Evaluation of mutual information estimators on nonlinear dynamic systems
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Mutual information is a nonlinear measure used in time series analysis in order to measure the global correlations (linear and non-linear) between their terms with time lag 7. The aim of this study is to
evaluate some of the most commonly used mutual information estimators, i.e. estimators based on histograms (with fixed or adaptive bin size), k-nearest neighbors and kernels. We assess the
estimators by Monte-Carlo simulations on time series from nonlinear dynamical systems of varying complexity. As the true mutual information is generally unknown, we investigate the consistency of
the estimators (convergence to a stable value with the increase of time series length), the rate of consistency and the degree of deviation among the estimators.

Definition of mutual information
The mutual information of a time series {X}}, t=1,...,n, is:
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where the sum is referred to the partition of the two-
dimensional plane (X;, X;.,) and Px,, Px, Px x,, are the
marginal and joint probability distribution defined for each
region of the partition.
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Mutual information estimators

The distribution of mutual information is generally not
known as joint and marginal probability density functions
are unknown. For the estimation I(7) of I(7), the theoretical
probabilities are estimated in different ways. In this work
the most common-used estimators are evaluated. These
estimators depend on a parameter that has to be chosen
appropriately. The choice of the optimal parameter is also
examined.

1. Histogram-based estimators

o The first one and most naive estimator partitions the
range of values into a finite number b of discrete bins of
equal length (equidistant partitioning). The density of each
bin is estimated by the corresponding relative frequencies
of occurrence of the samples within a bin.

o The second estimator partitions the range of values into
equiprobable bins, so that each bin has the same
occupancy.

In each case the partitioning is made with the same way in each
variable.

e The third histogram-based estimator uses an adaptive
partitioning of the two-dimensional plane [Darbellay &
Vajda (1999)]. Mutual information is estimated by
calculating relative frequencies on appropriate partitions
which achieve conditional independence on the rectangles.
The advantage of this estimator is that is data-dependent
and parameter free.

Equidistant estimator
o I(1) increases with b (for a fixed ).
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Simulations results for each estimator

In the plots, (1) is the mean value of 1(t) from 1000 simulations.

k-nearest neighbours mutual information

 I(t) depends on b, also for very large 1.

We demonstrate these results for Henon map (no noise).

Equidstant () for Henon, n = 1024

Equidistant () for Henon, n = 8192

Equidistant s)for Henon, n = 107

o (1) decreases with k (for fixed n) and depends on k, also for very
large n.

k=64 is too large value for k (poor estimation).

We demonstrate these results for Henon map (no noise).
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o I(7) increases with n (for fixed k).
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Equidistan () for Henon, number of bins = 2

o I(1) decreases with 1 (for fixed b).

o As 7 increases, I(t) varies with b and n.

o For small 7, differences in I(7) are small.

He ofbins =16

o For small b, I(7) is rather stable for all  (but gives poor estimation).

Henon, number of bins = 64

o As noise level increases, I(t) values are smaller and converge to zero level
for larger 7.

(1) estimates decrease with noise level.

¢ When noise is added, I(t) does not depend on k.

n=10"
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Kernel estimator of mutual information

Kernel estimator has the highest computational cost and therefore
the evaluation is not yet completed. From the simulations made so
far we concluded to the following:

o I(7) increases with n and is smaller for larger values of ,.

o I(7) from the 1%, 2"d and 5" bandwidth methods differ slightly.

® As system complexity increases, I(T) converges to zero level for larger 7.
2. k-nearest neighbours
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We demonstrate these results for Mackey Glass (no noise) with different Delta.
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This method considers the probability distributions for the

distance between the point at which the density is to be
estimated and its k-th nearest neighbour [Kraskov et. al
(2004)]. The free parameter is the number of neighbours k.

3. Kernel estimators

The kernel density estimators construct a smooth estimate
of the unknown probability density by centering kernel
functions at the data samples; kernels are used to obtain
the weighted distances [Moon (1995)]. In this work we use
the Gaussian kernel. The free parameter is the bandwidth
h; for one-dimensional data (equivalent to bin width) and
h, for two-dimensional data.

Evaluation of mutual information estimators

The evaluation of the estimators is assessed by Monte-
Carlo simulations in the non-linear systems: Henon, Ikeda
map and Mackey Glass delay differential system with
delay Delta 17, 30, 100. The factors considered are the time
series length: n = 256, 512, 1024, 2048, 4096, 8192, and the
noise level: additive Gaussian noise of 20, 40 and 80%.

I(t) is computed using all methods on 1000 realizations
from the above systems up to that lag T that I(t) converges
to a non-negative constant value. For each method, the
corresponding free parameter ranges as follows.

1. histogram-based estimators: b =2, 4, 8, 16, 32, 64.
2. k-nearest neighbour estimator: k=2, 4, 8, 16, 32, 64.

3. kernel estimator:
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* As noise level increases, I(T)
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¢ Adding noise to the system, I(t) values are more

stable across b values.
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o](7) varies for different n
(fixed bandwidth method)
for small 7.

Kemel I(2) for Henon (no noise), for 1rst bandwidth method

values are smaller and converge
to zero level for larger 7.

Kernel () for Henon (20% noise), n = 2048

Equiprobable estimator

e Equiprobable I(t) estimator has exactly the same properties as the
equidistant one.

As an example, we demonstrate the dependence of I(t) on b for Ikeda system.

equiprobable I() for ikeda, n = 256

ecuiprobatie I for keda. n = 3192

equiprobable () for keda, n = 10"

A/A | hy hy Ref

1 |h=(4/3n)" h=@Wn"® |Silverman

2 |h=@/3)" h=@/5n)  |(1986)

3 . 18-r(®),n<200 6 Harrold et
“:al%”%’a:{ 150020 |20 al. (2001)

4 |h=@/aRI32n)" min(s, 1Q/1349) |h, =h Wand &

5 |h=(8J7R/32n) " min(s, IQ/1349) [h, =v2h Jones (1995)

6 |L-stage direct plug in h=h Wand &

7 |L-stage direct plug in h,=v2h Jones (1995)

8  |Solve-the-equation plugin |h,=h Sheather &

9 [Solve-the-equation plug in |h,=y2h Jones (1991)

1(1) : autocorrelation for lag 1.

The true mutual information I(7) is generally not known
for non-linear chaotic systems. In order to evaluate the
mutual information estimators, we examine their
consistency and their dependence in the corresponding
parameters for all systems and time series lengths.
Therefore we compute I(t) for a realization up to a length
n=10° or n=107 for all systems. If the estimator is consistent
then it will converge with n.

Adaptive histogram-based estimator

o I(1) increases with 1, opposite to fixed-bin methods (see over).

o The estimator is consistent only when adding noise.

o As noise level increases, I(t) decreases and stabilizes for all n (fixed 7).

We demonstrate these results for Henon map.
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Conclusions

Mutual information estimators are not consistent for non-linear
noise-free systems and the choice of parameters is crucial for all
estimators. However we cannot find an optimal parameter choice as
there is no consistency.

With added noise, the choice of the parameters is not that crucial as
there is convergence of the estimated I(t) values. k-nearest neighbor
estimates of I(t) varies less with the free parameter (k) compared to
the other estimators.

I(t) from all estimators for Ikeda system with 20% & 40% noise levels.
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