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Abstract. We derive a formula of a weight v in terms of a given weight w

such that the estimate∫
D
|f(z)|pw(z) dm(z) ∼ |f(0)|p +

∫
D
|f ′(z)|pv(z) dm(z),

is valid for all analytic functions f on the unit disc.

1. Introdunction

Let D be the unit disc in the complex plane C and dm(z) = rdr dθ
π the normalized

Lebesgue area measure on D. Our starting point is the estimate∫
D
|f(z)|p dm(z) ∼ |f(0)|p +

∫
D
|f ′(z)|p(1− |z|)p dm(z),

which is valid when 1 ≤ p <∞ for all analytic functions on the disc. The notation
means that there are finite positive constants C and C ′ independent of f (but
possibly depending on p) such that the left and right hand sides L(f) and R(f)
satisfy

CR(f) ≤ L(f) ≤ C ′R(f)
for all analytic f . In particular the two sides are either both infinite or both finite
and in the latter case they are comparable. The weighting factor (1 − |z|)p in the
second integral compensates for the extra growth of the derivative as z approaches
the boundary.

It is well known that a similar formula holds when the integrals are taken with
respect to more general measures dµ(z) = (1− |z|)αdm(z), α > −1:∫

D
|f(z)|p(1− |z|)α dm(z) ∼ |f(0)|p +

∫
D
|f ′(z)|p(1− |z|)p+α dm(z),

and one can find in the literature other cases of analogous estimates. For example
it was shown in Proposition 5 of [AS] that if w(r), 0 < r < 1, is a positive weight
function which is integrable on (0, 1) and satisfies the conditions:

(1.1) w(r) ≥ C

1− r

∫ 1

r

w(u) du, for 0 < r < 1.

for some positive constant C, and

(1.2) w(sr + 1− s) ≥ C ′w(r), for 0 < r < 1,
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for some s ∈ (0, 1) and a positive constant C ′, then∫
D
|f(z)|pw(|z|) dm(z) ∼ |f(0)|p +

∫
D
|f ′(z)|p(1− |z|)pw(|z|) dm(z),

for all analytic functions on D.
These kind of estimates or just the one sided inequalities are often useful in the

study of spaces of analytic functions. One sided inequalities involving integrals of
functions and their derivatives with respect to general measures on the disc have
been studied by various authors, see for example [L].

The purpose of this article is to obtain a unifying statement of such estimates
under some general conditions on w. And secondly to point out that these condi-
tions are met for each of the most common weights, as well as for some less common
ones, an instance of which is the doubly exponential weights of Example 3.3. To
state our result we need some preliminaries which we now give.

We consider only radial weights. These arise from functions w : [0, 1) → (0,∞)
that are Lebesgue integrable on [0, 1), and we put w(z) = w(|z|) for each z ∈ D. We
further assume that our weights are sufficiently smooth on [0, 1). We will observe
later that this requirement can be relaxed so that it will be sufficient for the weights
to be sufficiently smooth near 1.

Given such a weight w we define the function

ψ(r) = ψw(r) def=
1

w(r)

∫ 1

r

w(u) du, 0 ≤ r < 1,

and we call it the distortion function of w. Some properties of ψ will be pointed
out later. We put ψ(z) = ψ(|z|) for z ∈ D. A weight w is called admissible if it
satisfies the following conditions:
Condition I1. There is a positive constant A = A(w) such that

w(r) ≥ A

1− r

∫ 1

r

w(u) du, for 0 ≤ r < 1.

Condition I2. There is a positive constant B = B(w) such that

w′(r) ≤ B

1− r
w(r), for 0 ≤ r < 1.

Condition D. For each sufficiently small positive δ there is a positive constant
C = C(δ, w) such that

sup
0≤r<1

w(r)
w(r + δψ(r))

≤ C.

