ένα ελατήριο και ένα αποσβεστήρα σε σειρά.

\[
\begin{array}{c}
\text{T} \leftarrow \text{k>0} \quad \text{μ>0} \quad \text{T} \\
\end{array}
\]

Στην περίπτωση αυτή έχουμε:

\[T_k = k \varepsilon_k \quad T_\mu = \mu \varepsilon_\mu \quad (5.15)\]

Λόγω της εν σειρά διάταξης έχουμε:

\[T_k = T_\mu = T \quad \text{και} \quad \varepsilon = \varepsilon_k + \varepsilon_\mu \quad (5.16)\]

Έτσι η καταστατική εξίσωση για το συγκεκριμένο υλικό δίνεται από τη σχέση:

\[\dot{\varepsilon} = \dot{\varepsilon}_k + \dot{\varepsilon}_\mu = \frac{T_k}{k + T_\mu} / \mu \Rightarrow \dot{\varepsilon} = \frac{\dot{T}}{k + T_\mu} / \mu \quad (5.17)\]

\[
\begin{array}{c}
\dot{T} + \frac{1}{\tau} T = k \dot{\varepsilon} \quad (5.18)
\end{array}
\]

Τώρα προχωρούμε στη λύση της διαφορικής αυτής εξίσωσης. Κατ' αρχήν μπορούμε να γράψουμε

\[
e^{\psi T} = e^{k \dot{\varepsilon}} \quad (5.19)\]

Ολοκληρώνοντας έχουμε:

\[
\int e^{\psi T} (\varepsilon(\xi)) d\xi = \int_k e^{\psi T} \delta(\xi) d\xi \quad (5.20)
\]

Επίσης παρατηρούμε ότι:

\[
e^{\psi T} T(\xi) \big|_{-\infty}^{t} = e^{\psi T} T(t) - e^{-\infty T(-\infty)} = e^{\psi T} T(t) \quad (5.21)\]

Έτσι

\[
T(t) = \int_{-\infty}^{t} k e^{-\psi t} \delta(\xi) d\xi \rightarrow T(t) = \int_{-\infty}^{t} \delta(\xi) = F[\varepsilon(\xi)] \quad (5.22)
\]
Όπου το σύμβολο \(F \) παριστάνει συναρτησιακό (δηλαδή συνάρτηση της καμπύλης \(\varepsilon(\xi); -\infty < \xi < 1 \) αντί ακλός της κλασικής μεταβλητής \(t \). Θετοντας τώρα: \(t - \xi = s \) (\(s=\text{παρελθόν} \), η παραπάνω εξίσωση μετασχηματίζεται στην

\[
T(t) = \int_{\xi}^{\infty} k e^{\sigma r} \dot{\varepsilon}(t-s) \, ds \tag{5.23}
\]

Μια άλλη χρήσιμη μορφή της καταστατικής εξίσωσης λαμβάνεται με ολοκλήρωση της παραπάνω σχέσης δίνοντας:

\[
T(t) = -k \int_{0}^{\infty} \left[(k/\tau) e^{\sigma r} \dot{\varepsilon}(t-s) \right] ds \tag{5.24}
\]

Τελικά (με την υπόθεση ότι \(\varepsilon(-\infty) \) δεν απειρίζεται) λαμβάνουμε

\[
T(t) = k e(t) - \int_{0}^{\infty} \left(\frac{1}{\tau} \right) e^{-\sigma r} \dot{\varepsilon}(t-s) \, ds \rightarrow T(t) = \int_{s=0}^{\infty} \left[\varepsilon(t-s) \right] \tag{5.25}
\]

Ορίζοντας τώρα τη συνάρτηση χαλάρωσης του μοντέλου Maxwell:

\[
G(s) = k e^{\frac{s}{\tau}} \tag{5.26}
\]

παρατηρούμε ότι \(G(s) > 0 \), \(\lim_{s \to \infty} G(s) = 0 \), και η γραφική της παράσταση δίνεται από το παρακάτω σχήμα

![Graph](image)

Έτσι η τελική μορφή της εξίσωσης του μοντέλου Maxwell είναι:

\[
T(t) = G(0) \varepsilon(t) + \int_{0}^{\infty} G(s) \varepsilon(t-s) \, ds \tag{5.27}
\]

όπου \(G(s) = k e^{\frac{s}{\tau}} \) είναι η συνάρτηση χαλάρωσης.
Σημείωση 1

Για το μοντέλο Maxwell δεν υπάρχει κατάσταση "μακροχρόνιος" ισορροπίας (long-range equilibrium), όπου στη γενική περίπτωση [ο όρος \(k_\infty \) είναι μηδέν, δηλαδή δεν υπάρχει παραμένουσα ελαστικότητα] της γραμμικής ιζωελαστικότητας η οποία μπορεί να εξαχθεί από την σχέση (5.25) με γραμμικοποίηση του συναρτησιακού \[\tilde{F} \left[e(t-s) \right] \] δηλαδή \[T(t) = k_\infty G(0) e(t) + \int_0^t G(s) e(t-s) ds \]. Αυτή είναι η γενική σχέση γραμμικής ιζωελαστικότητας όπως παρήχθη μαθηματικά από τον Volterra το 1900 και πιο ανωτέρα από τους Coleman-Noll 1963.

Σημείωση 2: Φαινόμενο Χαλάρωσης στο Μοντέλο Maxwell

Το μοντέλο Maxwell επιδεικνύει το φαινόμενο της χαλάρωσης το οποίο αντικατοπτρίζει τη μείωση των τάσεών με το χρόνο για σταθερή παραμόρφωση \(\varepsilon = \varepsilon^* \), δηλαδή αν η ιστορία της παραμόρφωσης είναι της μορφής

\[
\begin{align*}
\varepsilon(t) &= \text{const} \\
\varepsilon^*(t) &= \text{const}
\end{align*}
\]

Αν αντικαταστήσουμε στην προηγούμενη καταστατική εξίσωση για το Μοντέλο Maxwell \(\varepsilon = \varepsilon^* \), καταλήγουμε στην γραφική παράσταση που διέπει το φαινόμενο της χαλάρωσης:

\[
\begin{align*}
T(t) &= F_0 \left[\varepsilon(t-s) \right] \\
T(t) &= F^*_0 \left[\varepsilon(t-s) \right]
\end{align*}
\]

Άναπτυξη κατά Fréchet (που είναι ανάλογη της ανάπτυξης κατά Taylor για συναρτήσεις) συνεπάγεται την παρακάτω σχέση της γενικευμένης γραμμικής ιζωελαστικότητας (Coleman-Noll 1963).

\[
T(t) = k_\infty \varepsilon + G(0) e + \int_0^t G(s) e(t-s) ds + \ldots
\]

\[
\lim_{\varepsilon \to \infty} G(s) = 0
\]

28
Το φαινόμενο χαλάρωσης της τάσης για σταθερή παραμόρφωση δηλαδή για την ιστορία παραμόρφωσης
(ε = 0, t ≤ 0 q ε = ε*, t>0) δείχνεται γραφικά στο ακόλουθο σχήμα

![Diagram]

\(k_\infty \varepsilon^* = \text{παραμένουσα ελαστικότητα του υλικού}\)
5.5 Μοντέλο 3 στοιχείων συνδεδεμένων παράλληλα (Three Element Model)

\[
\begin{align*}
 T & = T_1 + T_2 + T_3 \\
 \text{Ισχύει: } & T_1 = T_2 = T_3 \\
\end{align*}
\]

Οπότε για το στοιχείο 1:

\[
\begin{align*}
 T_{k_1} &= k_1 \varepsilon \\
 T_{\mu_1} &= \mu_1 \dot{\varepsilon}_{\mu_1} \\
 T_{k_{i}} &= T_{\mu_{i}} = T \\
 \varepsilon_{i} &= \varepsilon_{k_{i}} + \varepsilon_{\mu_{i}}
\end{align*}
\]

\[
\dot{\varepsilon}_{1} = \frac{T_{1}}{k_1} + \frac{T_{1}}{\mu_1}
\]

(1)

Με τον ίδιο τρόπο προκύπτει:

\[
\dot{\varepsilon}_{2} = \frac{T_{2}}{K_2} + \frac{T_{2}}{\mu_2}
\]

(2)

\[
\dot{\varepsilon}_{3} = \frac{T_{3}}{K_3} + \frac{T_{3}}{\mu_3}
\]

(3)

Από την ολοκλήρωση της (1) προκύπτει:

\[
T_1(t) = k_1 \varepsilon_1(t) - \int_{0}^{t} k_{i} \rho \varepsilon_{i}(t-s) ds \\
\Thetaέτω \quad G_i(s) = k_i e^{-\frac{s}{\tau_i}}
\]

(4)

Με τον ίδιο τρόπο εργάζομαι και για τις (2) και (3)

Οπότε:

\[
G(s) = G_1(s) + G_2(s) + G_3(s)
\]

\[
\Rightarrow \quad G(s) = \sum_{i=1}^{3} k_i e^{-\frac{s}{\tau_i}}
\]

Για όλο το μοντέλο προκύπτει:

\[
T = T_1 + T_2 + T_3 \quad \Rightarrow \quad T = \sum_{i=1}^{3} k_i \varepsilon(t) + \int_{0}^{t} \left(\sum_{i=1}^{3} \frac{k_{i}}{T_{i}} e^{-\frac{s}{\tau_i}} \right) \varepsilon(t-s) ds
\]
5.6 Πρότυπο Ιξωελαστικό Μοντέλο

\[k_1 > 0 \]
\[k_2 > 0 \]
\[\mu > 0 \]

Ισχύει: \(\varepsilon_{k_1} = \varepsilon_{\mu} = \varepsilon_{k_2,\mu} \)

