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The Drama Lignite Deposit, Northern Greece:
Insights from Traditional Coal Analyses,
Rock-Eval Data, and Natural
Radionuclides Concentrations
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Thessaloniki, Greece

In the present study the results of traditional methods for characterizing 25 lignite
samples, representing a continuous sequence of the Drama deposit, Northem
Greece, are presented. The moisture, the volatile matter, and the ash contents are
high, while the sulfur content remains at low levels. Rock-Eval analysis was
performed on the same samples. The T, ., values obtained do not correlate with
coal type and rank and are higher than those expected for lignites. The reflectivity
values are lower than 0.2%. In values < 0.5% R,, and > 1.5% R ,,, T,,.x does not
correlate with R, . It is also noticed that the difference in hydrogen contents is not
related to the T, ,x values as would be expected. The concentrations of =~ U, U,
226Ra, 2me, 22XRa, 22XTh, and MK, determined in samples D2 and D5, are similar
to those reported in the literature for Greek lignites. The concentrations of uranium -
series isotopes are among the higher for lignites worldwide.

Keywords Drama, Greece, lignite, radionuclides, Rock-Eval pyrolysis

More than 60 basins in Greece formed during Neogene and Quaternary times
include coal deposits. The rank of the coal varies from peat up to the subbitumi-
nous coal stage. The most abundant type of coal in Greece is lignite. Lignite
deposits formed from the Miocene to the Pleistocene in mires of intramontane and
paralic basins, such as the basins of Ptolemais, Florina, and Drama in Northern
Greece and the basin of Megalopolis in Southern Greece. The proved lignite
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reserves are estimated up to 6,750 Mt without adding the 4,300 Mm? of the
Philippi peat, about 150 km in the east of Thessaloniki, Northern Greece. The
economically recoverable lignite reserves reach 3,900 Mt, approximately 58% of
the total. The calorific value is very low: 1400 kcal/ kg in Ptolemais—Amynteo, only
900 kcal/kg in Megalopolis. The ash content is always high, in contrast to the
sulfur content which is always low. Opencast mining takes place in the basins of
Ptolemais, Amynteo, and Megalopolis. The annual production exceeds 60 Mt, of
which 98% is used for electricity generation. The total installed capacity of the
power plants is 4,833 MW. A number of publications have referred to the geology,
petrology, mineralogy, and geochemistry of Greek peats and lignites, such as those
of Cameron et al. (1984), Christanis (1983, 1987, 1994), Kaouras (1989), Goodarzi
et al. (1990), Gentzis et al. (1990, 1996, 1997), Broussoulis et al. (1991), Kalkreuth
et al. (1991), Fowler et al. (1991), Kaouras et al. (1991), Antoniadis (1992),
Antoniadis et al. (1992), Botis et al. (1993), Valceva & Georgakopoulos (1993),
Valceva et al. (1995), Filippidis et al. (1996), Sakorafa & Michailidis (1997), and
Antoniadis & Rieber (1997). The present article integrates conventional analyses
of lignites from the Drama deposit with a pure geochemical analysis—Rock-Eval
pyrolysis—and methods of measurement of the quantity of the naturally occuring
primordial radionuclides which will be released, to some extent, to the environment
after the lignite combustion.

Geological Setting

The 700-km? intramontane basin of Drama is a tectonic graben formed since the
Miocene by post-alpidic tectogenesis (Figure 1). Tectonic movements during the
Early-Middle Pleistocene separated the Drama basin from the Serres graben in
the west. Pre-Neogene metamorphic and igneous rocks of the Rhodope massif,
such as gneisses, schists, marbles, and granites, constitute the margins of the
Drama basin (Melidonis, 1969, 1981). The Neogene-Quaternary formations of the
basin consist of clay, mud, sand, conglomerate, marl, peat, and lignite. The lignite
deposit extends all over the central plain area of the Drama basin. In the Lower
Pleistocene, a lacustrine environment gradually developed in a large part of the
basin. Lacustrine, calcareous gyttja was deposited, constituting the floor of the
lignite deposit and occurring in many other marginal parts of the basin. As the lake
gradually shallowed, extended peat-forming mires, covered by herbaceous vegeta-
tion, formed. It was on these peat-forming mires that the genesis of Drama lignites
started 1 million years ago (Van Der Wiel & Wijmstra, 1987). Over most of the
basin, clastic material from alluvial fans deposited at different times. The exten-
sions of the fans in the area of the Drama lignite deposit separate the limno-telmatic
deposits into three distinct lignite seams (A, B, and C; see Figure 2). The formation
of the Drama lignite in a limno-telmatic environment is confirmed by petrographic
and palynological investigations (Kaouras et al., 1991). Maximum growth of all
three lignite seams is found in the area of Agia Paraskevi (Figure 1). Seam C is not
developed in the north of the village of Nerofraktis; seam B is not developed as far
north as the village of Koudounia, and seam A seems to extend further to the
north. The minable lignite reserves are estimated to exceed 1,430 Mt, with more
than 1,060 Mt belonging to seam A, which is the thicker and more extensive one.
The Drama lignite deposit has not been exploited yet.
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Figure 2. Generalized profiles of the Drama lignite deposit (after Filippidis et al., 1996).

