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Abstract. The main results are conditions on g such that the Volterra type

operator

Jg(f)(z) =

∫ z

0
f(ζ)g′(ζ) dζ,

is bounded or compact on BMOA. We also point out certain information when
Jg is considered as an operator on a general space X of analytic functions on

the disc.

1. Introduction

Let D denote the unit disc in the complex plane C. For g analytic on the disc
consider the linear transformation

Jg(f)(z) =
∫ z

0

f(ζ)g′(ζ) dζ,

acting on functions f analytic on D.
These operators arise naturally, with symbols g of a certain special form, in

the study of semigroups of composition operators on spaces of analytic functions,
see [Si, page 240] for details. When g(z) = z or g(z) = log(1/(1 − z)), Jg is the
integration operator or the Cesàro operator respectively.

It has been shown in [AleSi1] that Jg is a bounded (compact) operator on the
Hardy spaces Hp, 1 ≤ p < ∞, if and only if g ∈ BMOA (g ∈ VMOA), the space
of analytic functions whose boundary values have bounded (vanishing) mean oscil-
lation, and further ‖Jg‖ ∼ ‖g‖BMOA. Analogous results on some general weighted
Bergman spaces were shown in [AleSi2] with the Bloch and little Bloch space replac-
ing BMOA and VMOA in the characterization of boundedness and compactness.
Because of the connection with composition semigroups, these results can be ap-
plied to obtain properties of the resolvent operators of such semigroups.

Composition semigroups can be studied on other spaces of analytic functions and
this leads to questions about the operator Jg on such spaces. The general problem
may be stated as follows. Given a space X = (X, ‖ ‖) describe those symbols g for
which Jg is bounded or compact or has some other operator theoretic property as
an operator on X.

This article consists of two parts. In the first part we describe some facts for Jg

acting on a general Banach or Hilbert space of analytic functions. In the second part
we characterize those g which give bounded or compact operators when X =BMOA.
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2. Some general properties

Let X be a Banach space of analytic functions on D and define the spaces of
functions V and V0 as follows:

V = VX = {g analytic on D : Jg : X → X is bounded }
V0 = V0,X = {g analytic on D : Jg : X → X is compact }.

Clearly V0 ⊆ V and both contain the constant functions. Because Jλg = λJg and
Jg+h = Jg + Jh, both are vector spaces. We introduce the norm

‖g‖ = ‖g‖V = |g(0)|+ ‖Jg‖X→X .

Proposition 2.1. Suppose that convergence in the norm of X implies uniform
convergence on compact subsets of D. Then V and V0 are complete and are therefore
Banach spaces.

Proof. Let {gn} be a Cauchy sequence in V . Then {gn(0)} is a Cauchy sequence
of scalars and {Jgn

} is a Cauchy sequence in the space L(X) of all bounded linear
operators on X. Thus there is c0 ∈ C and T ∈ L(X) such that

lim
n→∞

gn(0) = c0 and lim
n→∞

‖Jgn − T‖ = 0.

Pick φ ∈ X not identically 0 (if X contains the constants we can pick φ ≡ 1) and
let Φ(z) = T (φ)(z), then

lim
n→∞

Jgn(φ) = Φ,

in the norm of X. It follows from the hypothesis that the sequence {Jgn(φ)} con-
verges to Φ uniformly on compact subsets of the disc and the same is true for the
sequence of derivatives hence,

φ(z)g′n(z) −→ Φ′(z)

uniformly on compact sets. From the convergence it is clear that Φ′ vanishes at all
zeros of φ with multiplicity counted thus Φ′(z)/φ(z) is analytic on the disc and

g′n(z) −→ Φ′(z)
φ(z)

,

for each z ∈ D. Let g be defined by

g(z) = c0 +
∫ z

0

Φ′(ζ)
φ(ζ)

dζ.