Οπότε λαμβάνουμε το ακόλουθο σύστημα εξισώσεων

\[
\begin{align*}
T_k &= k_1 \varepsilon_{k_1}, \quad T_{k_1} = k_1 \varepsilon_{k_1,\mu}, \quad T_{\mu} = \mu \varepsilon_{k_1,\mu}, \\
\varepsilon &= \varepsilon_{k_1} + \varepsilon_{k_1,\mu}, \\
T &= T_k = T_{k_1} + T_{\mu}, \\
T(-\infty), \varepsilon(-\infty) &< \infty
\end{align*}
\]

(1)

Мε την ολοκλήρωση των (1), που αντιστοιχούν στο στάνταρτ ιξωελαστικό μοντέλο (εν σειρά σύνδεση Kelvin-Voigt στερεού με «ελατήριο»), προκύπτει η ακόλουθη καταστατική εξίσωση

\[
T(t) = \frac{k_1 k_2}{k_1 + k_2} \varepsilon(t) + \frac{k_2^2}{k_1 + k_2} \varepsilon(t) + \frac{k_2^2}{\mu} \int_{0}^{t} e^{-\frac{k_2}{\mu} (t-s)} \varepsilon(s) \, ds
\]

Η συνάρτηση \(G(s) = \frac{k_2^2}{k_1 + k_2} e^{-\frac{k_2}{\mu} s} \) είναι μια συνάρτηση επιρροής (weight function) που αποτελεί μέτρο της εξάρτησης της συμπεριφοράς του υλικού από το παρελθόν του.

\[
k_\infty = \frac{k_1 k_2}{k_1 + k_2} \quad \text{... ελαστική σταθερά ισορροπίας του υλικού}
\]

\[
k_\infty + G(0) \quad \text{... αρχική ελαστική σταθερά του υλικού}
\]

Βάσει αυτών των παραπάνω η καταστατική εξίσωση για το πρότυπο ιξωελαστικό μοντέλο γράφεται

\[
T(t) = [k_\infty + G(0)] \varepsilon(t) + \int_{0}^{t} G(s) \varepsilon(t-s) \, ds
\]

31
5.7) Ελαστικά Ρευστά

Σαν ελαστικό ρευστό (βαροτροπικό ρευστό) ορίζουμε εκείνο για το οποίο η τάση εξαρτάται μόνο από την πυκνότητα δηλαδή:

\[T = -p(\rho), \quad p'(\rho) = \frac{\partial p}{\partial \rho} > 0 \quad (5.28) \]

(όπως θα δούμε παρακάτω, η σταθερά \(c = \sqrt{p'(\rho)} \) είναι η ταχύτητα του ήχου στο ρευστό αυτό).

Έχουμε δηλαδή να λύσουμε το σύστημα των παρακάτω μερικών διαφορικών εξισώσεων, αφού στα ισοζύγια μάζας (εξίσωση συνέχειας) και ορμής προσθέσουμε και τη χαρακτηριστική εξίσωση του υλικού:

\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0 \]
\[\frac{\partial T}{\partial x} + \rho b = \rho v \quad (5.29) \]
\[T = -p(\rho) \]

Με συνδυασμό των εξισώσεων αυτών, οδηγούμαστε στο παρακάτω σύστημα:

\[-p'(\rho) \frac{\partial \rho}{\partial x} + \rho b = \rho (\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} v) \]
\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0 \quad (5.30) \]

Το σύστημα (5.30) είναι το σύστημα των εξισώσεων της aeroδυναμικής (gas dynamics). Παίρνοντας \(b=0 \) και θεωρώντας κατάσταση ισορροπίας που ορίζεται από τη συνθήκη \(v=0 \) έχουμε:

\[(5.30)_2 \quad \rightarrow \frac{\partial \rho}{\partial t} = \frac{\partial v}{\partial x} = 0 \Rightarrow \rho = \rho_0 \quad (5.31)\]

Θεωρούμε καταστάσεις κοντά στην ισορροπία \((v=0, \rho=\rho_0) \) δηλαδή

(i) \(\rho = \rho_0 + \tilde{\rho}(x,t) \quad \tilde{\rho}/\rho_0 << 1 \)
(ii) \(v = \tilde{v}(x,t) \)

\(Ωπον \tilde{\rho} = O(\epsilon) \) και \(\tilde{v} = O(\epsilon) \) με \(\epsilon << 1 \). Το σύμβολο \(O(\epsilon) \) σημαίνει \(\lim_{\epsilon \to 0} \frac{O(\epsilon)}{\epsilon} = 0 \)
(5.30) 1 \quad \frac{-p'(\rho_0)}{\rho_0(1 + \rho / \rho_0)} \frac{\partial \rho}{\partial x} = \frac{\partial \dot{v}}{\partial t} + \frac{\partial v}{\partial x} \frac{\partial \dot{v}}{\partial x}

(5.30) 2 \quad \frac{\partial \rho}{\partial t} + \rho_0 \frac{\partial v}{\partial x} + \rho_0 \frac{\partial (\rho v)}{\partial x} = 0

Αμελούμε όλους τους όρους τάξης \(O(\varepsilon^2) \) (δηλαδή τους \(\ddot{v} \frac{\partial v}{\partial x} \) και \(\frac{\partial (\rho \dot{v})}{\partial x} \) και έτσι παίρνουμε το ακόλουθο σύστημα:

\[
\frac{-p'(\rho_0)}{\rho_0} \frac{\partial \rho}{\partial x} = \frac{\partial \dot{v}}{\partial t}
\]

\[
-\rho_0 \frac{\partial v}{\partial x} = \frac{\partial \rho}{\partial t}
\]

To παραπάνω σύστημα των διαφορικών εξισώσεων είναι συζευγμένο, δηλαδή οι εξισώσεις πρέπει να λυθούν παράλληλα. Κάνουμε λοιπόν αποσύνθεση του συστήματος, προσπαθούμε δηλαδή ακό τις εξισώσεις του συστήματος να πάρουμε κάποιες άλλες οι οποίες να έχουν σαν άνγκοστο μόνο το \(\ddot{v} \) η μία και το \(\dot{v} \) η άλλη. Για να το κάνουμε αυτό παραγωγήσουμε κάθε εξίσωση ως προς το χρόνο και ως προς το το διάστημα.

(5.36) 1 \quad \frac{-p'(\rho_0)}{\rho_0} \frac{\partial^2 \rho}{\partial x \partial t} = \frac{\partial^2 \dot{v}}{\partial t^2}

(5.36) 2 \quad \frac{-p'(\rho_0)}{\rho_0} \frac{\partial^2 \rho}{\partial x^2} = \frac{\partial^2 \ddot{v}}{\partial x \partial t}

\[
\frac{\partial^2 \rho}{\partial t^2} = -\rho_0 \frac{\partial^2 \dot{v}}{\partial x \partial t}
\]

(5.38) \quad \frac{\partial^2 \rho}{\partial x \partial t} = -\rho_0 \frac{\partial^2 \ddot{v}}{\partial x^2}

Από τις (5.37) και (5.38) μπορούμε τελικά να πάρουμε τις σχέσεις

(5.39) \quad \frac{-p'(\rho_0)}{\rho_0} \frac{\partial^2 \rho}{\partial x^2} = \frac{\partial^2 \ddot{v}}{\partial t^2}

\quad \frac{p'(\rho_0)}{\rho_0} \frac{\partial^2 \ddot{v}}{\partial x^2} = \frac{\partial^2 \dot{v}}{\partial t^2}

Δηλαδή ξεκινήσαμε την εξίσωση διάδοσης του κύματος (εξίσωση D’Alembert) για την πυκνότητα και για την ταχύτητα του ρευστού. Συνεπώς η γενική λύση για το \(\rho \) και το \(\dot{v} \) δίνεται από την

(5.40) \quad \left[\begin{array}{c} \ddot{\rho} \\ \ddot{v} \end{array} \right] = f(x - ct) + g(x + ct)

όπου υπενθυμίζεται ότι \(c = \sqrt{\frac{p'(\rho_0)}{\rho_0}} \) είναι η ταχύτητα του ήχου μέσα στο ρευστό.
6. ΔΙΑΧΥΣΗ

Με τον όρο διάχυση εννοούμε τη διείσδυση σωματιδίων μιας ουσίας μέσα σε ένα διαφορετικό περιοδές στερεό. Η διάχυση μπορεί να μελετηθεί χρησιμοποιώντας τη βασική αρχή της διατήρησης της ορμής. Στην περίπτωση αυτή θεωρείται η διαφορική εξίσωση που εκφράζει τη διατήρηση της ορμής τους διαχέομενων σωματιδίων. Έτσι, είναι λογική η ύπαρξη ενός πεδίου τάσης που οφείλεται μόνο στα σωματίδια της διαχεομένης ουσίας. Επίσης, είναι λογικό να θεωρηθεί η ύπαρξη και μίας δύναμης υπεύθυνης για τη διάχυση, που περιγράφει τοπικές ανταλλαγές ορμής μεταξύ των διαχεομένων σωματιδίων και του στερεού μέσα από το οποίο γίνεται η διάχυση. Αυτή η δύναμη είναι δύναμη άγκου και για αυτό υπεισέρχεται ως εσωτερική δύναμη πεδίου (internal body force) στην εξίσωση της ορμής.

Θα σασχελθούμε με την αρχή διάχυσης αραιής ουσίας σε στερεό μήτρα με άτομα πολύ μεγαλύτερα και βαρύτερα, ώστε η μήτρα να παραμένει μακροσκοπικά άκαμπτη. Πολυμορφικά φαινόμενα λόγω του στερεού πλέγματος θεωρούνται αμελητέα. Φαινόμενα όπως ανομοιογένεια, ανισοτροπία, μη γραμμικότητα και αδράνεια αγνοούνται.

Συνοψίζοντας θα μελετήσουμε την ομοιογενή, ισοτροπική, γραμμική και αρχή διάχυση που συμβαίνει σε ένα χημικά αδράνεια στερεό πλέγμα το οποίο παραμένει μακροσκοπικά άκαμπτο, αλλά μπορεί να υποστεί μια εσωτερική επαγόμενη στατική παραμόρφωση.