Observe that (I1) implies Aψ(r) ≤ 1−r so that for each sufficiently small positive
δ we have r+ δψ(r) < 1 and the quantity in the denominator of the fraction in (D)
is well defined. Condition (I1) is the same as (1.1). Conditions (D) and (I2) will
be discussed later. We can now state

Theorem 1.1. Suppose 1 ≤ p <∞ and w is an admissible weight with distortion
function ψ. Then

(1.3)
∫

D
|f(z)|pw(z) dm(z) ∼ |f(0)|p +

∫
D
|f ′(z)|pψ(z)pw(z) dm(z),

for all amalytic functions f on the disc.
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The proof of the Theorem is given in section 2. In section 3 we we calculate
explicitly the distortion function ψ for some families of weights. We do not aim
at generality but rather at concrete formulas that show how ψ depends on w for
various classes of weights.

We need some further background. For f analytic on D and 0 ≤ p < ∞ we
denote

Mp
p (r, f) =

∫ 2π

0

|f(reiθ)|p dθ
2π
, 0 ≤ r < 1,

the p-mean of f on |z| = r. Mp
p (r, f) is a monotone increasing function of r and

satisfies

(1.4)
d

dr
Mp

p (r, f) ≤ pMp−1
p (r, f)Mp(r, f ′), 0 < r < 1.

for 1 ≤ p <∞, see [AS].
To facilitate the notation but also to show the connections with spaces of analytic

functions we consider the weighted Bergman space Ap
w of all analytic functions on

the disc with norm

‖f‖p
w,p =

∫
D
|f(z)|pw(z) dm(z) =

∫ 1

0

Mp
p (r, f)w(r)r dr <∞

The spaces Ap
w are Banach spaces when 1 ≤ p < ∞ and the point evaluations

f → f(λ) are bounded linear functionals for each λ ∈ D (see Remark 1 of [AS])
Weighted Bergman spaces with weights other than the standard w(r) = (1− r)α

have been studied for example in [KM], [LR], focusing mainly in the Hilbert space
case p = 2.

It is easy to see that if w and ω are two weights and there is a σ ∈ (0, 1) such that
w ∼ ω on (σ, 1) then Ap

w = Ap
ω with equivalence in norms. In particular weights

may be modified on intervals [0, σ], with σ < 1 without changing the Bergman
space.

Finally we list some properties of the distortion function. Suppose w is a weight
and let ψ be its distortion function, then it is easy to see that
(i) If w(r) is decreasing then

(1.5)
∫ 1

r

w(u) du ≤ w(r)
∫ 1

r

du = (1− r)w(r),

hence ψ(r) ≤ 1− r and in particular limr→1 ψ(r) = 0.
(ii) The derivative of ψ is

ψ′(r) = −1− w′(r)
w(r)

ψ(r), 0 ≤ r < 1.

Thus if w(r) is increasing then ψ(r) is decreasing and clearly limr→1 ψ(r) = 0. If
w is increasing and admissible then condition (I1) gives ψ(r) ≤ (1/A)(1 − r). On
the other hand ∫ 1

r

w(u) du ≥ w(r)(1− r)

so ψ(r) ≥ (1− r) and we conclude that for increasing admissible weights we have

ψ(r) ∼ 1− r.
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(iii) For the standard weights w(r) = (1− r)α, α > −1, we have

ψ(r) =
1

α+ 1
(1− r).

(iv) We can recover w from its distortion function by solving the differential equation
(w(r)ψ(r))′ = −w(r). We get

w(r) =
1

ψ(r)
exp

(
−

∫ r

0

1
ψ(u)

du

)
.

We use the letters C, C ′, C1, . . ., to denote generic constants whose value may
change at the next step. The constant may depend on parameters p, σ, . . . , and
we write in that case C(p, σ).

2. Proof of the theorem

In this section we prove Theorem (1.3) and and discuss the conditions on w. Of
the two inequalities involved, one is valid with no extra hypothesis on w.