We will show T = Jg which means g ∈ V and limn→∞ gn = g in the norm of V .
Let f ∈ X be arbitrary and write F=T(f). Arguing as above on the implications
of convergence in X we find F ′(z) as a limit

F ′(z) = lim
n→∞

f(z)g′n(z) = f(z) lim
n→∞

g′n(z) = f(z)
Φ′(z)
φ(z)

= f(z)g′(z),

for each z ∈ D. Integrating and noticing that lim Jgn(f)(0) = 0, so that F (0) = 0,
we obtain

T (f)(z) = F (z) =
∫ z

0

f(ζ)g′(ζ) dζ = Jg(f)(z),

for each f ∈ X, i.e. T = Jg as desired. Thus V is a Banach space.
The argument for V0 is the same. If gn ∈ V0 then Jgn are compact and so is their

limit T . Thus the function g in the above argument is in V0 and we see that V0 is
a closed subspace of V . �



A VOLTERRA TYPE OPERATOR ON SPACES OF ANALYTIC FUNCTIONS 3

Proposition 2.2. Suppose the multiplication operator Mz : f(z) → zf(z) is
bounded on X then:
(i) If the integration operator Jz(f)(z) =

∫ z

0
f(ζ) dζ is bounded on X then V con-

tains all polynomials.
(ii) If the integration operator Jz is compact on X then V0 contains all polynomials.

Proof. Let f ∈ X and n ≥ 1 then

Jzn(f)(z) = n

∫ z

0

f(ζ)ζn−1 dζ

= n

∫ z

0

Mn−1
z (f)(ζ) dζ

= nJz ◦Mn−1
z (f)(z),

i.e. Jzn = nJz ◦ Mn−1
z . It follows that zn ∈ V (or zn ∈ V0) whenever z ∈ V (or

z ∈ V0). Since V and V0 are vector spaces the assertions follow.
�

Here and later we will use the Möbius automorphisms,

φa(z) =
a− z

1− āz
, a ∈ D.

which map the disc conformally onto itself and exchange a with 0. We denote by
Ca the composition operator

Ca(f) = f ◦ φa,

defined on functions f analytic on D. Note that φa ◦ φa(z) = z so φa is its own
inverse. It follows that Ca is also its own inverse.

Proposition 2.3. Suppose point evaluations Lλ(f) = f(λ) are bounded on X for
λ in the disc and that the composition operator Ca is bounded on X. Then V and
V0 are preserved under composition with φa.

Proof. Let f ∈ X and write F (z) = Jg(f)(z) then F ′(z) = f(z)g′(z). Compose
with φa and multiply both sides by φ′a to obtain

(F ◦ φa)′(z) = (f ◦ φa)(z)(g ◦ φa)′(z),

thus

(F ◦ φa)(z)− (F ◦ φa)(0) =
∫ z

0

(f ◦ φa)(ζ)(g ◦ φa)′(ζ) dζ.

We write this equation in terms of Ca which by hypothesis is bounded on X,

Ca ◦ Jg(f)(z)− Ca ◦ Jg(f)(0) = Jg◦φa ◦ Ca(f),

or equivalently,
I0 ◦ Ca ◦ Jg ◦ Ca = Jg◦φa ,

where I0 is the operator I0(f)(z) = f(z) − f(0), which is bounded on X by the
hypothesis on point evaluations. It follows that g ∈ V (or g ∈ V0) if and only if
g ◦ φa ∈ V (resp. g ◦ φa ∈ V0).

�

Proposition 2.4. Suppose X contains the constant functions. Then V ⊆ X and
there is a constant C such that ‖g‖X ≤ C‖g‖V for each g ∈ V .
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Proof. Suppose g ∈ V . For the constant function 1 ∈ X we have

Jg(1)(z) =
∫ z

0

g′(ζ) dζ = g(z)− g(0) ∈ X

so g ∈ X. Further,

‖g‖X = ‖g(0) + g − g(0)‖X ≤ ‖g(0)‖X + ‖g(z)− g(0)‖X

= |g(0)|‖1‖X + ‖Jg(1)‖X

≤ |g(0)|‖1‖X + ‖Jg‖X→X‖1‖X

= C‖g‖V

with C = ‖1‖X . �

When X is a Hardy or a Bergman space the identification of the spaces V and
V0 was obtained in [AleSi1] and [AleSi2]. If X = Hp, 1 ≤ p < ∞, then V = BMOA
and V0 = V MOA. For X = Ap, 1 ≤ p < ∞, the usual Bergman space, the spaces
are V = B the Bloch space, and V0 = B0 the little Bloch space.