Θεωρούμε ότι η διαχεομένη ουσία είναι συνεχώς κατανεμημένη και υπακούει στις αρχές διατήρησης της μάζας και της ορμής. Η διαχεομένη ουσία χαρακτηρίζεται από ένα πεδίο πυκνότητας ρ, ένα πεδίο ταχύτητας υ, και έναν τανοστή τάσης T, όπου ρ είναι η μάζα της διαχεομένης ουσίας ανά μονάδα συνολικού όγκου (δηλαδή αυτό που καταλαμβάνεται από τη διαχεομένη ουσία και τη μήτρα), το υ εκφράζει τη μέση ευκινησία (mobility) της διαχεομένης ουσίας μέσα στον μοναδιαίο όγκο και το T δηλώνει την τάση της διαχεομένης ουσίας πάνω στον εαυτό της (μερική τάση). Είναι προτιμέτερο να χρησιμοποιούμε αντί για την πυκνότητα ρ τη συγκέντρωση ε της διαχεομένης ουσίας, γιατί έχουμε μικτό όγκο. Στη διαχεομένη ουσία ασκείται μια εσωτερική δύναμη ογκου b (εξαιτίας, παραδείγματος χάρη, της βαρότητας) την οποία και αμελούμε εδώ. Η δύναμη αλληλεπίδρασης μεταξύ διαχεομένης ουσίας και στερεού συμβαλλόμετρα με f και είναι επίσης μια εσωτερική δύναμη ογκου ή δύναμη πεδίου, για την οποία πρέπει να διατυπωθούν κατάλληλες καταστατικές εξίσωσης.
6.1) 1 - Διάσταση

6.1.1) Διάχυση τέλειου αερίου σε στερεό

Θεσπούμε άτομα υδρογόνου που διαχέουνται ανάμεσα σε άτομα σιδήρου. Ορίζουμε το διάνυσμα \(j \) που περιγράφει τη ροή της διαχείμονης ουσίας (flux) σύμφωνα με τη σχέση: \(j = \rho \) (μάζα ανά μονάδα επιφάνειας ανά μονάδα χρόνου). Η αρχή διατήρησης της μάζας, αν λάβουμε υπόψη μας τη παραπάνω σχέση και την αντικατάσταση \(\rho \rightarrow c \) (για να υποδηλώσουμε συγκέντρωση αντί πυκνότητα) γίνεται:

\[
\frac{dc}{dt} + \frac{\partial j}{\partial x} = 0
\]
(6.1)

Η εξίσωση αυτή εκφράζει την αρχή διατήρησης της μάζας για την ουσία που διαχέεται (το υδρογόνο).

Τα άτομα του υδρογόνου προσκρούουν σε άτομα σιδήρου και αυτή η αλληλεπίδραση εκφράζεται με τις εσωτερικές δυνάμεις πεδίου \(f \) (internal body forces) για το σύστημα σιδήρου-υδρογόνου.

Η αρχή διατήρησης της ορμής επομένως για μονοφασικά συνεχή μέσα γίνεται:

\[
\frac{\partial T}{\partial x} + \rho b = \rho \overline{\gamma} \Rightarrow \text{γράφεται φορμαλιστικά όπως παρακάτω:}
\]

\[
\frac{\partial T}{\partial x} = \rho (\overline{\gamma} - b)
\]

Για τη διαχείμονη ουσία αντικαθιστούμε το δεξί μέρος της παραπάνω εξίσωσης με \(f \) δηλαδή τη προσαναφερόμενη εσωτερική δύναμη αλληλεπίδρασης μεταξύ διαχείμονης ουσίας και στερεάς μήτρας και αμελούμε την αδράνεια (\(\overline{\gamma} = 0 \)) και την εσωτερική δύναμη πεδίου (\(b = 0 \))

Έτσι οι αρχές διατήρησης της μάζας και της ορμής γράφονται ως εξής:

\[
\frac{dc}{dt} + \frac{\partial j}{\partial x} = 0 \quad (\text{μάζα})
\]
(6.2)

\[
\frac{\partial T}{\partial x} = f \quad (\text{ορμή})
\]
(6.3)

Το \(T \) είναι η μερική τάση της διαχείμονης ουσίας. Η πιο απλή περίπτωση είναι να θεωρήσουμε ότι (όπως η πίεση ενός τέλειου αερίου είναι ανάλογη της πυκνότητας του) για μια αραιά διαχείμονη ουσία, το \(T \) είναι ανάλογο του \(c \). Επίσης, η εσωτερική δύναμη

35
αλληλεπίδρασης \(f \) είναι ανάλογη της τοπικής μεταβολής της ορμής \((\sim j)\). Έτσι παίρνουμε τις ακόλουθες καταστατικές εξισώσεις.

\[
T = -\pi c \\
f = \alpha j
\]
(6.4)
(6.5)

Επομένως η (6.3) γίνεται:

\[
-\pi \frac{\partial c}{\partial x} = \alpha j \Rightarrow j = -\frac{\pi}{\alpha} \frac{\partial c}{\partial x}; \ Θέτοντας \ D = \frac{\pi}{\alpha} \Rightarrow
\]

\[
j = -D \frac{\partial c}{\partial x}
\]
(6.6)

και \[
\frac{\partial c}{\partial t} + \frac{\partial j}{\partial x} = 0 \Rightarrow \frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x} = D \frac{\partial^2 c}{\partial x^2}, \ αρoύ \ j = -D \frac{\partial c}{\partial x}. \ Αρα:
\]

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}
\]
(6.7)

Σημείωση

Ο 1ος και 2ος Νόμος του Fick είναι η πιο απλή ποσοτικοποίηση φαινομένων μεταφοράς (μεταφορά μάζας). Ανάλογα μόνο υπάρχουν για ροή υγρών σε πορώδες υλικό, για τη μεταφορά θερμότητας κ.λ.π. Για παράδειγμα η σχέση \(h = -\frac{k \partial \rho}{\mu \partial x} \) είναι ο νόμος του Darcy όπου \(h \) είναι η ροή του υγρού, \(k \) είναι η διαπερατότητα του πετρώματος ή εδάφους, \(\mu \) το εξάδες του υγρού και \(\rho \) η υδροστατική πίεση του υγρού στους πόρους (βλ. Σχήμα 6.1). Επίσης η σχέση \(q = -\kappa \frac{\partial \theta}{\partial x} \) είναι ο νόμος μετάδοσης θερμότητας του Fourier όπου \(q \) είναι η ροή θερμότητας, \(\kappa \) είναι η θερμική αγωγιμότητα και \(\theta \) είναι η θερμοκρασία.

![Σχήμα 6.1](image_url)
6.1.2) Διάχυση αερίου / υγρού με ιζώδες σε στρεφό

Μελετήσαμε την περίπτωση στην οποία η διαχεομένη ουσία συμπεριφέρεται σαν τέλειο αέριο. Τώρα θα θεωρήσουμε ότι η διαχεομένη ουσία εμφανίζει ιζώδες, συμπεριφέρεται δηλαδή ως ένα γραμμικό ρευστό με ιζώδες. Γενικεύοντας τη καταστατική εξίσωση:

\[T = -\pi c + \mu \frac{\partial j}{\partial x} \]

για μονοφασικά υγρά στην περίπτωση της διάχυσης προκύπτει η ακόλουθη καταστατική εξίσωση:

\[T = -\pi c + \pi \frac{\partial j}{\partial x} \]

ενώ για τη δύναμη διάχυσης \(f \) ισχύει πάλι:

\[f = aj \]

Αρα,
\[\frac{\partial T}{\partial x} = f \Rightarrow -\pi \frac{\partial c}{\partial x} + \pi \frac{\partial^2 j}{\partial x^2} = aj \] \hspace{1cm} (6.8)

Όμως,
\[\frac{\partial c}{\partial t} + \frac{\partial j}{\partial x} = 0 \Rightarrow \frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x}, \text{ συνεπώς:} \]

\[\pi \frac{\partial^2 j}{\partial x^2} = \pi \frac{\partial}{\partial x} \left(\frac{\partial j}{\partial x} \right) = \pi \frac{\partial}{\partial x} \left(-\frac{\partial c}{\partial t} \right) = -\pi \frac{\partial^2 c}{\partial x \partial t}. \]

Αρα η (6.9) γίνεται:

\[-\pi \frac{\partial c}{\partial x} + \pi \frac{\partial^2 j}{\partial x^2} = aj \Leftrightarrow -\pi \frac{\partial c}{\partial x} - \pi \frac{\partial^2 c}{\partial x \partial t} = aj \Rightarrow \]

\[j = -D \frac{\partial c}{\partial x} - \bar{D} \frac{\partial^2 c}{\partial x \partial t} \] \hspace{1cm} (6.10)

όπου: \(D = \frac{\pi}{a}, \bar{D} = \frac{\pi}{a} \)

Αντικαθιστώντας την (6.10) στην εξίσωση διατήρησης της μάζας προκύπτει:

\[\frac{\partial c}{\partial t} = -\frac{\partial}{\partial x} \left(-D \frac{\partial c}{\partial x} - \bar{D} \frac{\partial^2 c}{\partial x \partial t} \right) \Rightarrow \]

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + \bar{D} \frac{\partial^2 c}{\partial x \partial t} \Rightarrow \]

\[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + \bar{D} \frac{\partial^2 c}{\partial x \partial t}, \quad \dot{c} = \frac{\partial c}{\partial t} \] \hspace{1cm} (6.11)
6.1.3) Μη τοπική συμπεριφορά (non locality)

Για να περιγράψουμε μη τοπική συμπεριφορά πρέπει να εισάγουμε τη δεύτερη παράγωγο της συγκέντρωσης ως προς x στην εξίσωση \(T = -\pi c \) η οποία τώρα γίνεται:

\[
T = -\pi c + \pi^* \frac{\partial^2 c}{\partial x^2}
\]

Ισχύουν επίσης οι σχέσεις:

\[
\frac{\partial c}{\partial t} + \frac{\partial j}{\partial x} = 0, \quad \frac{\partial T}{\partial x} = f \quad \text{και} \quad f = aj
\]