Lemma 2.1. Suppose 1 ≤ p < ∞ and w is a weight with associated distortion
function ψ. Then there is a constant C = C(p, w) such that∫

D
|f(z)|pw(z) dm(z) ≤ C

(
|f(0)|p +

∫
D
|f ′(z)|pψ(z)pw(z) dm(z)

)
for all analytic f on the disc.

Proof. The proof follows the lines of Lemma 2 from [AS]. For f constant the claim
is clear. Assume f is not constant and both integrals are finite. We are going to
prove first the case f(0) = 0. We have

‖f‖p
w,p =

∫ 1

0

Mp
p (r, f)w(r)r dr

=
∫ 1

0

rw(r)
(∫ r

0

d

ds
Mp

p (s, f) ds
)
dr

≤ p

∫ 1

0

rw(r)
∫ r

0

Mp−1
p (s, f)Mp(s, f ′) dsdr (by (1.4))

= p

∫ 1

0

Mp−1
p (s, f)Mp(s, f ′)

∫ 1

s

w(r)r drds (Fubini’s )

≤ p

∫ 1

0

Mp−1
p (s, f)Mp(s, f ′)w(s)ψ(s) ds

If p = 1 then the proof is finished for the case f(0) = 0. If p > 1 apply in the last
integral Hölder’s inequality with exponents p/(p− 1) and p,

≤ p

(∫ 1

0

Mp
p (s, f)w(s) ds

) p−1
p

(∫ 1

0

Mp
p (s, f ′)ψ(s)pw(s) ds

) 1
p

∼ p‖f‖p−1
w,p

(∫
D
|f ′(z)|pψ(z)pw(z) dm(z)

) 1
p

,
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and this gives the desired inequality, with a constant C = C(w, p), upon dividing
by ‖f‖p−1

w,p . To remove the restriction f(0) = 0 write f(z) = f(0)+g(z) with g′ = f ′

and g(0) = 0. We have

‖f‖p
w,p = ‖f(0) + g‖p

w,p ≤ (‖f(0)‖w,p + ‖g‖w,p)
p = (C|f(0)|+ ‖g‖w,p)

p

≤ max(Cp, 1) (|f(0)|+ ‖g‖w,p)
p ≤ 2pmax(Cp, 1)(|f(0)|p + ‖g‖p

w,p)

≤ C(w, p)
(
|f(0)|p +

∫
D
|f ′(z)|pψ(z)pw(z) dm(z)

)
as desired. To remove the restriction of the finiteness of the integrals, for f analytic
in the disc let fρ(z) = f(ρz) for each ρ < 1, and apply the Monotone Convergence
Theorem as ρ→ 1. �

The previous lemma gives the one inequality for (1.3). For the reverse inequality
we need the conditions imposed on w.

As observed already, condition (I1) implies that for sufficiently small δ we have

(2.1) 0 < r + δψ(r) < 1, 0 ≤ r < 1,

hence the quantity w(r + δψ(r)) which appears in (D) is well defined for each
r ∈ [0, 1). For monotone decreasing weights we see from (1.5) that condition (I1) is
automatically valid with A = 1, therefore (2.1) holds for any δ ∈ (0, 1). Condition
(I2) is also automatic, with any B > 0, for decreasing w since in this case w′ ≤ 0.
Thus a decreasing w is admissible whenever it satisfies (D).

On the other hand condition (D) is automatic for admissible increasing weights.
For such weights condition (I1) is used to insured the validity of (2.1) for some δ,
and also together with (I2), to control the derivative of the quantity r + δψ(r).

Condition (D) contains the convoluted term w(r + δψ(r)) and would seem hard
to check. However it is seen to hold in all examples of section 3. In fact I have not
been able to find a reasonable decreasing weight where it fails.

Lemma 2.2. Suppose 1 ≤ p < ∞ and w is an admissible weight with associated
distortion function ψ. Then there is a constant C = C(p, w) such that

|f(0)|p +
∫

D
|f ′(z)|pψ(z)pw(z) dm(z) ≤ C

∫
D
|f(z)|pw(z) dm(z)

for all analytic f on the disc.