When the underlying space is a Hilbert space, additional classes of g can be
singled out by requiring Jg to belong to some operator ideal (this of course can be
done on Banach spaces but we stay with the more familiar situation). We describe
briefly how these classes come out.

Recall that if H is a separable Hilbert space then for 1 ≤ p < ∞ the Schatten
class Sp = Sp(H) is the set of all bounded linear operators T : H → H for which
the sequence {sk} of singular numbers sk = sk(T ) = inf{‖T − F‖ : rankF < k}
is in the sequence space lp. Sp is a two sided ideal in the space of all bounded
operators on H. The Schatten norm of T is defined by ‖T‖Sp = ‖{sk}‖lp and with
this norm Sp is a Banach space. The Hilbert-Schmidt class S2 is a Hilbert space
with inner product 〈T, S〉S2 = trace(TS). Because the first singular value s1 is
just the operator norm ‖T‖H→H we see that ‖T‖H→H ≤ ‖T‖Sp . It follows that
any sequence of operators converging in the norm ‖ ‖Sp will also converge in the
operator norm to the same limit.

Let H be a Hilbert space consisting of analytic functions on D. For each p ≥ 1
define

Vp = Vp,H = {g analytic on D : Jg ∈ Sp}.
Clearly Vp is a vector space always containing the constant functions. We can give
it a norm

‖g‖Vp
= |g(0)|+ ‖Jg‖Sp ,

under which Vp is a Banach space. This follows from the fact that a Cauchy
sequence of operators in the Sp-norm is also Cauchy in the operator norm so the
proof of Proposition (2.1) applies. For p = 2 the inner product

〈g, h〉 = g(0)h(0) + 〈Jg, Jh〉S2

makes V2 a Hilbert space.
Further if point evaluations are bounded linear functionals on H and the compo-

sitions Ca(f) = f ◦ φa with Möbius automorphisms of D are bounded operators on
H then the proof of Proposition (2.3) shows that Vp are preserved by composition
with φa.

When H = H2 the resulting classes are Vp = Bp the Besov spaces for 1 < p < ∞.
For p = 1 the space V1 contains only constants. The same Besov spaces are obtained
when Jg acts on the Bergman space A2. Details can be found in the references



A VOLTERRA TYPE OPERATOR ON SPACES OF ANALYTIC FUNCTIONS 5

[AleSi1],[AleSi2]. As a further example let H = D, the Dirichlet space of analytic
functions on D that have square integrable derivatives. It is easy to see that Jg

acting on D is Hilbert-Schmidt if and only if g satisfies∫
D
|g′(z)|2 log

1
1− |z|2

dm(z) < ∞.

The space of g ’s obtained is a weighted Dirichlet space with logarithmic weight
and is properly contained in D.

3. Jg on BMOA

When X = BMOA we find a Carleson type condition on g for Jg to be bounded
or compact. We first give some background about Carleson measures and the space
BMOA.

Let dθ/2π and dm(z) = rdrdθ denote the Lebesgue measure on ∂D and D
respectively. Recall that for an arc I in ∂D the Carleson box based on I is

S(I) = {z : 1− |I| ≤ |z| < 1, z/|z| ∈ I}

where |I| is the Lebesgue length of the arc. A positive measure µ on the disc is a
Carleson measure if

(3.1) N (µ) = sup
I⊂∂D

µ(S(I))
|I|

< ∞,

and µ is a vanishing Carleson measure if µ(S(I)) = o(|I|) as |I| → 0. The condition
(3.1) characterizes the measures for which

(3.2)
∫

D
|f(z)|2 dµ(z) ≤ C

∫ 2π

0

|f(eiθ)|2 dθ, f ∈ H2,

or equivalently the inclusion map I : H2 ↪→ L2(D, µ) which embeds the Hardy space
into the Lebesgue space of µ is bounded. If this is the case N (µ) is comparable to
‖I‖2H2→L2(D,dµ). Vanishing Carleson measures are those for which this inclusion is
compact.

The space BMOA consists of those functions f ∈ H2 for which the set of Möbius
translates {f ◦ φa(z)− f(a) : a ∈ D} is bounded in H2, i.e.,

ρ(f) = sup
a∈D

‖f ◦ φa(z)− f(a)‖H2 ∼ sup
a∈D

(∫
D
|f ′(z)|2(1− |φa(z)|2) dm(z)

)1/2

< ∞,

and VMOA contains those f for which

lim
|a|→1

‖f ◦ φa(z)− f(a)‖H2 = 0.

