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Abstract — The aim of this work is to evaluate two directed 
coupling measures in determining interhemisheric information 
flow from electroencephalograms (EEG) of epileptic patients. 
In particular, the frontal, central and parietal cortices are 
considered. The first measure is the directed coherence, a 
linear measure defined in the frequency domain, and the 
second the transfer entropy, a nonlinear information measure 
defined in the time domain. The two measures are computed 
on consecutive EEG segments from each pair of channels at 
the different brain areas over a time period that covers the 
preictal, ictal and postictal state. The profiles of the two 
measures over the recording period are obtained for 8 
extracranial epileptic EEG records, 7 of general tonic clonic 
type and one of temporal lobe type, all from different patients. 
Discrimination of the preictal state from postictal state could 
be established in almost all episodes by transfer entropy and in 
only few with the directed coherence. The results for the 
direction of the causal effects were not conclusive as the 
measures indicated both similar and opposite causal effects. 
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I. INTRODUCTION  

The main tool in the study of brain activity prior, on and 
after epileptic seizures is the electroencephalogram (EEG) 
recording produced by a number of intra-cranial or extra-
cranial channels, which can be seen as a set of time series 
carrying information about the electric potential at different 
brain areas. In many studies, brain activity has been 
assumed to be a complex dynamical system, and measures 
of interactions and information flow among the components 
of the system (i.e., brain areas) have been used in the 
analysis of EEG. In epilepsy, the main interest is to utilize 
information from measures computed on the preictal EEG 
record in order to predict impending seizures [1,2]. Though 
many works concentrate on measures applied to each 
channel separately (i.e., on the scalar time series), much 
interest in the recent years is for measures of bivariate and 
multivariate time series analysis, and especially measures 
that can detect the direction and strength of the information 
flow, e.g., see [2,3].  

In this study, we analyze EEG records covering preictal, 
ictal and postictal state and evaluate two measures of 
directed interaction in their ability to detect changes in the 

information flow at specific brain areas within the preictal 
period of up to 3 hours prior to seizure onset, as well as 
between preictal and postictal periods. The two measures 
are the directed coherence [4], a standard linear measure 
derived by the power spectrum and cross-spectrum, and the 
transfer entropy [5], a nonlinear measure of information 
flow based on entropies of joint vectors from the driving 
and the driven system. Both methods have been reported to 
be able to track changes on the EEG signals, e.g. see [6,7]. 
There are a number of other directed interaction measures, 
often referred to as Granger causality or coupling measures, 
and more recent variants that attempt to detect only the 
direct effects from one system to the other in the presence 
of other time systems, as typically is the case with multi-
channel EEG, e.g. see [8].  

II. METHODOLOGY 

A. EEG  

We use 8 extra-cranial EEG records from 7 epileptic 
patients with generalized tonic clonic seizures (denoted as 
records A, C, D to H) and one with left back temporal lobe 
epilepsy (denote as record B). A high-pass filter at 0.3Hz 
and a low-pass filter at 40Hz have been used, and the data 
were down-sampled to 100 Hz. No other pre-processing or 
artifact rejection was performed, but in order to attain better 
source derivation at small cortical regions, for each EEG 
channel, the mean EEG of the four neighboring channels 
was subtracted [9]. The two interaction measures were 
computed on the following pairs of spatially transformed 
EEG: central left (C3) vs right (C4), temporal left (T7) vs 
right (T8), frontal left (F3) vs right (F4) and parietal left 
(P3) vs right (P4). Each EEG record covers at least 3h prior 
to seizure onset and extends well into the postictal period. 
 
B. Directed interaction measures 

Directed coherence (DC) has been introduced in the 
frequency domain to detect Granger-causal interactions 
between two systems X on Y measured by the two univariate 
time series {x(t)} and {y(t)}, t=1,…,n, respectively. First, 
the autoregressive model of order P, AR(P), is fitted to the 
bivariate time series 
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where Ws, Wx and Wy are three white noise sources, 
mutually independent, with zero mean and variance one. 
The Fourier transform of AR(P) in Eq. (1) reads 
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where Hmn(f) denotes the system transfer function from 
system m to system n. Then DC is defined as 
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to measure the directed linear influence of X on Y at 
frequency f. Often the mean value for a range of frequencies 
is used as the DC measure. 