Proof. Let f analytic and z = reiθ ∈ D. Let ρ ∈ (r, 1) and apply Cauchy’s theorem
to obtain

f ′(z) =
1

2πi

∫
|ζ|=ρ

f(ζ)
(ζ − z)2

dζ =
ρ

2π

∫ 2π

0

f(ρei(t+θ))ei(t−θ)

(ρeit − r)2
dt.

Integrate with respect to θ ∈ [0, 2π] and apply the continuous form of Minkowski’s
inequality,

Mp(r, f ′) ≤
Mp(ρ, f)

2π

∫ 2π

0

1
|ρeit − r|2

dt =
Mp(ρ, f)
ρ2 − r2

.

Thus whenever r < ρ < 1 we have

(2.2) (ρ2 − r2)Mp(r, f ′) ≤Mp(ρ, f).

Now put
ρ = ρ(r) = r + δψ(r), 0 ≤ r < 1,
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where δ is chosen in the following two steps. First from condition (I1) on w, any
choice of δ ∈ (0, A) gives

r < ρ(r) < 1, 0 ≤ r < 1.

Second the derivative of ρ(r) is

ρ′(r) = 1− δ − δ
w′(r)
w(r)

ψ(r)

and conditions (I1) and (I2) together imply that

w′(r)
w(r)

ψ(r) ≤ B

A
, 0 ≤ r < 1,

so that

ρ′(r) = 1− δ − δ
w′(r)
w(r)

ψ(r) ≥ 1− δ(1 +
B

A
).

We can now pick a δ ∈ (0, A) small enough to have ρ′(r) > 1/2 and at the same
time condition (D) to hold for that value of δ. With this choice ρ(r) is strictly
increasing in [0, 1), hence ρ(r) + r ≥ ρ(r) ≥ ρ(0) =: C0. From (2.2) then we have

C0δψ(r)Mp(r, f ′) ≤Mp(ρ(r), f).

Raise the two sides to the pth power and multiply the left by w(r)r and the right
by w(r)ρ(r) to obtain

Mp
p (r, f ′)ψ(r)pw(r)r ≤ CMp

p (ρ(r), f)w(r)ρ(r)

= CMp
p (ρ(r), f)

w(r)
w(ρ(r))ρ′(r)

w(ρ(r))ρ(r)ρ′(r)

≤ 2CC(δ, w)Mp
p (ρ(r), f)w(ρ(r))ρ(r)ρ′(r),

where condition (D) and inequality ρ′(r) > 1/2 were used in the last step. Next
integrate and make the change of variable u = ρ(r) to obtain∫ 1

0

Mp
p (r, f ′)ψ(r)pw(r)r dr ≤ C ′

∫ 1

0

Mp
p (ρ(r), f)w(ρ(r))ρ(r)ρ′(r) dr

= C ′
∫ 1

ρ(0)

Mp
p (u, f)w(u)u du

≤ C ′
∫ 1

0

Mp
p (u, f)w(u)u du

= C ′‖f‖p
w,p.

Also, the linear functional f → f(0) is bounded thus |f(0)|p ≤ C ′′‖f‖p
w,p for some

constant C ′′. The assertion follows by addition with a constant C = C ′ + C ′′

depending only on p and w.
�

Putting together the two lemmas we have the assertion of Theorem 1.1.

Remark 1. Because the behavior of a weight w on an interval [0, σ) with σ < 1
does not affect the Bergman space Ap

w or its topology, it is clear that any of the
conditions above may be assumed to hold only on some interval of the form (σ, 1)
without affecting the conlusions. Thus we may include such weights in our class of
admissible weights.
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Remark 2. If we want to relate the weighted p-integral of an analytic function to
that of its antiderivative we need to solve, with respect to w, an equation of the form
ψ(r)pw(r) = v(r) where v is the given weight. This of course is possible only when v
belongs to the class of weights that are of the form ψpw for an admissible w. If such
is the case then this problem leads, when p > 1, to a Bernoulli diferential equation.
Indeed the equation above is

(∫ 1

r
w(u) du

)p

= v(r)w(r)p−1 or equivalently

(2.3)
(∫ 1

r

w(u) du
) p

p−1

= v(r)
1

p−1w(r).