BMOA is a Banach space under the norm ‖f‖∗ = |f(0)| + ρ(f) and VMOA is a
closed subspace and coincides with the closure of the polynomials under this norm.
Clearly ρ(f ◦ φa) = ρ(f) for each f ∈ BMOA and each a ∈ D.

There is a close relation of BMOA to Carleson measures. A function g is in
BMOA if and only if the measure

dµg(z) = |g′(z)|2(1− |z|2) dm(z)

is Carleson and g ∈ VMOA if and only if this measure is vanishing Carleson. In
that case the Carleson norm N (µg) is comparable to ρ(g)2. Details on these and
other information on BMOA can be found in the books [Gar] or [Zhu].
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We now return to the operator Jg to consider its action on BMOA. It is easy
to see that membership of g in BMOA, which characterizes boundedness of Jg on
Hardy spaces, is not sufficient to make Jg bounded on BMOA. For example let
g(z) = log 1

1−z ∈ BMOA then

Jg(g)(z) =
1
2

log2 1
1− z

,

which violates the growth inequality (3.4) of BMOA functions. The following the-
orem says that the correct condition is bounded logarithmic mean oscillation.

Theorem 3.1. The operator Jg is bounded on BMOA if and only if

(3.3) ‖g‖2LMOA = sup
I⊂∂D

{(log 2
|I|
)2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)
}

< ∞,

and in that case ‖Jg‖ is comparable to ‖g‖LMOA.

Proof. Suppose the condition holds and let f ∈BMOA. We will show F = Jg(f) ∈
BMOA by showing that

dµF = |F ′(z)|2(1− |z|2) dm(z)

is a Carleson measure. Let I ⊂ ∂D be an arc then

1
|I|

∫
S(I)

|F ′(z)|2(1− |z|2) dm(z) =
1
|I|

∫
S(I)

|f(z)|2|g′(z)|2(1− |z|2) dm(z)

≤ 2
|I|

∫
S(I)

|f(z)− f(u)|2|g′(z)|2(1− |z|2) dm(z)

+
2
|I|

∫
S(I)

|f(u)|2|g′(z)|2(1− |z|2) dm(z),

= 2J1 + 2J2,

where we used the scalar inequality |x + y|2 ≤ 2|x|2 + 2|y|2 and u is a point in the
disc to be specified in the next step. To estimate J1 let ξ ∈ ∂D be the center of I
and consider the disc automorphism φu(z) = u−z

1−ūz where u = (1− |I|)ξ ∈ D. By a
simple geometric argument there is an absolute constant C > 0 such that

1− |u|2

|1− ūz|2
≥ C

|I|
, z ∈ S(I),

so that 1− |φu(z)|2 ≥ C 1−|z|2
|I| for all z ∈ S(I). It follows that

J1 ≤
1
C

∫
S(I)

|f(z)− f(u)|2|g′(z)|2(1− |φu(z)|2) dm(z)

≤ C ′
∫

D
|f(z)− f(u)|2|g′(z)|2(1− |φu(z)|2) dm(z)

= C ′
∫

D
|f ◦ φu(w)− f(u)|2|(g ◦ φu)′(w)|2(1− |w|2) dm(w),
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with a change of variable in the last step. Now condition (3.3) clearly implies g
belongs to BMOA and so does g ◦ φu. Thus dµg = |(g ◦ φu)′(w)|2(1− |w|2) dm(w)
is a Carleson measure and we can apply (3.2) to obtain

≤ C ′ρ(g ◦ φu)2
∫ 2π

0

|f ◦ φu(eiθ)− f(u)|2 dθ

≤ C ′ρ(g)2ρ(f)2

≤ C ′‖g‖2?‖f‖2?.
Next the estimate for J2 is a simple application of the growth inequality for

BMOA functions f ,

(3.4) |f(z)| ≤ C‖f‖? log
2

1− |z|
, z ∈ D,

where C does not depend on f . We obtain,

J2 =
|f(u)|2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

≤ C2‖f‖2?
log2 2

1−|u|

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

≤ C ′′‖g‖2LMOA‖f‖2?.
Putting together the two inequalities for J1 and J2 we conclude that dµF is a