Transfer entropy (TE) from X to Y quantifies the amount 
of information explained in Y at T time steps ahead from the 
state of X accounting for the concurrent state of Y. The 
systems are observed again from univariate time series, but 
the states of the systems are given in terms of the 
reconstructed vectors, xt=(xt,xt-τ,…,xt-(m-1)τ)′ and yt=(yt,yt-

τ,…,yt-(m-1)τ)′, respectively, where τ is the delay time and m is 
the embedding dimension. The use of the same m and τ for 
the two systems is typical in applications and was recently 
found to be the most efficient [8]. TE from X to Y is defined 
as 
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where H(x) is the Shannon entropy of the variable X 
measuring the amount of uncertainty associated with the 
values x of X, and for a discrete variable is defined as  

( ) ( ) log ( )X XH X p x p x= −∑ ,                 (6) 

where pX(x) is the probability mass function of X. Here, we 
estimate entropies using the k-nearest neighbor estimating 
method in [11].  
 
C. Set Up 

The measures DC and TE are calculated in both 
directions (X→Y and Y→X) on non-overlapping consecutive 
EEG segments of 30s for the four channel pairs from each 
of the 8 records. For the estimation of DC, three orders of 
AR are tested, P =3,6,10, and DC was averaged over 
frequencies from 1 to 30 Hz with step 1 Hz. The embedding 
dimension m for TE is the analogous parameter to P for DC, 
and therefore we use also m = 3,6,10. The other parameters 
of TE are τ=1 and T=1.  

 
D. RESULTS 

We obtained one measure profile from the computation 
of the measure on consecutive segments covering the whole 
record, from the preictal to the postictal state, for each 
channel pair and direction of interaction. The profiles from 
both measures vary with the epileptic episode and the 
channel pair. The profiles of DC (P=10) are shown in Fig.1 
for all channel pairs and three representative episodes, and 
the TE (m=10) profiles for the respective data are shown in 
Fig.2. There are variations within the preictal periods, as 
observed by both DC and TE profiles, but not in any 
consistent manner that would indicate a persistent change, 
say from early to late preictal state.  

The overall DC profiles do not indicate any change from 
preictal to ictal and postictal states, whereas TE profiles 
show clearly this transition for almost all pairs, episodes and 
coupling directions. For example, this can be clearly seen in 
record B (second panel of Fig.1 for DC and Fig.2 for TE), 
where the postictal period is longer than for the other 
episodes, and TE is at a higher level during the postictal 
period for all channel pairs and directions, whereas for DC 
this can be seen only for the case F4→F3. 

The selection of the order P in the estimation of DC does 
not seem to affect significantly the performance of the 
measure. Even for larger values of P that we tested (up to 
P=30), the main signatures of the profiles are intact. On the 
other hand, TE seems to be more dependent on the 
embedding dimension m, and in particular the transition 
from preictal to ictal and postictal is more obvious for 
m=10.   

Both measures give mostly positive values in both 
directions and along all states, indicating that bidirectional 
causal effects are persistent between brain areas at the two 
hemispheres. Even for the cases where one measure gives 
significantly larger causal effect in the one direction, often 
the other measure suggests a larger effect in the opposite 
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direction, e.g. DC shows larger effect from C3 to C4 in 
episode  

0
0.2
0.4 DCC3->DCC4

Episode A, DC P=10

0
0.2
0.4

time [min]

DCC4->DCC3

0
0.2
0.4 DCT7->DCT8

0
0.2
0.4

time [min]

DCT8->DCT7

0
0.2
0.4 DCF3->DCF4

0
0.2
0.4

time [min]