Samples and Analytical Methods

Twenty-five lignite samples representing a continuous sequence of the Drama
deposit were obtained from the DR 84/86 core. The coring site is located about
1.2 km in the north of Agia Paraskevi village (Figure 1). Drilling and sampling was
carried out by the Institute of Geology and Mineral Exploration IGME), Athens.
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Each sample represents a seam interval 0.2 to 1.6 m thick. Figure 2 shows the
stratigraphic and areal extent of the sampled lignites. The samples were air-dried
after being crushed in coarse fragments. Then the samples were crushed to pass a
I-mm sieve. The number and thickness of each sample is given in Table 1.
Proximate and ultimate analyses were performed according to ISO standards. The
moisture, the ash content (on a dry basis), the volatile matter (on a dry and dry,
mineral matter-free basis), the carbon content (on a dry basis), and the total sulfur
and organic sulfur content were determined. The calorific value was determined by
thermogravimetric analysis using an isothermal bomb calorimeter. Polished sec-
tions of the samples were prepared for microscopic observation. The lignite
samples were mounted in epoxy resin and then ground and polished according to
the standard method (Stach et al., 1982). The reflectance was determined in
immersion oil at a monochromatic light (1 = 546 nm). Reflectance measurements
were taken on eu-ulminite A (dark). Fluorescence spectra analysis has not been
carried out.

Organic Geochemistry: The Rock-Eval Pyrolysis Method

The Rock-Eval pyrolysis method uses a special device in which coals or rocks with
organic substance are subjected to sustained pyrolysis under an inert atmosphere,
which allows faster study of the organic matter and its stage of evolution. The main
part of the instrument is a small oven in which a pulverized rock sample (about 100
mg) is heated in a helium atmosphere (Espitalié et al., 1977). In the case of coals,
the recommended sample size of 100 mg may overload the flame ionization
detector (FID) (Peters, 1986). In previous studies 5-mg aliquots were used (Fowler
et al., 1991; Sykes et al., 1994). In the present study, between 10 and 16 mg of
lignite were used. This amount of sample provides good results for both TOC and
S, values. After a few minutes’ purge for traces of air, the device heats the sample
progressively from 180°C up to 600°C at a constant rate of 15°C/min. During the
assay, the hydrocarbons, which are free in the sample at the time of sampling, are
first volatilized at a moderate temperature. The quantity of these hydrocarbons is
recorded as a function of time by means of a flame ionization detector (FID),
giving a first peak (S;). The second peak (S,) is representative of the hydrocarbons
and hydrocarbon-like compounds generated by thermal cracking and other reac-
tions of the organic matter (lignite in our case). The organic matter pyrolysis also
generated oxygen-containing volatiles, i.e., carbon dioxide (CO,) and water. The
measurement of CO, (S; peak) is limited to the range 180-390°C, in order to
include the main stage of CO, generation from organic matter and to avoid other
sources of CO, (decomposition of carbonates, bicarbonates, etc.). From S; and S,
the microprocessor determines the total production index (TPI), which is the ratio
S,/ (S, +8S,).S,,S,,S; are calculated in milligrams of products (hydrocarbons,
CO,) per gram of sample. A fourth parameter is the temperature, T,,,, (in degrees
Celsius) at which the maximum rate of generation of hydrocarbons occurs (top of
the S, peak). This parameter is used mostly for evaluation of the maturation stage.
For the purposes of this study, the Oil Show Analyzer (O.S.A.) version of Rock-Eval
analyzers was used. In the Oil Show Analyzer the determination of the total
organic carbon (TOC) is not optional, as in the case of the ROCK-EVAL II
apparatus, and is realized in place of the analysis of the CO, coming from the
organic matter cracking (S; peak). From the above-mentioned parameters the
hydrogen index (HI) and the oxygen index (OI) are calculated by means of S,, S5,
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and TOC content. They are respectively expressed in milligrams of HC per gram of
TOC and in milligrams of CO, per gram of TOC. The oxygen index and the S;
peak are not included in the Oil Show Analyzer measurements. The Rock-Eval
pyrolysis analyses were performed at the Laboratory of Organic Geochemistry,
Institut Francais du Pétrole, Rueil-Malmaison, France.