Carleson measure and

‖Jg(f)‖2? = ρ(F )2 ≤ CN (µF )

≤ C(C ′‖g‖2? + C ′′‖g‖2LMOA)‖f‖2?
≤ C ′′′‖g‖2LMOA‖f‖2?,

because clearly ‖g‖? ≤ C‖g‖LMOA.
Conversely suppose Jg : BMOA→ BMOA is bounded. We will use the test

functions
fa(z) = log

1
1− āz

, a ∈ D,

which form a bounded set in BMOA, in fact ‖fa‖? ≤ ‖ log 1
1−z‖?. For an arc I ⊂ ∂D

let a = (1− |I|)ξ with ξ the center of I. Then there is a constant C such that
1
C

log
2
|I|

≤ |fa(z)| ≤ C log
2
|I|

for all z ∈ S(I) and this gives

log2 2
|I|

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z) ≤ C2

|I|

∫
S(I)

|fa(z)|2|g′(z)|2(1− |z|2) dm(z)

=
C2

|I|

∫
S(I)

|(Jgfa)′(z)|2(1− |z|2) dm(z)

≤ C ′‖Jg(fa)‖2?
≤ C ′‖Jg‖2‖fa‖2?
≤ C ′′‖Jg‖2.

It follows that (3.3) holds and ‖g‖LMOA ≤ C‖Jg‖. This finishes the proof.
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�

Proposition 3.2. Suppose Jg : BMOA → BMOA is a bounded operator. Then
Jg(VMOA) ⊂ VMOA.

Proof. If Jg is bounded on BMOA then (3.3) holds. Now notice that if g satisfies
(3.3) then in fact g ∈VMOA. Also Jg(1) = g− g(0) thus the constant functions are
mapped into VMOA. If n is a positive integer then an integration by parts gives

Jg(zn) = zng(z)− n

∫ z

0

ζn−1g(ζ) dζ,

and because the multiplication by z and the integration operator are bounded
on VMOA we see that Jg(zn) ∈ VMOA. It follows that Jg(p) ∈ VMOA for each
polynomial p. Next let f ∈ VMOA be arbitrary. There is a sequence {pn} of
polynomials such that ‖f − pn‖? → 0 and we have

‖Jg(f)− Jg(pn)‖? = ‖Jg(f − pn)‖? ≤ ‖Jg‖‖f − pn‖?.

This shows that Jg(f) can be approximated in the ‖ ‖? norm by VMOA functions.
Since VMOA is closed in this norm the assertion follows.

�

An important property of the spaces BMOA and VMOA is their duality relation
with the Hardy space H1. The pairing

〈f, h〉 =
∫ 2π

0

f(eiθ)h(eiθ)
dθ

2π

for f ∈ VMOA and h ∈ H1 identifies the dual space of VMOA as VMOA∗ ' H1

where ' means Banach space isomorphism. The same pairing for f ∈ H1 and
h ∈ BMOA gives the duality (H1)∗ = BMOA. In both cases for a given h in one
space the integral is defined only on a dense subset of functions f of the other.

Let g be a symbol such that Jg is bounded on VMOA and let Ag = J∗g be the
adjoint operator acting on H1. Let also A∗g be the adjoint of Ag acting on BMOA.
Then

〈Jg(f), h〉 = 〈f,Ag(h)〉 = 〈Ag(h), f〉 = 〈h, A∗g(f)〉 = 〈A∗g(f), h〉
for all f ∈VMOA and h ∈ H1. Because VMOA is weak∗ dense in BMOA this says
that A∗g = Jg as operators on BMOA. Thus Jg is bounded on BMOA. Together
with Proposition (3.2) this proves the following

Corollary 3.3. The following are equivalent
(i) Jg is bounded on BMOA.
(ii) Jg is bounded on VMOA.
(iii) ‖g‖LMOA < ∞.

We now discuss two lemmas about the space LMOA and its little ”oh” version
which will be needed later.