Αρα: \(\frac{\partial^2 T}{\partial x^2} = -\pi \frac{\partial c}{\partial x} + \pi^* \frac{\partial^3 c}{\partial x^3} = aj \Rightarrow j = -D \frac{\partial c}{\partial x} + E \frac{\partial^2 c}{\partial x^2} \quad (6.12) \)

όπου: \(D = \frac{\pi}{\alpha}, \quad E = \frac{\pi^*}{\alpha} \)

Αντικαθιστώντας την (6.12) στην εξίσωση διατήρησης της μάζας προκύπτει:

\[
\frac{\partial c}{\partial t} + \frac{\partial j}{\partial x} = 0 \Rightarrow \frac{\partial c}{\partial t} = -\frac{\partial j}{\partial x} \Rightarrow \frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(-D \frac{\partial c}{\partial x} + E \frac{\partial^2 c}{\partial x^2} \right) \Rightarrow
\]

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - E \frac{\partial^4 c}{\partial x^4} \quad (6.13)
\]

Η εξίσωση (6.13) περιγράφει ένα φαινόμενο αντίστροφο της διάχυσης, όπου η διαχωριζόμενη ουσία δημιουργεί συνοπτικού έματα μέσα στο στερεό διαχωριζόμενη απ' αυτό (spinodal decomposition).
Σημείωση 1
Παράδειγμα του φαινόμενου Spinodal Decomposition

Κράμα Ni/Cu

Έστω ἕνα δείγμα Νικελίου (Ni) με πρόσμετες ατόμων Χαλκού (Cu) διαλυμένων σ' αυτό. Σε υψηλές θερμοκρασίες, ο Χαλκός θα κατανεμηθεί ομοιόμορφα στην μήτρα Νικελίου.

Κράμα Ni/Cu

Όταν γράφουμε απότομα το δείγμα σε μια συγκεκριμένη περιοχή θερμοκρασιών (περιοχή Spinodal) ο χαλκός συγκεντρώνεται σε κάποιες περιοχές όπου η συγκέντρωση ατόμων Cu εφαρμίζεται λιγάν αυξημένη. Δηλαδή εμφανίζεται ότι έχουμε αρνητικό συντελεστή διάχυσης (μετάβαση ατόμων Cu από περιοχές μικρής συγκέντρωσης σε περιοχές μεγάλης συγκέντρωσης). Όμως η εξίσωση διάχυσης του Fick με αρνητικό συντελεστή διάχυσης δίνει παθολογική συμπεριφορά στη μαθηματική ανάλυση (εκθετική αύξηση της συγκέντρωσης). Έτσι επινοήθηκε η εξίσωση Cahn-Hilliard όπου ο συντελεστής διάχυσης D μπορεί να είναι αρνητικός χωρίς την εμφάνιση παθολογικής συμπεριφοράς λόγω υποχώρησης του μη-τοπικού όρου με την τέταρτη χωρική παράγωγο και θετικό συντελεστή Δ > 0.

Σημείωση 2
Η γενικότερη μορφή μια τοπικής συμπεριφοράς δίνεται από τη σχέση \(T = \int p(x-x')p(x')dx' \) και μετά από ανάπτυξη κατά συρό Taylor προκύπτει ο όρος \(\frac{\partial^2 p}{\partial x^2} \) (η πρώτη παράγωγος δεν υφίσταται λόγω συμμετρίας και οι υπόλοιποι όροι αμελούνται). Η καταστατική αυτή εξίσωση για το \(T \) οδηγεί σε μια διαφορικο-ολοκληρωτική εξίσωση για τη συγκέντρωση \(c \).

Σημείωση 3
Το φαινόμενο Spinodal Decomposition ποιοτικά περιγράφει αρχικά με αρνητικό συντελεστή διάχυσης και με βάση την εξίσωση του Fick.
6.1.4) Διάχυση σε πολυκρυσταλλικά μέταλλα

Θεωρούμε ένα πολυκρυσταλλικό μέταλλο με συνεχή κατανομή κρυσταλλιτών (grains) και διεπιφανειών κρυσταλλιτών/οριών κόκκων (grain boundaries) και επίσης ότι η διάχυση μιας αραίης ουσίας συμβαίνει ταυτόχρονα μέσα στον όγκο του μετάλλου (bulk) και μέσα στις διεπιφάνειες (grain boundaries). Θεωρούμε τον όγκο του υλικού (bulk) και τις διεπιφάνειες (grain boundaries) σαν δύο διαφορετικές φάσεις και για αυτό το λόγο εισάγουμε δύο διαφορετικές συγκεντρώσεις για την διαχωμένη ουσία, μια για τη φάση των grain boundaries ε₁ και μια για την φάση του bulk c₂. Θεωρούμε αργή, γραμμική διάχυση, αραίης ουσίας χωρίς ιξώδες μέσα σε ένα αδιατάρακτο μηχανικά σταθερά πλέγμα. Η αδράνεια αρνοείται. Οι αρχές διατήρησης της μάζας και της ορμής γίνονται:

\[
\begin{align*}
\frac{\partial c_1}{\partial t} + \frac{\partial j_1}{\partial x} &= g, \\
\frac{\partial c_2}{\partial t} + \frac{\partial j_2}{\partial x} &= -g
\end{align*}
\]

(6.14)

Το g εκφράζει τη μεταφορά μάζας που συμβαίνει μεταξύ της φάσης του bulk και της φάσης των grain boundaries. Το μέσον δηλώνει πως αύξηση της μάζας στη μια φάση οδηγεί σε μείωση της στην άλλη φάση, δηλαδή όση μάζα χάνει η μια φάση, τόση κερδίζει η άλλη και η συνολική μάζα παραμένει σταθερή. Θα έχουμε επίσης δύο διαφορετικές δυνάμεις αλληλεπίδρασης \(f_1 \) και \(f_2 \). Έτσι θα είναι:

\[
\begin{align*}
\frac{\partial \Omega_1}{\partial x} &= f_1, \\
\frac{\partial \Omega_2}{\partial x} &= f_2
\end{align*}
\]

(6.15)

Υποθέτουμε ότι:

\[
\begin{align*}
T_1 &= -\pi c_1, \\
T_2 &= -\pi c_2
\end{align*}
\]

(6.16)

\[
\begin{align*}
f_1 &= \alpha_1 j_1, \\
f_2 &= \alpha_2 j_2
\end{align*}
\]

(6.17)

Αρα: \(j_1 = -D \frac{\partial c_1}{\partial x} \); \(j_2 = -D \frac{\partial c_2}{\partial x} \)

(6.18)

Αν υποθέσουμε επίσης ότι το g είναι γραμμική συνάρτηση των \(c_1 \) και \(c_2 \) δηλαδή:

\[
\begin{align*}
\frac{\partial c_1}{\partial t} &= D_1 \frac{\partial^2 c_1}{\partial x^2} + \kappa_1 c_1 + \kappa_2 c_2, \\
\frac{\partial c_2}{\partial t} &= D_2 \frac{\partial^2 c_2}{\partial x^2} - \kappa_1 c_1 - \kappa_2 c_2
\end{align*}
\]

(6.19)

Οι παραπάνω εξισώσεις είναι πεπληγμένες, καθεμία τους δηλαδή περιέχει και τις δύο άγνωστες ποσότητες \(c_1 \) και \(c_2 \). Αν αποπλέξουμε τις εξισώσεις αυτές, βρίσκουμε ότι για την ολική συγκέντρωση \(c = c_1 + c_2 \) ισχύει:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + D \frac{\partial^2 c}{\partial x^2} - B \frac{\partial^4 c}{\partial x^4}
\]

(6.20)
Παρατηρούμε ότι εμφανίζονται οι όροι $\frac{\partial^3 c}{\partial x^3}$, $\frac{\partial^4 c}{\partial x^4}$, που περιγράφουν διάχυση ουσίας με ιζόδες και spinodal decomposition αντίστοιχα.

Σημειώσεις: Γενικευμένο σε 3 - Διαστάσεις

(i) Διάχυση τέλειου αερίου σε στερεό

Οι αρχές διατήρησης της μάζας και της ομορφής σε τρεις διαστάσεις για μια μονοφασική ουσία είναι:

$$\frac{\partial \rho}{\partial t} + \text{div}(\rho \mathbf{v}) = 0$$ (μάζα)

$$\text{div} T + \rho \mathbf{v} = \rho \mathbf{v} \Rightarrow \text{div} T = \rho (\mathbf{v} - \mathbf{b}) \Rightarrow \text{div} T = f$$ (ομορφή)

Οι παραπάνω εξισώσεις στη περίπτωση της διάχυσης γίνονται:

$$\frac{\partial c}{\partial t} + \text{div} j = 0$$

και

$$\text{div} T = f$$

όπου f η δύναμη αλληλεπίδρασης μεταξύ διαχύσιμης ουσίας και στερεού, για την οποία πρέπει να διατηρούμε μια κατάλληλη καταστατική εξίσωση και δεν δίνεται πλέον από τη σχέση:

$$f = \rho (\mathbf{v} - \mathbf{b})$$, αφού η οδικά ένζειδρ για την εξωτερική δύναμη πεδίου \mathbf{b} ακολουθούν εδώ.

Ο ταντότητας της τάσης δίνεται από τη σχέση:

$$T = -pcj$$, όπου j είναι ο μοναδιαίος ταντότητας.

Με τη βοήθεια δεικτών της τελευταία εξίσωση γράφεται:

$$T_j = -pc\delta_j$$

όπου: δ_j το Kronecker δέλτα.