Radioactivity

Two lignite samples (D2 and D35) were selected to measure the quantities of the
naturally occurring radionuclides. The samples were homogenized, packaged to
preclude radon emanation, and then counted for natural gamma radiation on a
low-background, high-purity Ge detector, linked to an appropriate data acquisition
system (Manolopoulou, 1990; Manolopoulou & Papastefanou, 1992). Therefore,
the concentrations of 238U, 235U, 226Ra, 210Pb, 228Ra, 228Th, and K (in Bq/kg)
were determined. The radioactivity measurements were performed at the Nuclear

Physics Department, Aristotle University of Thessaloniki.

Results and Discussion

Chemical Analyses

Results from traditional proximate and ultimate analysis and calorific values of the
Drama lignites are reported in Table 1. The studied lignites are characterized by
low values of fixed carbon (30.10-47.20% ) and high ash contents (23.4-48.4% ,on a
dry basis). The as-received moisture varies within the range 54.6—-69% . After
combustion in the boiler, residual mineral matter must be disposed off in the form
of ash (Unsworth et al., 1991). Such disposal always has an economic penalty, which
will be severe for the Drama deposit, as the ash content of all Drama samples is
quite high. The volatile matter, on a dry basis, ranges from 21.5% to 47.2% , while
on a dry, mineral matter-free basis, it varies between 50.2% and 69.6%. Such
volatile matter contents are considered high, but are within the range of low-rank
coals such as lignites. The total sulfur content varies for seam C from 1.3% to
4.0% , whereas the values for the volatile sulfur are from 0.1% to 1.7%. For seam
B, the total sulfur content varies from 2.3% to 3.6% , with values of volatile sulfur
from 0.4% to 1.1%. Finally, for seam A, total sulfur values vary from 1.9% to 5.0%,
whereas volatile sulfur values vary from 0.3% to 1.9%. Generally, the volatile
sulfur amounts in average approximately 20% of total sulfur (the difference from
the total sulfur remains in ash). In the present study the “net” calorific value of the
samples is given. It differs most significantly from the “gross’ value due to the fact
that the lignite samples have a high moisture content. The ‘“net” calorific value is
quoted to a dry and to a dry, mineral matter-free basis, after recalculation. The
average net calorific value on a dry basis for seam C is 3,330 kcal/ kg, for seam B is
3,526 kcal/kg and for seam A is 2,852 kcal/kg. On a dry, mineral matter-free basis
the values are 5,114, 5450, and 5367 kcal/ kg, respectively.

Rock-Eval Pyrolysis

The results of Rock-Eval pyrolysis are presented in Table 2. Rock-Eval pyrolysis
has been applied to coal samples (Teichmiller & Durand, 1983; Durand & Paratte,
1983; Bertrand, 1984; Verhayen et al., 1984; Georgakopoulos, 1984; Peters, 1986;
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Kalkreuth & Macauley, 1987; Boudou et al., 1990; Fowler et al., 1991; Marquis et
al., 1992; Suggate & Boudou, 1993; Sykes et al., 1994; Bostick & Daws, 1994;
Newman et al., 1997), and it was evident that a very cautious interpretation of the
results should be made. Typically, the application of pyrolysis experiments on
different coal samples has been undertaken to confirm the idea that coals may
provide a source of oil and gas accumulations. The most volatile compounds (guest
bitumen) appear in the first P, peak. The area S, of this peak is very low for all
Drama samples. Similar low values have already been reported for a large coal
series (Teichmiiller & Durand, 1983). As Teichmiiller and Durand (1983), Bostick
and Daws (1994), and others have also noted, S; is small in coals and does not
increase with increasing rank. Furthermore, peats and lignites have much higher S,
values than bituminous coals (Suggate & Boudou, 1993). The hydrocarbon-like
products and related volatile bitumens, formed by thermal cleavage from the
organic matter, appear in the second peak P,. For the upper seam C, the values of
S, (in mg HC/ g) vary from 19.05 to 82.86. For seam B, the values of S, vary from
36.59 to 71.29, whereas for the lower seam A, the values vary between 21.51 and
68.52. These S, values indicate that only minor hydrocarbon expulsion occurs from
the Drama lignites. The T,,, values for all samples vary between 416 and 446°C.