Lemma 3.4. The seminorm ‖g‖LMOA defined in (3.3) is equivalent to the semi-
norm given by

(‖g‖
′

LMOA)2 = sup
a∈D

{
(log

1
1− |a|

)2
∫

D
|g′(z)|2(1− |φa(z)|2) dm(z)

}
.
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Proof. We include the proof for completeness. With I, ξ and a = (1 − |I|)ξ as in
Theorem (3.1) we have

log2 2
|I|

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

≤C log2 2
1− |a|

∫
S(I)

|g′(z)|2(1− |φa(z)|2) dm(z)

≤C log2 2
1− |a|

∫
D
|g′(z)|2(1− |φa(z)|2) dm(z)

where we have used the inequality 1−|z|2
|I| ≤ C(1 − |φa(z)|2) for z ∈ S(I). Taking

sup the one direction follows.
For the converse we use a standard argument [Gar, page 239], see also [OF,

Lemma 2.12]. If |a| ≤ 3
4 the estimate is trivial. Assume |a| ≥ 3

4 and let

En = {z ∈ D : |z − a

|a|
| < 2n−1(1− |a|)}, n = 1, 2, ....N

where N = N(a) is the smallest integer such that 2N−1(1 − |a|) ≥ 1
π , so that

N ∼ log( 1
1−|a| )/ log 2. An easy geometric argument shows that there is a constant

C such that

1− |a|2

|1− āz|2
≤ C

22n(1− |a|)
, z ∈ En \ En−1, n ≥ 1,

(we set E0 = Ø). Also for each n there is a Carleson box S(I) with |I| ∼ 2n−1(1−|a|)
such that En ⊂ S(I). Then we have∫

D
|g′(z)|2(1− |φa(z)|2) dm(z) =

N∑
n=1

∫
En\En−1

|g′(z)|2(1− |φa(z)|2) dm(z)

≤
N∑

n=1

C

22n(1− |a|)

∫
En\En−1

|g′(z)|2(1− |z|2) dm(z)

≤C

2

(
N∑

n=1

1
2n

1
log2 2

2n−1(1−|a|)

)
‖g‖2LMOA

≤ C ′

log2 2
1−|a|

‖g‖2LMOA,

and the conclusion follows.
�

Let LMOA0 be the space of functions in LMOA such that

lim
|I|→0


(
log 2

|I|
)2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

 = 0,

or equivalently

lim
|a|→1

{
(log

1
1− |a|

)2
∫

D
|g′(z)|2(1− |φa(z)|2) dm(z)

}
= 0.
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This space LMOA0 sits inside LMOA in the same way that V MOA is inside
BMOA. In particular we have,

Lemma 3.5. Let g ∈ LMOA and denote gr(z) = g(rz), 0 < r < 1. Then
g ∈ LMOA0 if and only if limr→1 ‖g − gr‖LMOA = 0

Proof. Suppose g ∈ LMOA. From the Poisson formula

gr(z) =
∫ 2π

0

g(zeiθ)
1− r2

|eiθ − r|2
dθ

2π
,

we have

log2 1
1− |a|

∫
D
|g′r(z)|2(1− |φa(z)|2) dm(z)

≤ log2 1
1− |a|

∫
D

∫ 2π

0

|g(eiθz)|2 1− r2

|eiθ − r|2
dθ

2π
(1− |φa(z)|2) dm(z)

=
∫ 2π

0

(
log2 1

1− |a|

∫
D
|g(eiθz)|2(1− |φa(z)|2) dm(z)

)
1− r2

|eiθ − r|2
dθ

2π
.

Since the inside parenthesis is bounded by ‖g‖2LMOA we can use the Lebesgue
dominated convergence theorem to obtain

lim
|a|→1

log2 1
1− |a|

∫
D
|g′r(z)|2(1− |φa(z)|2)dm(z) = 0

uniformly for r ∈ (0, 1). Combining this with the fact that g ∈ LMOA0 we see
that for a given ε > 0 there is a δ ∈ (0, 1) such that

(3.5) sup
|a|>δ

log2 1
1− |a|

∫
D
|g′(z)− g′r(z)|2(1− |φa(z)|2) dm(z) < ε

for all r ∈ (0, 1). Next for |a| ≤ δ,

sup
|a|≤δ

log2 1
1− |a|

∫
D
|g′(z)− g′r(z)|2(1− |φa(z)|2) dm(z)

≤ log2 1
1− δ

sup
a∈D

∫
D
|g′(z)− g′r(z)|2(1− |φa(z)|2) dm(z)

= log2 1
1− δ

‖g − gr‖2∗.