Ισχύει ακόμα:

$$f = a_j \Rightarrow f_j = a_j$$

Επειδή $T_j = -pc\delta_j$ η εξίσωση $\text{div} T = f$ γίνεται:

$$T_{ij} = (-pc\delta_{ij})_{ij} = a_{ij} \Rightarrow -pc\delta_{ij} = a_{ij} \Rightarrow -pc_{ij} = a_{ij} \Rightarrow j = -\frac{\pi}{a} c_{ij} \Rightarrow$$

$$j = -D gradc$$

1ος Νόμος του Fick σε 3 διαστάσεις
όπου: \(D = \frac{\pi}{\alpha} \)

Αντικαθιστώντας το 1° Νόμο του Fick που είδαμε παραπάνω, στην εξίσωση διατήρησης της μέξιας προκύπτει:

\[
\frac{\partial \varepsilon}{\partial t} + \text{div}(-D \text{grad} \varepsilon) = 0 \Rightarrow \\
\frac{\partial \varepsilon}{\partial t} = DV^2 \varepsilon
\]

2ος Νόμος του Fick σε 3 διαστάσεις

Σημείωση

Για την εξίσωση του 2ου Νόμου του Fick κάνουμε χρήση της ταυτότητας:

\[
\text{div}(\text{grad} \varepsilon) = (c_i)_j - c_{ji} = V^2 \varepsilon
\]

(ii) Διάχυση μειστιδιών με εξώδες σε στέρεο

An θεωρήσουμε ότι η διαχείμονη ουσία έχει εξώδες τότε ο ταυτότητης της τάσης γράφεται:

\[
T = -pE + \lambda (\text{tr} D) - 2\mu D
\]

και ισχύει:

\[
f = a^i j
\]

όπου \(D \) είναι το σωματικό μέρος του \(\text{grad} j \), δηλαδή:

\[
D = \frac{1}{2} \left(\text{grad} j + \text{grad} j^T \right)
\]

Εκτίσης: \(\text{div} T = f \)

Συνδυάζοντας τις τρεις παραπάνω εξίσωσεις προκύπτει για τη ροή της ορμής ότι:

\[
j = -D \text{grad} \varepsilon + E \text{grad} (\text{tr} D) + 2F_2 \text{div} D
\]

όπου:

\[
D = \frac{\pi}{\alpha} ; \quad F_1 = \frac{\lambda}{\alpha} ; \quad F_2 = \frac{\mu}{\alpha}
\]

Χρησιμοποιώντας τους τύπους της διανυσματικής ανάλυσης προκύπτει για τους δύο υπογραμμισμένους όρους υπογραμμισμένους με κόκκινο ότι:

1ος \(\text{grad} (\text{tr} D) = \text{grad} \text{div} j = -\text{grad} \varepsilon \)

2ος \(\text{div} D = \frac{1}{2} [V^2 j - \text{grad} \varepsilon] \) και συμπληρωματικά
\[\nabla^2 j = -\text{curl} \nabla \text{curl} j = -\text{grad}^2 \]

Αντικαθιστώντας τις παραπάνω εκφράσεις στο τύπο της ροής της ορμής που προσδιορίσαμε παραπάνω προκύπτει:

\[j + F \text{curl} j = -D \text{grad} - (F_1 + 2F_2) \text{grad} \]

όπου: \(D = \frac{\pi}{\alpha} \), \(\bar{D} = F_1 + 2F_2 \), με \(D, F_1, F_2 \) σταθερές.

Παίρνουμε το \(\text{div} \) της τελευταίας σχέσης και χρησιμοποιούμε την αρχή διατήρησης της μάζας και έχοντας υπόψη την ταυτότητα \(\text{div} \text{curl} \psi = 0 \), που ισχύει για κάθε διάνυσμα \(\psi \), προκύπτει:

\[\frac{\partial c}{\partial t} = D \nabla^2 c + \bar{D} \nabla^2 \psi \]

Ψευδοπαραβολική Εξίσωση Διάχυσης (Barenblatt)

(iii) Μη τοπική συμπεριφορά

Για να μελετήσουμε μια μη τοπική συμπεριφορά εισάγουμε μια δεύτερη παράγοντα της συγκέντρωσης, την \(\text{grad}^2 \). Αρα:

\[T_y = -\pi \delta_j + \pi^* c_{ij} \]

Από τη διατήρηση της ορμής είναι:

\[\text{div} T = f \Rightarrow \pi \text{grad} + \pi^* \text{grad} (\nabla^2 c) = a_j \]

Σημείωση

\((c_{ij})_j = c_{ij} = (c_{ij})_{ij} = (\nabla^2 c)_{ij} = \text{grad} (\nabla^2 c) \)

Αρα:

\[j = -D \text{grad} + E \text{grad} (\nabla^2 c) \]

όπου: \(D = \frac{\pi}{\alpha} \), \(E = \frac{\pi^*}{\alpha} \)

Αντικαθιστώντας τη τελευταία σχέση στην εξίσωση διατήρησης της μάζας προκύπτει:

\[\frac{\partial c}{\partial t} + \text{div} j = 0 \]

και λαμβάνοντας υπόψη ότι:

\[\text{div} j = -D \text{div} (\text{grad}) + E \text{div} (\text{grad} (\nabla^2 c)) \Rightarrow \]

\[\frac{\partial c}{\partial t} = D \nabla^2 c + E \nabla^2 c \]

Εξίσωση Διάχυσης Spinodal Decomposition Cahn-Hilliard

43
(iv) Λύση σε πολυκρυσταλλικό μέταλλο

Θεωρούμε δύο συγκεντρώσεις για τη διαχείμενη ουσία, μια για τη φάση των διεπιφανειών c_1 και μία για τη φάση του bulk c_2.

Είναι: $\frac{\partial c_1}{\partial t} + \operatorname{div} j_1 = g_1$; $\frac{\partial c_2}{\partial t} + \operatorname{div} j_2 = -g_2$, όπου $g = -\kappa_1 c_1 - \kappa_2 c_2$

1) $\operatorname{div} T_1 = f_1$; $\operatorname{div} T_2 = -f_2$

2) $T_1 = -\pi_{11} c_1 - \pi_{12} c_2$; $T_2 = -\pi_{21} c_1 - \pi_{22} c_2$

3) $f_1 = \alpha_{11} j_1 + \alpha_{12} j_2 + \beta_{11} \operatorname{grad} c_1 + \beta_{12} \operatorname{grad} c_2$; $f_2 = \alpha_{21} j_1 + \alpha_{22} j_2 + \beta_{21} \operatorname{grad} c_1 + \beta_{22} \operatorname{grad} c_2$

Από τα 3 τελευταία ζεύγη εξισώσεων ορίζουμε νέους συντελεστές:

$\gamma_{11} = \pi_{11} + \beta_{11}$
$\gamma_{12} = \pi_{12} + \beta_{12}$
$\gamma_{21} = \pi_{21} + \beta_{21}$
$\gamma_{22} = \pi_{22} + \beta_{22}$

Προκύπτει ότι:

$\alpha_{11} j_1 + \alpha_{12} j_2 = -\gamma_{11} \operatorname{grad} c_1 - \gamma_{12} \operatorname{grad} c_2$

$\alpha_{21} j_1 + \alpha_{22} j_2 = -\gamma_{21} \operatorname{grad} c_1 - \gamma_{22} \operatorname{grad} c_2$

'Εστω:

$\Delta = \gamma_{11} \gamma_{22} - \gamma_{12} \gamma_{21} \neq 0$

και

$\Gamma_{11} = (\gamma_{12} \alpha_{21} - \gamma_{22} \alpha_{21})/\Delta$; $\Gamma_{12} = (\gamma_{12} \alpha_{21} - \gamma_{22} \alpha_{21})/\Delta$

$\Gamma_{21} = (\gamma_{21} \alpha_{21} - \gamma_{11} \alpha_{21})/\Delta$; $\Gamma_{22} = (\gamma_{21} \alpha_{21} - \gamma_{11} \alpha_{21})/\Delta$

'Ετσι προκύπτει ότι:

$\operatorname{grad} c_1 = \Gamma_{11} j_1 + \Gamma_{12} j_2$; $\operatorname{grad} c_2 = \Gamma_{21} j_1 + \Gamma_{22} j_2$

Αν πάρουμε την απόκλιση των δύο τελευταίων σχέσεων και χρησιμοποιήσουμε την αρχή διατήρησης της μάζας καταλήγουμε στο παρακάτω σύστημα διαφορικών εξισώσεων:

$\mu_1 \nabla^2 c_1 + \lambda_{11} \frac{\partial c_1}{\partial t} + \lambda_{12} \frac{\partial c_2}{\partial t} + \kappa_1 c_1 + \kappa_2 c_2 = 0$

$\mu_2 \nabla^2 c_2 + \lambda_{21} \frac{\partial c_1}{\partial t} + \lambda_{22} \frac{\partial c_2}{\partial t} - \kappa_1 c_1 - \kappa_2 c_2 = 0$

44
όπου:

\[
\begin{align*}
\mu_1 &= \frac{\gamma_{12} \gamma_{21} - \gamma_{13} \gamma_{32}}{\gamma_{12} (a_{21} - a_{22}) - \gamma_{21} (a_{11} - a_{12})} \\
\mu_2 &= \frac{\gamma_{13} \gamma_{32} - \gamma_{12} \gamma_{23}}{\gamma_{13} (a_{12} - a_{11}) - \gamma_{23} (a_{22} - a_{21})} \\
\lambda_{11} &= \frac{\gamma_{12} a_{11} - \gamma_{13} a_{12}}{\gamma_{12} (a_{21} - a_{22}) - \gamma_{21} (a_{11} - a_{12})} \\
\lambda_{12} &= \frac{\gamma_{13} a_{21} - \gamma_{23} a_{12}}{\gamma_{13} (a_{21} - a_{22}) - \gamma_{21} (a_{11} - a_{12})} \\
\lambda_{21} &= \frac{\gamma_{11} a_{11} - \gamma_{12} a_{21}}{\gamma_{11} (a_{12} - a_{11}) - \gamma_{12} (a_{22} - a_{21})} \\
\lambda_{22} &= \frac{\gamma_{12} a_{12} - \gamma_{22} a_{21}}{\gamma_{12} (a_{11} - a_{12}) - \gamma_{22} (a_{21} - a_{22})}
\end{align*}
\]

Αν λύσουμε το τελευταίο σύστημα εξισώσεων αποσελίδων αυτών, προκύπτει για τη συνολική συγκέντρωση

\[c = c_1 + c_2 \text{ όπως:}\]

\[
\frac{\partial c}{\partial t} = D \nabla^2 c + \overline{D} \frac{\partial}{\partial t} \nabla^2 c - E \nabla^4 c
\]

όπου:

\[
D = \frac{(\kappa_1 \mu_2 - \kappa_2 \mu_1)}{(\kappa_1 - \kappa_2)}; \quad \overline{D} = \frac{(-\mu_1 + \mu_2)}{(\kappa_1 - \kappa_2)}; \quad E = \frac{\mu_1 \mu_2}{(\kappa_1 - \kappa_2)}
\]
7. ΑΛΛΑΓΗ ΦΑΣΗΣ

Για τη περιγραφή ενός μετασχηματισμού υγρού-αερίου σε ισορροπία χρησιμοποιείται συνήθως ο κανόνας του Maxwell. Η πίεση συμπόνωσης θεωρείται ως η σταθερή πίεση που σε ένα διάγραμμα $p-V$ (πίεσης - ειδικού όγκου) κάθετε στα εμβαδά πάνω και κάτω, όπως φαίνεται στο Σχήμα 7.1.