DCF4->DCF3

0
0.2
0.4 DCP3->DCP4

50 100 150 200 250 300
0

0.2
0.4

time [min]

DCP4->DCP3

 

0
0.2
0.4 DCC3->DCC4

Episode B, DC P=10

0
0.2
0.4

time [min]

DCC4->DCC3

0
0.2
0.4 DCT7->DCT8

0
0.2
0.4

time [min]

DCT8->DCT7

0
0.2
0.4 DCF3->DCF4

0
0.2
0.4

time [min]

DCF4->DCF3

0
0.2
0.4 DCP3->DCP4

50 100 150 200 250
0

0.2
0.4

time [min]

DCP4->DCP3

 

   

0
0.5 DCC3->DCC4

Episode G, DC P=10

 

0
0.5

time [min]

DCC4->DCC3 

0
0.5 DCT7->DCT8 

0
0.5

time [min]

DCT8->DCT7 

0
0.5 DCF3->DCF4 

0
0.5

time [min]

DCF4->DCF3 

0
0.5 DCP3->DCP4 

200 400 600 800
0

0.5

time [min]

DCP4->DCP3 

 
Figure 1 DC (P=10) profiles for records A, B and G, 

(preictal, ictal and postictal states) and all channel pairs, as 

denoted at each subplot. The red dashed vertical line 
denotes seizure onset. 
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Figure 2 As Fig.1 but for TE (m=10). 
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G (third panel of Fig.1), whereas TE shows larger effect 
from C4 to C3 for the same episode (third panel of Fig.2). 
For the same record, DC indicates a clear driving of T7 on 
T8 at the preictal state, while the opposite is observed with 
TE. Moreover, DC distinguishes preictal and postictal states 
only for certain channel pairs, i.e., DC values increase for 
C4→C3 (driving from right to left hemisphere) and 
decrease for T7→T8 and F3→F4 (driving from left to right 
hemisphere). TE detects for all pairs the transition of 
preictal to ictal and postictal state, and indicates a decrease 
of information flow independently of the direction. Again 
these results do not indicate a particular tendency of driving 
from one hemisphere to the other. 

TE values are slightly larger than zero at almost all cases, 
e.g. for record A the estimated values of TE (m=10) from 
both directions are around 0.02. DC gives larger values than 
TE at almost all cases (the scale of values of DC and TE in 
the figures is different), e.g. for record A the estimated 
values of DC (P=10) from both directions are around 0.12. 
Though the DC and TE measures are not normalized to an 
easily interpretable scale, TE tends to be less significant. 
For both measures it is necessary to assess statistical 
significance, i.e., whether small measure values suggest no 
connectivity rather than small interaction, in order to 
correctly interpret the results in terms of connectivity of 
brain areas. Some work on the use of surrogates for 
assessing statistical significance of coupling measures has 
been done recently [12,13], and we also work on developing 
measures with improved statistical significance.  

III. CONCLUSIONS  

Both the directed coherence (DC) and transfer entropy 
(TE) measures seem to vary much across the episodes, the 
channels and the states. The positive values of both 
measures at almost all cases (episodes, channels) suggest 
the existence of bidirectional causal effects among the 
different brain areas, and thus the interaction of the two 
hemispheres, however further investigation should be 
assessed to validate the statistical significance of the 
measures. TE increases after the seizure onset at almost all 
epileptic episodes (apart from episode G, where there is first 
a drop and then an increase), indicating the increase of 
information flow among the brain areas. This can possibly 
be attributed to the decrease of complexity in the brain 
dynamics during the seizure, but it can as well be an 
artificial feature, e.g. the more rhythmic oscillations on 
seizure and at a lesser extend during the postictal state may 
give rise to an increase of the coupling. Both measures seem 
to be insufficient in detecting a precursor of the seizure 

onset, as no changes in the information flow are detected 
just before the seizure onset. As EEG data are 
multidimensional, the need of measures that quantify the 
overall causal effects and differentiate among direct and 
indirect causal effects is imperative. 
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