values, although all samples are obtained from only
a 160-m-deep well and are of the same low rank. In general, for terrestrial organic
matter in the early stages of evolution the T,,, values vary between 395 and 420°C.
It must also be noticed that the differences in the mineral matter content of the
values. For the samples showing high T

max

Some samples show high T,

max

samples do not influence the T,,,
value, the latter does not correlate with both coal type and rank. According to
Newman et al. (1997), any relationship between coal type and T,,,, is erratic at the
lowest coal rank (high-volatile bituminous B) they have investigated. Therefore, it

can be concluded that the relationship between T, and coal type is also erratic

max
for lignites. In all samples the reflectivity values are lower than 0.2% (Table 3).
Between 0.5% R, (T, ~ 425°C) and 1.5% R, (T, =~ 475°C), the correlation
between R, and T,,,, is fairly linear. In values < 0.5% R, and > 1.5% R, , Tyax
increases more quickly than R, (Teichmiiller & Durand, 1983). Some scattering is
also noticeable: this is not only due to incertitudes of measurements, but also due
to different significances of R,, and T,,,,: R, is measured on huminite (eu-ulminite

max * m
A), while T

max

is measured on whole coal (huminite + liptinite + inertinite). In a
previous work, Kaouras et al. (1991) presented a petrographic and palynological
study, conducted on a set of samples from one borehole of the Drama lignite
deposit. The authors established that the macerals of the huminite group in 9
samples vary from 61.49% to 81.72% , those of the liptinite group from 8.42% to
31.76% , and those of the inertinite group from 6.01% to 24.72% . These values
is

point out that 7,, cannot correlate perfectly with R, . In other words, T,

X max

influenced by the petrographic composition, besides the rank, the latter deter-
mined on the basis of huminite reflectance. The hydrogen index values vary from
107 to 186 for seam C, from 74 to 193 for seam B, and from 82 to 210 for seam A.
It is noticed that the differences in hydrogen contents are not related to the T,
values as would be expected. Apart from that, the values of T, ,, and those of the
depth are not related to each other. The Oil Show Analyzer device determines
total organic carbon (TOC) in weight percent of sample, by summing up the
pyrolyzed organic carbon (deduced from the total amount of hydrocarbons S; + S,)
with the residual organic carbon (RC) obtained after oxidation. In Figure 3, the
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Table 3
Mean random reflectances (% R, 0il) measured on eu-ulminites A
of the Drama lignite samples

Random reflectance

in oil (%)
Sample Seam Depth (m) Eu-ulminite A
D.1 C 45.00 0.20 + 0,02
D.2 C 62.20 0.12 + 0,03
D.3 C 63.50 0.13 £ 0,05
D.4 C 64.70 0.13 £+ 0,03
D.5 C 68.60 0.17 £ 0,05
D.6 C 75.00 0.19 £ 0,03
D.7 B 102.70 0.20 + 0,03
D.8 B 106.60 0.15 + 0,02
D.9 B 109.40 0.17 £ 0,03
D.10 B 113.05 0.11 + 0,02
D.11 B 113.55 0.13 + 0,03
D.12 B 117.10 0.14 £ 0,03
D.13 A 134.90 0.14 £ 0,03
D.14 A 144.50 0.12 £ 0,01
D.15 A 148.00 0.17 £ 0,02
D.16 A 150.80 0.13 £ 0,02
D.17 A 156.70 0.17 £ 0,02
D.18 A 159.50 0.17 £ 0,02
D.19 A 163.00 0.12 + 0,01
D.20 A 166.60 0.14 + 0,02
D.21 A 174.20 0.14 £ 0,02
D.22 A 183.00 0.14 £ 0,03
D.23 A 186.30 0.17 £ 0,03
D.24 A 187.60 0.17 £ 0,02
D.25 A 200.40 0.18 + 0,03