![Σχήμα 7.1](image)

Ο κανόνας του Maxwell εκφράζει επίσης την ισότητα των εμβαδών σε ένα διάγραμμα $p-\rho$ (πίεσης - πυκνότητας, με $\rho = \frac{1}{V}$), όπως φαίνεται στο Σχήμα 7.2.

![Σχήμα 7.2](image)

Οι γραμμικοσκευασμένες περιοχές στα Σχήματα 7.1 και 7.2 παριστάνονται από τα ολοκληρώματα $\int_{v_1}^{v_2} (p-\bar{p})dV$ και $\int_{\rho_1}^{\rho_2} (p-\bar{p})\frac{1}{\rho^2}d\rho$. Έτσι ο κανόνας του Maxwell σε διάγραμμα $p-\rho$ είναι:

$$\int_{\rho_1}^{\rho_2} (p-\bar{p})\frac{1}{\rho^2}d\rho = 0$$ \hspace{1cm} (7.1)
Η ισχύς του κανόνα του Maxwell προτιθέτεται την ισχύ των αρχών της θερμοδυναμικής μέσα στην spinodal περιοχή (περιοχή όπου \(p'(p) < 0 \)) και ότι οι δύο φάσεις (υγρή-αέρια) έχουν την ίδια πίεση και το ίδιο χημικό δυναμικό.

Μια διαφορετική προσέγγιση είναι η μοριακή, η οποία επιτρέπει τη θεώρηση της ύπαρξης μιας διεπιφάνειας μεταξύ των δύο φάσεων.

Η μηχανική θεωρία, η οποία είναι επίσης μια μοριακή θεωρία, καταλήγει στην εξαγωγή μιας διαφορικής εξίσωσης που περιγράφει τη δομή της διεπιφάνειας, χωρίς να λαμβάνει υπόψη της θερμοδυναμικά δυναμικά και θερμοδυναμικές σχέσεις για την spinodal περιοχή.

Για να υπάρχουν λύσεις της εξίσωσης αυτής ο κανόνας του Maxwell δεν ισχύει και πρέπει επαναλαμβάνονται ως εξής:

\[
\int \rho^2 \left(\frac{p}{\rho} - \overline{p} \right) \rho d\rho = 0
\]

(7.2)

Η συνάρτηση \(\rho(p) \) εξαρτάται από μοριακές παραμέτρους, που καθορίζουν τη τάση στη διεπιφάνεια. Ετσι ο κανόνας του Maxwell δεν ισχύει πάντα, αλλά μόνο αν οι κανονισμοί συχνουμένης μοριακές συνθήκης, δηλαδή αν η τάση στη διεπιφάνεια έχει συχνουμένη μορφή.

Στη μηχανική θεωρία για τις διεπιφάνειες μεταξύ ρευστών η διεπιφάνεια θεωρείται σαν ένα συνεχές μέσο για το οποίο ισχύουν οι αρχές διατήρησης της μάζας και της ορμίς.

Η τάση στη διεπιφάνεια δίνεται από τη σχέση:

\[
\begin{align*}
T &= (-p + \alpha \nabla^2 \rho + \beta | \text{grad} \rho |^2) \delta + \gamma \text{grad}^2 \rho + \delta \text{grad} \rho \cdot \text{grad} \rho \\
T_{ij} &= (-p + \alpha \rho_{nm} \beta_{mn} \rho_{nm}) \delta_{ij} + \gamma \rho_{ij} + \delta \rho_{ij} \rho_{ij}
\end{align*}
\]

(7.3)

Οι συντελεστές \(\alpha, \beta, \gamma, \delta \) είναι συναρτήσεις της πυκνότητας \(\rho \) και εξαρτάνται από τη δομή του υλικού.

Για επίπεδες διεπιφάνειες η τάση και η πυκνότητα είναι συναρτήσεις μιας μεταβλητής, έστω της \(x \). Ετσι η (7.3) γράφεται:

\[
T = -p + \alpha \rho_{xx} + \beta \rho_x^2
\]

(7.4)

όπου: \(a = \alpha + \gamma \); \(b = \beta + \delta \)

(7.5)
Ισχύει:

\[
\frac{\partial T}{\partial x} = 0 \Rightarrow T = \text{constant} = -\bar{p} \Rightarrow
\]

\[
ar_{xx} + b r_x^2 = p - \bar{p}
\]

(7.6)

Η εξίσωση (7.6) έχει τρεις τύπους λύσεων, οι οποίες δίδονται παρακάτω.

7.1) Μεταπτώσεις (transitions)

Έστω \(\rho_x \neq 0 \). Τότε η λύση είναι μονότονη, αύξουσα ή φθίνουσα, ανάλογα με το αν είναι \(\rho_x > 0 \) ή \(\rho_x < 0 \). Η \(\rho(x) \) έχει μια από τις μορφές του Σχήματος 7.3. Αυτός ο τύπος λύσεων ονομάζεται μετάπτωση (transition).

![Σχήμα 7.3 Μεταπτώσεις (transitions)](image)

Για τη λύση αυτή ισχύουν τα εξής:

\[
\rho \to \rho_1, \text{ για } x \to -\infty \text{ και } \rho \to \rho_2, \text{ για } x \to +\infty
\]

(7.7)

όταν η \(\rho \) έχει τη μορφή του Σχήματος 7.3

Επίσης: \(\rho_x > 0 \), \(\lim_{x \to \pm \infty} \rho_x > 0 = 0 \)

Ορίζουμε το πολλαπλασιαστικό παράγοντα:

\[
E(\rho) = \frac{1}{a} \exp(2 \int_a^b d\rho)
\]

(7.8)

και πολλαπλασιάζουμε και τα δύο μέλη της (7.6) με \(E \rho_x \), οπότε παίρνουμε:

\[
\frac{1}{2} G r_x^2 = (p - \bar{p}) E \rho_x
\]

(7.9)

όπου: \(G(\rho) = aE(\rho) \)
Με ολοκλήρωση της (7.8) από \(x_0 \) έως \(x \):

\[
\frac{1}{2} G \rho_x^2 - \text{const} = \int_{x(x_0)}^{\rho(x)} (p - \bar{p}) E(\rho) d\rho
\]

(7.10)

όπου: η σταθερά της ολοκλήρωσης είναι η τιμή του \(\frac{1}{2} G \rho_x^2 \) σε κάποιο τυχαίο, αλλά σταθερό σημείο \(x_0 \).

Από την (7.9) με ολοκλήρωση από \(-\infty\) ως \(x \) και με βάση τα προηγούμενα προκύπτει:

\[
\frac{1}{2} G \rho_x^2 = \int_{\rho_1}^{\rho} (p - \bar{p}) E(\rho) d\rho
\]

(7.11)

και

\[
\int_{\rho_1}^{\rho} (p - \bar{p}) E(\rho) d\rho = 0
\]

(7.12)

Επίσης προκύπτει ότι:

\[
p(\rho_1) = p(\rho_2) = \bar{p}
\]

(7.13)

Αν αντί για τις (7.7) έχουμε τις εξής οριακές συνθήκες:

\[
\rho \to \rho_1, \text{ για } x \to +\infty \text{ και, } \rho \to \rho_2 \text{ για } x \to -\infty
\]

(7.14)

όταν δηλαδή η \(\rho \) έχει τη μορφή του Σχήματος 7.3 (ii), τότε \(\rho_x < 0 \) και η \(\rho \) είναι φθίνουσα.

Συμπερασματικά μπορούμε να πούμε ότι υπάρχει μια μοναδική τριάδα χαρακτηριστικών αριθμών (\(\bar{p}, \rho_1, \rho_2 \)) για τους οποίους η (7.6) έχει λύση με τις οριακές συνθήκες (7.7) ή (7.14). Αυτοί οι αριθμοί προσδιορίζονται από τις συνθήκες:

\[
\int_{\rho_1}^{\rho} (p - \bar{p}) E(\rho) d\rho = 0
\]

όπου: \(E(\rho) = \frac{1}{a} \exp(2 \int_{a}^{b} \rho d\rho) \)

και

\[
p(\rho_1) = p(\rho_2) = \bar{p}
\]

Η λύση \(\rho(x) \) είναι μοναδική και μονότονη. Άξιζουσα για τις οριακές συνθήκες (7.7) και φθίνουσα για τις οριακές συνθήκες (7.14).
7.2) Αναστροφές (reversals)

Έστω \(\rho_x = 0 \) σε ένα σημείο \(\bar{x} \). Τότε η λύση είναι συμμετρική γύρω από το \(\bar{x} \) και μονότονη σε κάθε πλευρά. Έχει μια από τις μορφές που φαίνονται στο Σχήμα 7.4. Η λύση αυτή ονομάζεται αναστροφή.