Now let y(r) =
∫ 1

r
w(u) du then y′ = −w and (2.3) becomes

y′(r) = − 1

v(r)
1

p−1
y(r)

p
p−1 ,

which is a Bernoulli type differential equation. It is a Riccati equation when p = 2.

3. Some examples

In this section we give examples of weights that satisfy our conditions and we
compute the distortion function in each case.

Example 3.1. Each of the following weights is admissible,

w(r) = (1− r)α

(
log

e

1− r

)β

, α > −1 and β ∈ R

w(r) =
(

log log
e

1− r

)α

, α > 0

w(r) = exp
(
−β

(
log

e

1− r

)α)
, β > 0 and 0 < α ≤ 1

and the distortion function is
ψ(r) ∼ 1− r

in each case. We omit the straightforward computations.

Example 3.2. For α > 0, γ > 0 and β ∈ R the weight

w(r) = (1− r)β exp
(

−γ
(1− r)α

)
,

is admissible and ψ(r) ∼ (1− r)α+1.

Proof. First we find ψ. With a change of variables t = t(u) = (1−u)−α− (1− r)−α

we have∫ 1

r

w(u) du =
∫ 1

r

(1− u)β exp
(

−γ
(1− u)α

)
du

= exp
(

−γ
(1− r)α

)
1
α

∫ ∞

0

(
1

t+ (1− r)−α

)α+β+1
α

e−γt dt

= (1− r)α+β+1 exp
(

−γ
(1− r)α

)
1
α

∫ ∞

0

(
(1− r)−α

t+ (1− r)−α

)α+β+1
α

e−γt dt

= w(r)(1− r)α+1I(r),
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where I(r) represents the integral. Write η = α+β+1
α . Since (1− r)−α ≥ 1 we have(

1
1 + t

)η

≤
(

(1− r)−α

t+ (1− r)−α

)η

≤ 1 for 0 < t <∞ if η ≥ 0,

and

1 ≤
(

(1− r)−α

t+ (1− r)−α

)η

≤
(

1
1 + t

)η

for 0 < t <∞ if η < 0

In either case there are positive constants C1 and C2 independent of r such that
C1 ≤ I(r) ≤ C2 for each r ∈ [0, 1). And

ψ(r) =
1

w(r)

∫ 1

r

w(u)du = (1− r)α+1I(r)

so the assertion about ψ(r) follows.
These weights are decreasing on an interval near 1. We verify condition (D) by

showing that for each δ ∈ (0, 1) there is a σ = σ(δ) < 1 such that (D) holds for all
r ∈ (σ, 1). With ρ(r) = r + δψ(r) we have

w(r)
w(ρ(r))

=
(

1− r

1− ρ(r)

)β

exp
(

γ

(1− ρ(r))α
− γ

(1− r)α

)
=

(
1

h(r)

)β

exp
(
γ

1− h(r)α

(1− r)αh(r)α

)
,

where h(r) = 1 − δ(1 − r)αI(r). Clearly limr→1 h(r) = 1 and using the binomial
expansion we see that |h(r)α − 1| ≤ C(1− r)α with C independent of r. It follows
that for each δ ∈ (0, 1) there is a σ such that condition (D) holds for r ∈ (σ, 1).

�

Example 3.3. For α, β, γ > 0 the weight

w(r) = exp
(
−γ exp

(
β

(1− r)α

))
,

is admissible and its distortion function is

ψ(r) ∼ (1− r)α+1 exp
(

−β
(1− r)α

)
.

