Statistical detection of changes in the underlying dynamics of observed time series
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Abstract

In the evolution of many physical systems, such as brain potential activity, we observe changes in their dynamical
regime. The objective of this paper is to find reliable statistical methods capable of detecting changes in the dynamical
state. In particular, emphasis is given on the change of the level of the stochastic component in the system. We
consider the surrogate data test for nonlinearity in combination with two discriminating nonlinear statistics, i.e. the
mutual information and the local linear fit. If the original time series contains detectable nonlinear dynamics, a
suitable nonlinear statistic should be able to discriminate the original time series from its surrogate time series, which
preserve only the original linear structure and are otherwise random. Changes in the stochastic component of the
observed system are detected from the changes in the statistical significance of the test, i.e. the strength of
discrimination between original and surrogate data. We consider different well-known simulated systems, such as
Henon map and Lorenz system, and we control the level of observational noise added to the system. The surrogate
data test for nonlinearity is applied to overlapped segments of the original time series. Our aim is to compare the two
test statistics for different scenarios of changes of the level of noise. We examine also the discriminating power of each
statistic for a range of segment lengths. Further, we apply our procedure to pre-ictal EEG records in order to assess
the power of our implementation of the surrogate data test to detect changes in the dynamical evolution of EEG that
are precursors of forthcoming epileptic seizure.

1. Tools
1.1 Measures
The measures used are mutual information and Local linear fit.
0 Mutual Information I(t) for a delay T computes the linear and nonlinear correlation of two variables xi,

xi, of a time series xi, i=1,...,n: s
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Where p, (x) is the probability of xi=x, p, . (z,y) is the joint probability of xi=x and X i~ =y and the sum is

calculated for all possible values of i, X i« .

O The second measure is the NRMSE from the Local Linear Fit LLF(m). Local linear prediction models for each time i

is given as:
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where m is the embedding dimension. The statistic used for the fitting error at time T ahead is:
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These two measures are computed using the TISEAN software package. [1]

1.2 Surrogate data test for nonlinearity.

a. A null hypothesis Ho is formulated, that the data has been created by a stationary Gaussian linear process
that undergoes a nonlinear static transform.

b.Algorithm for generation of surrogate data.
Since the null assumption is not a simple one but leaves room for free parameters (mean, autocovariance),

we generate random surrogate data with the same autoccorelation and distribution as
a given data set. For the generation of surrogate data consistent to Ho the algorithm statistically
transformed autoregressive process (STAP) is used. It identifies a normal autoregressive process and a
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monotonic static transform, so that the stransformed realizations of this process fulffill exactly both
conditions: they possess the sample autocorrelation and amplitude distribution of the given data.[2]
c.Discriminating statistics
The discriminating statistics used are mutual information and Local linear fit.
d. Test decision
To decide for the rejection of Ho we compute the significance s for the two discriminating statistics. If qo is

the statistic from the original time series and qj, ..., g« from the surrogates then the significance is:

5= ‘qo _<qs>‘
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Where <g> is the average and o is the standard deviation of qy, ..., qx, customarily given in units of ‘sigmas’.
Significance s >1.96 suggests the rejection of Ho at a = 0.05.

2. Simulation
2.1 Setup
We use two well-known simulated systems, Henon map and Lorenz system. We simulate the change of
system characteristics during its evolution by monitoring the level of noise added to the observed time
series. To detect the changes of system characteristics we split the observed data record in overlapping
segments with a given sliding window. In each overlapping segment we apply the surrogate data test with
the two statistics. The objective is to investigate the performance of the two statistics under different
conditions of noise level, overlapping segment length and reconstruction parameters.

Length of original data N

Length of overlapping segments n

Sliding window k=n/4

Henon Lorenz

T (for I(tar)) [1,10] [1,20]
m (for LLF(m)) [1,10] [1,10]
N 5000 10000
N 500, 2500 2000
Noise level 10,20,40,60 10,20,40,60

We generate the noisy time series of length N by gradually adding noise of increasing amplitudes.