![Graph](image-url)

Σχήμα 7.4 Αναστροφές (reversals)

Για τη λύση αυτή ισχύουν:

\[
\rho \to \rho_1, \, x \to \pm \infty
\] \hspace{1cm} (7.15)

\[
\rho_x (\bar{x}) = 0
\] \hspace{1cm} (7.16)

\[
\lim_{x \to \pm \infty} \rho_x = 0
\] \hspace{1cm} (7.17)

Η \(\rho(x) \) έχει μέγιστο στο σημείο \(\bar{x} \) που είναι:

\[
\rho_2 = \rho(\bar{x}) = \max \rho(x) > \rho_1
\] \hspace{1cm} (7.18)

Επειδή η \(\rho(\bar{x}) \) είναι συμμετρική θεωρούμε μόνο την περιοχή \(-\infty < x \leq \bar{x} \), όπου η \(\rho(x) \) είναι μονότονα αύξουσα (\(\rho_x > 0, \quad x \neq \bar{x} \) με \(\rho_1 < \rho < \rho_2 \). Ολοκληρώνοντας την (7.9) από \(x \) \(\omega x_0 (-\infty < x \leq x_0 < \bar{x}) \) παίρνουμε:

\[
\text{const} - \frac{1}{2} Gp_x^2 = \int_{\rho(x_0)}^{\rho(\bar{x})} (\rho - \bar{p})E(\rho) d\rho
\] \hspace{1cm} (7.19)

Με ολοκλήρωση της (7.9) από \(-\infty \) \(\omega x \) \((-\infty < x \leq \bar{x}) \) και με βάση τα προηγούμενα καταλήγουμε στη σχέση:

\[
\frac{1}{2} Gp_x^2 = \int_{\rho_1}^{\rho} (\rho - \bar{p})E(\rho) d\rho, \quad -\infty < x \leq \bar{x}
\] \hspace{1cm} (7.20)
\[\text{Αν } x = \bar{x}, \text{ τότε:} \]
\[\int_{\rho_2}^{\rho_1} (p - \bar{p}) E(p) dp = 0 \] \hspace{1cm} (7.21)

Επίσης προκύπτει:
\[p(\rho_1) = \bar{p}; \quad p(\rho_2) < \bar{p} \] \hspace{1cm} (7.22)

Αν έχουμε τις οριακές συνθήκες
\[\rho \to \rho_2, \quad x \to \pm \infty \] \hspace{1cm} (7.23)

τότε,
\[\rho_1 = \rho(\bar{x}) = \min_x p(x) < \rho_2 \] \hspace{1cm} (7.24)

Σε αυτήν την περίπτωση ισχύει:
\[p(\rho_2) = \bar{p}, p(\rho_1) > \bar{p} \] \hspace{1cm} (7.25)

Συμπερασματικά μπορούμε να πούμε ότι υπάρχει μια μονοπαραμετρική οικογένεια χαρακτηριστικών αριθμών \((\bar{p}, \rho_1, \rho_2)\) για τους οποίους η (7.6) έχει λύση με τις οριακές συνθήκες (7.15) ή (7.23). Αυτές οι λύσεις προσδιορίζονται από τις σχέσεις:
\[\int_{\rho_2}^{\rho_1} (p - \bar{p}) E(p) dp = 0 \]
\[\text{με} \]
\[E(p) = \frac{1}{a} \exp(2 \int_{a}^{b} dp) \]

και
\[p(\rho_1) = \bar{p}, \quad p(\rho_2) < \bar{p} \text{ αν ισχύουν οι οριακές συνθήκες (7.15)} \]

ή
\[p(\rho_2) = \bar{p}, \quad p(\rho_1) > \bar{p}, \text{ αν ισχύουν οι οριακές συνθήκες (7.23).} \]
7.3) Ταλαντώσεις (oscillations)

Έστω \(\rho_x = 0 \) σε δύο σημεία \(\bar{x} \) και \(\bar{x} \). Τότε η λύση της (7.6) είναι μια ταλάντωση (oscillation). Η λύση αυτή φαίνεται στο Σχήμα 7.5 και είναι συμμετρική γύρω από τα \(\bar{x} \) και \(\bar{x} \).

![Diagram](attachment:image.png)

Σχήμα 7.5 Ταλαντώσεις (oscillations)

Ισχύουν οι σχέσεις:

\[
\rho_x(\bar{x}) = 0, \quad \rho_{xx}(\bar{x}) > 0 \tag{7.26}
\]

\[
\rho_x(\bar{x}) = 0, \quad \rho_{xx}(\bar{x}) < 0 \tag{7.27}
\]

\[
\rho_1 = \rho(\bar{x}) = \min \rho(x) \tag{7.28}
\]

\[
\rho_2 = \rho(\bar{x}) = \max \rho(x) \tag{7.29}
\]

Λόγω της συμμετρίας θα μελετήσουμε τη συμπεριφορά της \(\rho = \rho(x) \) μόνο στη περιοχή \(\bar{x} \leq x \leq \bar{x} \). Τα \(\bar{x} \) και \(\bar{x} \) είναι συνεχής ελάχιστα και μέγιστα της \(\rho \) με \(\rho(\bar{x}) = \rho_1 \) και \(\rho(\bar{x}) = \rho_2 \).

Είναι:

\[
\frac{1}{2} Gp_x^2 = \int_{\rho_1}^{\rho_2} (p - \bar{p}) E(\rho) d\rho \tag{7.30}
\]

σχέση που προκύπτει με ολοκλήρωση της (7.9) από \(\bar{x} \) ως \(\bar{x} < x < \bar{x} \) και με τη βοήθεια των προηγούμενων σχέσεων:

\[
\int_{\rho_1}^{\rho_2} (p - \bar{p}) E(\rho) d\rho = 0 \tag{7.31}
\]

που προκύπτει αν θέσουμε \(\bar{x} = x \).

Επίσης προκύπτει:

52
\[p(\rho_1) > \bar{p}, p(\rho_2) < \bar{p} \] \hspace{1cm} (7.32)

Συμπερασματικά μπορούμε να πούμε ότι υπάρχει μια διπαραμετρική οικογένεια χαρακτηριστικών αριθμών \((\bar{p}, \rho_1, \rho_2)\) για τους οποίους η (7.6) εχει λύση με οριακές συνθήκες διαφορετικώς από τις (7.7) ή (7.14) και (7.15) ή (7.23). Αυτοί οι αριθμοί προσδιορίζονται από τις σχέσεις:

\[\int_{\rho_1}^{\rho_2} (p - \bar{p})E(\rho)d\rho = 0, \]

με

\[E(\rho) = \frac{1}{a} \exp(2 \int_{a}^{b} \rho d\rho) \]

και

\[p(\rho_1) > \bar{p} > p(\rho_2) \]
8. Στοιχεία Θεωρίας Θραύσης

8.1) Εισαγωγή

Το φαινόμενο της θραύσης είναι ένα ιδιαίτερα σημαντικό φαινόμενο που εμφανίζεται στις κατασκευές του Μηχανικού. Η μηχανική της θραύσης ουσιαστικά ξεκινήσε το 1920 με τα πειράματα του Griffith πάνω σε δοχεία γυαλιού. Μελετά τη δημιουργία και μετάδοση των ρητμάτων που επιφέρει αστοχία σ’ ένα στερεό σώμα.

Υπάρχουν τρεις χαρακτηριστικοί τύποι θραύσης (opening, sliding και tearing mode) που μπορούν να μελετηθούν τόσο μакροσκοπικά, όσο και μικροσκοπικά. Στα παρακάτω σχήματα φαίνονται οι 3 τύποι θραύσης.

![Image](attachment:3_types_of_fracture.png)

Οι τρεις τύποι θραύσης: (a) Τύπος I: Τύπος ανοίγματος (b) Τύπος II: Τύπος ολίσθησης (c) Τύπος III: Τύπος διάρρηξης

Οι θεωρητικοί υπολογισμοί με βάση τις ατομικές δυνάμεις που αναπτύσσονται μεταξύ των μορίων και ατόμων των υλικών δίνουν πολύ μεγάλες τιμές για την αντοχή σε εφελκυσμό των υλικών της τάξης του μέτρου ελαστικότητας. Στην πραγματικότητα, η αντοχή των υλικών σε εφελκυσμό είναι πολύ μικρότερη από 500 έως 1000 φορές. Αυτή η μειωμένη αντοχή σε εφελκυσμό εξηγείται με τη Μηχανική της Θραύσης (Fracture Mechanics), και την υπόθεση ότι προοπάρχει ή δημιουργείται στα υλικά μια ροή στα άκρα της οποίας οι τάσεις είναι πολύ αυξημένες (θεωρητικά απειρίζονται στο άκρο της ραγής).
8.2) Ανάλυση Τάσης

Αν η τάση \(\sigma \) εφαρμόζεται στα όρια μιας άπειρης πλάκας και δεν υπήρχε η ρογμή τότε \(\sigma' \) όλο το σώμα η τάση \(\sigma \) ήταν \(\sigma_1 \). Τώρα που υφίσταται μια ρογμή μήκους 2\(a \), μεγαλύτερες τάσεις \(\sigma \) θα εμφανιστούν στα άκρα της ρογμής.

Διάγραμμα:

<table>
<thead>
<tr>
<th>(\sigma_{oo})</th>
<th>(\sigma_y)</th>
<th>(\sigma_x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\frac{\theta}{2})</th>
<th>(\frac{3\theta}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\theta}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\frac{3\theta}{2})</td>
</tr>
<tr>
<td>(\frac{\theta}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\frac{3\theta}{2})</td>
</tr>
<tr>
<td>(\frac{\theta}{2})</td>
<td>(\frac{\theta}{2})</td>
<td>(\frac{3\theta}{2})</td>
</tr>
</tbody>
</table>

Kοντά στα άκρα της ρογμής για τύπο I ισχύει:

\[
\sigma = \frac{K_1}{\sqrt{2\pi}} f_y(\theta)
\]

όπου \(K_1 = \sigma_0 \sqrt{\pi a} \)

και \(f_y(\theta) = \begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) & \sin\left(\frac{\theta}{2}\right) & 0 \\
-\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) & 0 \\
0 & 0 & 2v\cos\left(\frac{\theta}{2}\right)
\end{bmatrix} \]

Ανάλογες σχέσεις ισχύουν για τύπους II και III.