Rock-Eval TOC values are related to fixed carbon as determined by proximate
analysis for the Drama lignite samples. For a part of the samples the values are
almost the same, but for the rest there is a significant difference. It is difficult to
provide a satisfactory explanation about this phenomenon. The total organic
carbon can be divided into two fractions: the first, connected to the hydrocarbons
that are released during the cracking of the coal, is found in the pyrolyzate. The
second fraction is the residual carbon (RC) or “dead carbon,” which constitutes the
inert carbon that reacts only in oxidation. These two carbon forms were studied by
Gransch and Eisma (1970), who originally proposed the “carbon ratio” (Cg/ Cy).
The residual carbon Cy (or RC) is related to the abundance of polyaromatic
nuclei. The volatile fraction C; minus C, (C; being the total organic carbon) is
related to the abundance of aliphatic chains and oxygen-containing functional
groups which are lost during pyrolysis. For the same type of organic matter the
ratio Cr/ Cyr increases with the degree of maturation, reaching approximately the
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value 1 in the case of graphite. In addition, high Cr/ C; values may be obtained
from type III organic matter or coals, even at low stages of maturation. In the
Drama samples, the values of the carbon ratio vary from 0.83 to 0.94. Independent
of the methodology that is used, the difference between TOC and Cj corresponds
to the carbon that is liberated during pyrolysis, termed C,. Therefore, the relation:
C; — Cgr = Cp is formed. During pyrolysis this C, is liberated in the form of
hydrocarbons, CO, and CO,. The quantities of CO are very low and can be ignored
(Souron et al., 1975). The quantity of carbon that is related to the CO, liberated
during pyrolysis is, of course, larger than the quantity of carbon that is related to
the CO, but still remains at very low levels. In the case of recent sediments
originating from higher plants, the quantity of carbon related to the CO, consti-
tutes just 8% of the total organic carbon. In the case of lignites (as in the Drama
case), this percentage falls to 4%, whereas for type III rock samples in the
beginning of the mature stage it is 2% (Souron et al., 1975). From the above it is
clear that the greatest part of the volatile organic carbon (Cp) is related to the
hydrocarbons liberated during pyrolysis cracking and is represented by the S, peak,
leading to an excellent correlation between S, area and TOC — RC difference.

Natural Radionuclides

Table 4 presents the concentrations of 238U, 235U, 226Ra, 210Pb, 228Rat,zngh, and

“K (in Bq/kg), determined in samples D2 and D5, both obtained from seam C.
Concentrations of U and Th are also calculated in ppm, while the concentration of
K is calculated in weight percent. The results show a similar distribution of the
naturally ocurring radionuclides between the two samples. It seems that radioactive
*"Pb. This
fact means that the rate of formation of the radioactive daughter product is equal
to the rate of decay. According to Coles et al. (1978), secular equilibrium does exist

T . 238 26 26
equilibrium exists between ~~ U and © Ra and also between ~~ Ra and

Table 4
Concentrations of 238U, 235U, 226Ra, 210Pb, 228Ra, 228Th, and *’K for samples

D2 and D5 obtained from the upper seam C of the Drama lignite deposit

D2 D5
Bq/kg +1lo Bq/kg +1lo
Py 121.0 14.0 95.0 12.0
Py 6.5 2.1 4.8 0.9
*Ra 125.3 2.6 108.4 1.3
2py 160.0 15.0 118.0 12.0
*Ra 16.9 1.2 20.7 0.7
2 Th 14.5 1.3 19.7 0.8
YK 106.0 6.8 103.0 34
U (ppm) 9.80 12.0% 7.70 12.0%
Th (ppm) 3.90 5.5% 5.00 2.6%
K %) 0.34 6.4% 0.33 3.3%