Now g is in particular in V MOA and it is well known that the analogue of the
lemma we are proving holds for functions in V MOA with the BMOA norm, i.e.
limr→1 ‖g−gr‖∗ = 0. Putting together this and (3.5) we have the desired conclusion.

Conversely suppose g ∈ LMOA and limr→1 ‖gr − g‖LMOA = 0. Then for ε > 0
there is an r0 ∈ (0, 1) such that for r ∈ (r0, 1), we have ‖gr − g‖LMOA < ε. It
follows that

log2 1
1− |a|

∫
D
|g′(z)|2(1− |φa(z)|2) dm(z)

≤ log2 1
1− |a|

∫
D
(2|g′(z)− g′r(z)|2 + 2|g′r(z)|2)(1− |φa(z)|2) dm(z)

≤2ε + 2 log2 1
1− |a|

∫
D
|g′r(z)|2(1− |φa(z)|2) dm(z)
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Now take |a| → 1 then the last integral goes to zero because gr ∈ LMOA0 and the
conclusion follows.

�

For g ∈ LMOA0 and a sequence rn ↗ 1 we can find a polynomial pn such that
|g′rn

(z)−p′n(z)|2 < 1/n for all z ∈ D, hence ‖grn
−pn‖2LMOA < C

n . In particular the
above lemma says that LMOA0 is the closure of the polynomials in the LMOA
norm.

We now turn to compactness of Jg. Recall that if X is a Banach space and
T : X → X a linear operator, T is said to be compact if for every bounded sequence
{xn} in X, {T (xn)} has a convergent subsequence. T is weakly compact if for every
bounded sequence {xn} in X, {T (xn)} has a weakly convergent subsequence. Every
compact operator is weakly compact and in reflexive spaces every bounded operator
is weakly compact. In our case, a useful characterization of weak compactness is
[DuSch, page 482]: T is weakly compact if and only if T ∗∗(X∗∗) ⊂ X where T ∗∗

is the second adjoint of T and X is identified with its image under the natural
embedding into its second dual X∗∗.

Theorem 3.6. Jg is compact on BMOA if and only if g ∈ LMOA0, i.e.

(3.6) lim
|I|→0


(
log 2

|I|
)2

|I|

∫
S(I)

|g′(z)|2(1− |z|2) dm(z)

 = 0.

Proof. Before we start we observe that because of (3.4) the unit ball of BMOA
is a normal family of analytic functions. A normal family arguments shows Jg is
compact on BMOA if and only if every sequence {fn} in BMOA with ‖fn‖? ≤ 1
and fn → 0 uniformly on compact subsets of D has a subsequence {fnk

} such that
‖Jg(fnk

)‖? → 0.
Suppose first that Jg is compact on BMOA. We will show that every sequence of

intervals whose length goes to zero has a subsequence such that (3.6) holds when
the limit is taken over that subsequence. This clearly implies (3.6).

Let In be intervals with |In| → 0 and let un = (1 − |In|)ξn with ξn the center
of In. The sequence {un} has an accumulation point u ∈ ∂D and passing to a
subsequence we may assume limn→∞ un = u. Let fn, f0 and qn be the functions

fn(z) = log
1

1− ūnz
, f0(z) = log

1
1− ūz

, qn(z) = log
1− ūz

1− ūnz
.

As in the second part of the proof of Theorem (3.1) we have for each n,(
log 2

|In|
)2

|In|

∫
S(In)

|g′(z)|2(1− |z|2) dm(z)

≤ C

|In|

∫
S(In)

|fn(z)|2|g′(z)|2(1− |z|2) dm(z)

≤ 2C

|In|

∫
S(In)

|qn(z)|2|g′(z)|2(1− |z|2) dm(z)

+
2C

|In|

∫
S(In)

|f0(z)|2|g′(z)|2(1− |z|2) dm(z)