Proof. Denote T (r) = exp
(

β
(1−r)α

)
. With the change of variables t = t(u) =

exp
(

β
(1−u)α

)
− T (r) we find

∫ 1

r

w(u) du =
∫ 1

r

exp
(
−γ exp

(
β

(1− u)α

))
du

= α−1β1/α exp (−γT (r))
∫ ∞

0

(
1

log(t+ T (r))

)α+1
α 1

t+ T (r)
e−γt dt.
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Thus we have

ψ(r) = α−1β1/α

∫ ∞

0

(
1

log(t+ T (r))

)α+1
α 1

t+ T (r)
e−γt dt

=
α−1β1/α

T (r)

(
1

log T (r)

)α+1
α

∫ ∞

0

(
log T (r)

log(t+ T (r))

)α+1
α T (r)

t+ T (r)
e−γt dt

= (1− r)α+1 exp
(

−β
(1− r)α

)
1
αβ

∫ ∞

0

(
log T (r)

log(t+ T (r))

)α+1
α T (r)

t+ T (r)
e−γt dt

∼ (1− r)α+1 exp
(

−β
(1− r)α

)
,

provided that the integral I(r) in the previous line is bounded below and above
between two positive constants for 0 ≤ r < 1. To see that this is the case observe
that T (r) ≥ eβ for all r thus

eβ

eβ + t
≤ T (r)
t+ T (r)

≤ 1,

for all r ∈ [0, 1) and t ∈ (0,∞). In addition since log x
log(t+x) is an increasing function

of x we have
β

log(eβ + t)
≤ log(T (r))

log(t+ T (r))
≤ 1, r ∈ [0, 1), 0 < t <∞.

It follows that there is a positive C such that C ≤ I(r) ≤ 1/γ for all r ∈ [0, 1) and
the assertion about ψ(r) follows.

Next we show that this weight satisfies condition (D). Let ρ(r) = r + δψ(r)
with δ ∈ (0, 1). For the quotient w(r)

w(ρ(r)) to be bounded it suffices to show that the
quantity

exp
(

β

(1− ρ(r))α

)
− exp

(
β

(1− r)α

)
,

is bounded above by a constant as r → 1, or equivalently,

exp
(

β

(1− ρ(r))α
− β

(1− r)α

)
− 1 ≤ C exp

(
−β

(1− r)α

)
.

But r < ρ(r) thus the quantity inside the first exponential is nonnegative, and since
ex ≥ 1 + x for x ≥ 0 it suffices to show

(3.1)
1

(1− ρ(r))α
− 1

(1− r)α
≤ C exp

(
−β

(1− r)α

)
for r sufficiently close to 1. Next

ρ(r) = r + δ(1− r)α+1 exp
(

−β
(1− r)α

)
I(r) ≤ r +

δ

γ
(1− r)α+1 exp

(
−β

(1− r)α

)
,

and we find
1

(1− ρ(r))α
− 1

(1− r)α
=

((
1− r

1− ρ(r)

)α

− 1
)

1
(1− r)α

≤
((

1
1− h(r)

)α

− 1
)

1
(1− r)α

,
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where h(r) = (δ/γ)(1 − r)α exp( −β
(1−r)α ). The rest follows by observing that if r is

close to 1 then h(r) is close to 0 and 1/(1−h(r)) ∼ 1 +h(r). One can use then the
binomial theorem to obtain

∼
(
1 + αh(r) + · · · − 1

) 1
(1− r)α

∼ αh(r)
(1− r)α

,

and (3.1) follows.
�

Example 3.4. For α > 1 and β > 0 let

w(r) = exp
(
−β

(
log

e

1− r

)α)
.

Working as in the previous examples we find that w is admissible and has distortion
function

ψ(r) ∼ 1− r(
log e

1−r

)α−1 .

We omit the calculations.

The author would like to thank the referees for their comments and suggestions
which helped improve the exposition.
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