+ 1 o: standard deviation.
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between all the nuclides of the uranium series chain in the coals. This radioactive
equilibrium does not exist between **U and ”Ra in the Ptolemais lignites (238U:
'Ra = 1.7 + 0.4), whereas it does exist between ~ 'Ra and ~''Pb (*°Ra: *''Pb =
1.0 £ 0.2) Manolopoulou, 1990; Manolopoulou & Papastefanou, 1992). The mean
isotopic ratio U U for the two samples investigated is 19.4 + 3.7 (Bq) and is
in fairly good agreement with the natural one, 21.44 + 0.02 (Bq). In general, the
concentrations of natural radionuclides in types of coal are less than those in the
earth’s crust. The average activity concentrations in coal are 20 Bq/kg of 238U, 20
Bq/kg of “*Th, and 50 Bq/kg of 'K, and all the decay products of > U and >’ Th
are in radioactive equilibrium with their precursors (UNSCEAR, 1982). Lignite
radioactivity has been very scarcely covered by the international bibliography.
Therefore a comparison is undertaken between the results of the present study and
those reported by several authors concerning higher-rank coals. A very comprehen-
sive study by Gentzis and Goodarzi (1997) reports on the concentration of radionu-
clides in subbituminous coals used exclusively for power generation in Alberta,
Canada. The authors compare the radioactivity measured in coals from the
Highvale Mine and the Whitewood Mine with the same concentrations in other
Canadian feed coals (Evans et al., 1985), in Australian coals, and in coals from the
United States and the United Kingdom (Smith, 1987). They have found that the
activity of *2Th ranges from 10 to 40 Bq/ kg, whereas the range in Australian coals
is from 11 to 69, in the U.K. coals from 7 to 19, and in the U.S. coals from 4 to 21
Bq/kg. For *°Ra the activity ranges from 10 to 40 Bq/kg, whereas the range in
Australian coals is from 19 to 24, in the U.K. coals from 8 to 22, and in the U.S.
coals from 9 to 59 Bq/kg. For *'"Pb the authors have found an activity range from
10 to 40 Bq/kg, very similar to those of Australian coals (16—28) and lower than
those of U.S. coals (4-52). From all the above values it is clear that, in the case of
Drama, the radium-226 and uranium-238 concentrations are within the higher
range for world coals. Uranium and its daughter nuclides are associated with the
organic material of lignites (coal matrix), while thorium and its daughter nuclides
as well as potassium are associated with inorganic materials (ash matrix). The
different behavior between the two isotopes of radium, *°Ra and “"Ra in the
studied lignites, is probably due to the fact that *°Ra has higher mobility in
the coal matrix than 228Ra, which is associated (as its parent 232Th) with aluminosil-
icates. Radium-226 (and its precursor 238U) has bimodal behavior either in the
volatile form of uraninite or in the silicate form of coffinite [U(SiO,),_y (OH),y |
(Coles et al., 1978; Manolopoulou & Papastefanou, 1992). Obviously, the small
number (2) of lignite samples which were investigated for the concentrations of
naturally occurring radionuclides does not permit significant conclusions to be
made, but similar concentrations are also referred for the Ptolemais lignites, in
which U has predominantly an organic mode of occurrence (Manolopoulou, 1990).

Conclusion

The present study was carried out to determine the quality parameters which
reflect thermal value and any deleterious tendencies it may have for process
efficiency and/or the environment. Traditional analyses such as proximate, ulti-
mate, and calorific value do not show substantial variability among the three lignite
seams of the Drama deposit. The moisture, the volatile matter, and the ash
contents are always high, while the sulfur content of Drama lignites always remains



510 A. Georgakopoulos

at low levels. A specific technique involving a pyrolysis process (Rock-Eval pyroly-
sis) has been used together with conventional methods. Rock-Eval analysis was not
designed for coal characterization, and has not been evaluated rigorously for
reproducibility in this regard. This method has been applied only a very few times
in lignite studies, therefore, these results may be very interesting.

The T,,, of release of gaseous species under inert atmosphere (hydrocarbons,
H,) or under oxidizing atmosphere (H,0, CO,, SO,,...) allow a widening of the
rank domain to be assessed, compared to the T,,, of the Rock-Eval pyrolysis,
which concerns only the domain of 0.5 to 1.5% R,,.

The S, as well as S, values determined from the Rock-Eval pyrolysis for the set

of Drama samples demonstrate that:

1. S, and S, correlate with coal type and rank, while T,,, does not.

2. Rock-Eval S, indicates only minor hydrocarbon expulsion from Drama
lignites.

3. Comparison of the Rock-Eval analysis data (TOC) with those of the
proximate analysis (fixed carbon) reveals that sometimes the Rock-Eval
technique underestimates and some times it overestimates the carbon
content.

Interpretation of the results of the Rock-Eval analysis is important for the
evaluation of the petroleum-source potential of coals, but is of no value for lignites
since they have no petroleum-source potential. However, this analytical method,
although unconventional for lignites, combined with some other, also uncon-
ventional analytical methods, is valuable in relation to coal utilization (in hydro-
liquefaction, gasification, combustion, etc.).

The concentrations of the naturally occurring radionuclides, which to some
extent will be released to the environment after the combustion of the lignite, are
among the higher for lignites worldwide. As Coles et al. (1978) have reported, a
part of > U which is associated with silicates or which is mineralized as coffinite in
the lignite (coal matrix) remains with the bottom ash, whereas the B8y part
associated with the uraninite (UO,) in the coal matrix forms volatile compounds,
such as UO;. Ra-226 also forms volatile compounds such as Ra(OH), and later
condenses out on the finer fly ash particles (fly ash matrix).
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