≤ C ′‖Jg(qn)‖2? +
2C

|In|

∫
S(In)

|Jg(f0)′(z)|2(1− |z|2) dm(z).
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Now ‖qn‖? ≤ 2‖ log 1
1−z‖? and qn → 0 uniformly on compact sets so the compact-

ness of Jg implies limn→∞ ‖Jg(qn)‖? = 0. We show that the other term in the
right hand side goes to zero. Because VMOA is a subspace of BMOA and they
share the same norm, compactness of Jg on BMOA implies its compactness on
VMOA. Thus Jg is weakly compact on VMOA and because VMOA∗∗ = BMOA
and J∗∗g = Jg it follows that Jg(BMOA) ⊂ VMOA. In particular Jg(f0) ∈VMOA so
that |Jg(f0)′(z)|2(1 − |z|2) dm(z) is a vanishing Carleson measure. The vanishing
of the second term above as n →∞ follows and the proof is complete.

Conversely suppose g ∈ LMOA0. Then there is a sequence of polynomials {pn}
such that limn→∞ ‖g−pn‖LMOA = 0. Because the integration operator is compact
in BMOA we have from Proposition (2.2) that Jpn is compact for each n. Also

‖Jg − Jpn‖ = ‖Jg−pn‖ ≤ C‖g − pn‖LMOA → 0,

so that Jg can be approximated by compact operators hence it is compact. The
proof is complete. �

It is clear from the above and from J∗∗g |V MOA = Jg, that Jg is compact on VMOA
if and only if it is compact on BMOA if and only if (3.6) holds.

Question. Are there functions g such that Jg : VMOA → VMOA is weakly
compact but not compact?

4. Remarks

The spaces of symbols g which satisfy (3.3) or (3.6) are weighted BMO spaces
and have appeared in the literature in connection with Hankel operators [JPS]
and with multipliers of BMOA [Ste]. Let g ∈ H2 and P : L2(∂D) → H2 be
the natural orthogonal projection. The Hankel operator Hg defined initially on
bounded analytic functions f is Hg(f) = P (gf̄). The theorem of Nehari says that
Hg can be extended to a bounded operator mapping H2 into itself if and only if
g ∈ BMOA. The same result holds if H2 is replaced by Hp, 1 < p < ∞, but at the
endpoints H1 and BMOA the characterization is different. It was shown in [JPS]
that Hg is bounded on H1 or on BMOA if and only if

(4.1) sup
I⊂∂D

{
log 2

|I|

|I|

∫
I

|g(eiθ)− gI |
dθ

2π

}
< ∞,

where gI = 1
|I|
∫

I
g(eiθ) dθ

2π . Cima and Stegenga in [CiSte] obtained a variant of
this characterization of bounded Hankel operators on H1 by a condition which is
identical with (3.3). We used their techniques in the proof of Theorem (3.1) above.
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the Möbius invariant function spaces Qp, of which BMOA is one instance, with Jie
Xiao, and thank him for sending us his preprints and for informing us about the
paper [OF].

We also want to thank the referee for reading the first draft of this paper carefully
and pointing out that our original proof of Theorem (3.6) was incomplete in one
direction.



A VOLTERRA TYPE OPERATOR ON SPACES OF ANALYTIC FUNCTIONS 13

References

[AleSi1] A. Aleman and A. G. Siskakis, An integral operator on Hp, Complex Variables, 28
(1995), 149–158.

[AleSi2] , Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997),

337–356.
[Bae] A. Baernstein II, Analytic functions of bounded mean oscillation, in Aspects of Contem-

porary Complex Analysis, edited by D. A. Brannan and J. G. Clunie, Academic Press,

1980, 3–36.
[CiSte] J. A. Cima and D. A. Stegenga, Hankel operators on Hp, Analysis in Urbana, vol. I,

London Math. Soc. Lecture Note Ser., 137, Cambridge Univ. Press, 1989, pp 133–150.

[DuSch] N. Dunford and J. T. Schwartz, Linear Operators I, Intersciense Publishers, John Wiley
and Sons, New York 1958.

[Gar] J. Garnett, Bounded analytic functions, Academic Press, New York, 1981.

[JPS] S. Janson, J. Peetre and S. Semmes, On the action of Hankel and Toeplitz operators on
some function spaces, Duke Math. J. 51 (1984), 937–958.
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