2.2 Simulation results
The simulations for the Henon map showed that LLF(m) is a more powerful statistical measure than I(t),
as the significances extracted are much higher. That means that distinction between the original time
series from its surrogates is clearer when LLF is used as test statistic. We expect that significance s of the
test will decrease as noise level increases. First we set n=500. For lag t = 1 and embedding dimension
m=1 we can see that the two statistics give similar results even for high noise levels (fig.1). However, for
lag © =2 (and accordingly m=2 for LLF) mutual information gives much smaller significance (fig.2) and
for even larger lags and I(t) does not have any discriminating power (s < 2 for noise level >40%) . Besides

the fact that for high noise amplitude, it is hard to obtain significant discrimination, we observe that local
fit discriminates for unsuitably large embedding dimensions and even for sort time series, contrary to
mutual information (for m=10, n=500, see fig.3). To assess how the length of the overlapping segments (n)
may alter the significance of the test we set n =2500 and repeat the same simulation. We observe that
when I(t) is the statistic the significance s is decreasing as T increases as before (only for the first
overlapping segments s for T = 2 is larger than for t = 1). However, s is much higher than in the first case
(n=500), which means that the discrimination of the original data and the surrogates is much clearer. The
same holds for LLF (m), but again s from LLF statistic reaches higher levels, which are about the same for
different m.
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We consider the standard Lorenz system at chaotic regime and observe variable z with sampling time
0,02s. From lag t=1 to 7 significance for I(t) is gradually increasing, from t=8 to 14 is gradually decreasing
and from t =15 to 20 is again increasing (fig 4). Only for t =1 and t = 2 mutual information does not have
discriminating power for high noise levels. As the Lorenz system is a flow, we consider different delays t
when we compute LLF. For t=1 the significance for LLF(m) is gradually increasing for larger values of m
and the increase slows down for m>4 (fig. 5). This feature holds for larger t (we checked up to 10) but at
higher levels of s that seem to rise with t. We observe that only for m=1 and m=2 the null hypothesis is
rejected and only for the last few overlapping segments which have high noise.

Significance for lags t=1, 2, 8, 10, 20

significance for embedding dimension 1, 3, 5, 10
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Finally, we apply this procedure to pre-ictal EEG records. Specifically we use a scalp EEG record (from

left frontal lobe) of N = 12000 data ( s

0.01s) from an epileptic patient and the seizure onset is at about

100s. The overlapping segments are of length n = 3000 (30s). The significance s for I(t) increases for the
first 10 overlapping segments for each lag from 1 to 6 and then has a burst at segment 11 (75s — 105s) and
decreases for the last 3 overlapping segments, i.e. the dramatic change appears at the time of seizure
onset (fig. 9). For increasing t values (we checked up to 15), s rises from non significant values (s < 1.96)



towards significant ones (up to s 5), showing actually a downward trend along time up to the seizure

onset (see fig.6,7).

significance for | (t) for lags 1,2,3,4,5,6

significance for I(1) for lags 7,8,9,10,11,12
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el = \*/
o e

o 2 4 6 8 10 12

overlapping time series
Conclusions
The goal of this work was on the one hand to examine whether the changes in the characteristics of a
dynamical system during its evolution can be detected using the statistical measures of mutual
information I(t) and local linear fit LLF(m) (monitoring the noise level and the length of overlapping
segments) and on the other hand to assess and compare the strength of discrimination of these statistics.
From the simulations on the Henon map we observe that for high noise levels, I(t) has no discriminating
strength (noise levels higher than 40%), whereas LLF was able to discriminate even clearer with both
measures. On the other hand, from the simulation of the Lorenz system we observe that the two
measures gave evidence of similar discriminating power. As for the EEG record, values of the
significance of I(t) present a clear decreasing trend for the pre-ictal period, especially for large values of
t. This indicates an increase of the stochastic component in the system, for tens of seconds prior to the
seizure onset, in agreement with other findings [3]. The test does not show a clear trend of significance
when LLF(m) was used as test statistic. Overall, the simulations showed that the surrogate data test
equipped with suitable test statistics can detect changes in system characteristics (due to the stochastic
component) then it is applied sequentially on subsequent segments of the observed signal.
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