Για τύπο II ισχύει

\[
\sigma = \frac{K_{11}}{\sqrt{2\pi}} f_y(\theta)
\]

όπου \(K_{11} = \sigma_0 \sqrt{\pi a} \)

και \(f_y(\theta) = \begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) & \sin\left(\frac{\theta}{2}\right) & 0 \\
-\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) & 0 \\
0 & 0 & -2v\sin\left(\frac{\theta}{2}\right)
\end{bmatrix} \]

Για τύπο III ισχύει.
\[\sigma_y = \frac{K_{III}}{\sqrt{2\pi}} f_y(\theta) \quad \text{όπου} \quad K_{III} = \sigma_0 \sqrt{\pi a} \]

και \(f_y(\theta) = \begin{bmatrix} 0 & 0 & -\sin \frac{\theta}{2} \\ 0 & 0 & \cos \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} & 0 \end{bmatrix} \)

Για τον τύπο I, για \(\theta = 0 \) και \(f_y(\theta) = 1 \) \(\Rightarrow \sigma_y \bigg|_{\theta=0} = \frac{K_I}{\sqrt{2\pi}} \Rightarrow \sigma = \sigma^* \bigg|_{representative} \Rightarrow \sigma^* = \frac{K}{\sqrt{2\pi}} \)

Υποθέτοντας ότι η θερμοποιία συμβαίνει όταν \(\sigma_y = \sigma^* \bigg|_{representative} \), όπου \(\sigma^*, r^* \) είναι ιδιότητες του υλικού, έχουμε \(K_1 = \sigma^* \sqrt{2\pi r^*} = \text{σταθ.} \Rightarrow \sigma_0 \sqrt{\alpha} = \text{σταθ.} \)

\[\sigma_\alpha \]

\[\delta \lambda. \]

\[\sqrt{\alpha} \]

μια σχέση πειραματική αποδειγμένη για σωλήνες μεταφοράς με ραγματώσεις. Σε μια ανάλυση συμπεριφοράς καταλήγει και το κριτήριο του Griffith που θα αναλύσουμε παρακάτω.

Σημείωση 1: Οι παραπάνω σχέσεις για την κατανομή της τάσης προβλέπουν αποειρρομένο των τάσεων στο άκρο της ραγμής (\(r \to 0 \)). Συνήθως όμως οι υψηλές τάσεις στα άκρα της ραγμής προκαλούν πλαστικοποίηση του υλικού και οι τάσεις στην πλαστική αυτή ζώνη που περικλείει το άκρο της ραγμής δίνονται από τη θεωρία της πλαστικότητας.

Σημείωση 2: Το παραπάνω πρόβλημα της κατανομής της τάσης στα άκρα της ραγμής είναι ανάλογο με το πρόβλημα της μελέτης της συγκέντρωσης της τάσης σε άλλες γεωμετρικές ατέλειες. Είναι γνωστό πως διά τα υλικά περιέχουν ατέλειες (defects) π.χ. κενά (voids) ή εγκλείσματα (inclusions). Στη γεωτοπία των ατελειών αυτών, παρατηρείται συγκέντρωση τάσεων. Με τη θεωρία ελαστικότητας προκύπτει για παράδειγμα ότι σε μονοεξωνικά εφελκυόμενο δίσκο στη γεωτοπία μιας κυκλικής οχήματος υποθέτουμε μεγέθους, παρατηρούμε ακριβώς δίπλα στην οπή τάσεις διαλάσιες (για διδακτάτη πρόβλημα απ' ότι θα ήταν αν δεν υπήρχε οπή). Έστειλητιστεί η αντοχή του δίσκου σε εφελκυσμό, αν σαν κριτήριο αντοχής υιοθετήσαμε σχέση που να δηλώνει ότι το υλικό αντοχεί όταν η τάση δίπλα στην οπή αποκτήσει μία κρίσιμη τιμή. Στην πραγματικότητα, όμως, αν ανεβεί η βαθμιάτικα το εφελκυστικό φορτίο του δίσκου, στον οποίο αναφερθήκαμε προηγουμένως, αρχίζει να πλαστικοποιείται το υλικό δίπλα στην οπή (πλαστική ζώνη).
8.3) Κριτήριο θραύσης του Griffith

Και το κριτήριο αυτό καταλήγει σε μια σχέση της μορφής $\sigma_0 \sqrt{a} = \text{stead}$. Όπου όμως τώρα η σταθερά προσδιορίζεται συναρτήσει φυσικών παραμέτρων του υλικού.

σ_0

σ_0

H παρακάτω ανάλυση υποθέτει ότι λόγω της ύπαρξης της ρωγμής υπάρχει ελάττωση της ελαστικής ενέργειας σε μια περιοχή που ορίζεται από την έλλειψη του σχήματος

— Ελαστική Ενέργεια $= \frac{1}{2} \sigma_0 E = \frac{1}{2} \frac{\sigma_0^2}{E}$

— Εμβαδόν Έλλειψης $= \pi(a)(2a) = 2\pi a^2$

— Συνολική ελάττωση ελαστικής ενέργειας: $2\pi a^2 \frac{\sigma_0^2}{2E} = \frac{\pi a^2 + \sigma_0^2}{E}$

Η παραπάνω ελαστική ενέργεια που χρησιμοποιήθηκε για να δημιουργήθηκε η ρωγμή είναι ίση με την επιφανειακή ενέργεια γ έπειτα το εμβαδόν της νέας επιφάνειας που δημιουργείται λόγω της ρωγμής.

— Συνολική επιφανειακή ενέργεια $2(2a)\gamma$ όπου ο παράγον 2 υποδηλώνει ότι σχηματίζονται δύο επιφάνειες (άνω και κάτω) κατά την δημιουργία της ρωγμής.

— Εξισώνοντας τις δύο ενέργειες έχουμε $\frac{\pi a^2 + \sigma_0^2}{E} = 4a\gamma \Rightarrow \sigma_0 = \sqrt{\frac{4\gamma}{\pi a}}$ που είναι το κριτήριο του Griffith.
8.4) Θεώρηση σε Παρασύρια H (Ψαθυροποίηση υδρογόνου)

\[\sigma_\infty \]

\[\sigma_\infty \]

Οι εξισώσεις που διέπουν το φαινόμενο ψαθυροποίησης υδρογόνου σε μια πλάκα με ρωγμή υπό φόρτιση με ταυτόχρονη διάχυση ιόντων H είναι οι παρακάτω:

\[\rho_i + \frac{\partial j}{\partial x} = 0 \quad \frac{\partial T}{\partial x} = f \quad \text{η αντίστοιχα σε τρεις διαστάσεις} \]

Αντίστοιχα:

\[\rho_i + \text{div} j = 0 \quad \text{div} \mathbf{T} = f \quad (1) \]

με τις ακόλουθες καταστατικές εξισώσεις

\[\mathbf{T} = -\pi p - \pi' \rho \sigma; \quad \sigma = \text{tr} \sigma = \sigma_{\infty} \quad (2) \]

\[f = a_i - a \rho \nabla \sigma \quad (3) \]

Αντικαθιστώντας την (2) και (3) στην (1) \[j = -(D + N \sigma) \nabla \rho + M \rho \nabla \sigma \]

όπου \[D = \frac{\pi}{\alpha}, \quad N = \frac{\pi'}{\alpha}, \quad M = \frac{(\alpha' + \pi')}{\alpha} \]

Θα εξετάσουμε την περίπτωση ισορροπίας \[j = 0 \] (δεν υπάρχει ροή)

\[j = 0 \quad \Rightarrow \quad \rho = \rho_0 (1 + \frac{N}{D} \sigma) \]

Η γενική έκφραση για τον τανισμό της τάσης στην κατάσταση ισορροπίας είναι:
\[
\sigma_y = \frac{K_1}{\sqrt{2\pi r}} f_y(\theta) \quad ; \quad K_1 = \sigma_n \sqrt{\pi a} \\
\Rightarrow \sigma = A \frac{K_1}{\sqrt{r}} \quad \text{όπου } A \text{ είναι μια σταθερά}
\]

Η συγκέντρωση υδρογόνου στα χείλη της ρωγμής δίνεται από τη σχέση του Sieverts
\[
\rho_0 = \sigma_\theta \sqrt{P_{H_2}} \quad \text{όπου } P_{H_2} \text{ πίεση υδρογόνου στον υποδοχή που λαμβάνει χώρα το πείραμα.}
\]

Ετσι οι τελικές μας σχέσεις είναι οι εξής:
\[
\rho = \rho_0 (1 + \frac{N}{D} \sigma) \\
\sigma = A \frac{K_1}{\sqrt{r}} \\
\rho_0 = \sigma_\theta \sqrt{P_{H_2}}
\]

Οι 3 παραπάνω σχέσεις συνδέουν το \(\rho \), το \(P_{H_2} \), και το \(\sigma \), δηλαδή τα γεωμετρικά χαρακτηριστικά του δοκιμίου και τις εξωτερικές φορτίσεις.

Κριτήριο θραύσης (Crack failure): \(\rho\big|_{\text{τραύ}} = \rho_c \Rightarrow P = P_c K_1^{-\alpha} \quad \text{όπου } \alpha = \frac{M}{N} \)

Ταχύτητα ρωγμής: \(V = \text{const}(\rho)\big|_{\text{τραύ}} \Rightarrow V = V_0 K_1^\alpha \)

Δηλαδή η αυτή την περίπτωση έχουμε μια εκθετική σχέση της κρίσιμης πίεσης του υδρογόνου \(P_{H_2} \), με το συντελεστή συγκέντρωσης της τάσης \(K_1 \). Επίσης μια εκθετική σχέση της ταχύτητας της ρωγμής με το συντελεστή συγκέντρωσης της τάσης \(K_1 \).