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Abstract. If {φt : t ≥ 0} is a semigroup under composition of analytic self

maps of the unit disc D and X is a Banach space of analytic functions on D
then the formula Tt(f) = f ◦ φt defines an operator semigroup on X. In this

article we survey what we know about these semigroups.

1. Introduction

Let D be the unit disc in the complex plane C and X a Banach space of analytic
functions on D. Typical choices are the Hardy space Hp, the Bergman space Ap or
the Dirichlet space D. For φ : D → D analytic consider the composition operator

Cφ(f) = f ◦ φ.

The operator powers Cn
φ , n ≥ 0, are composition operators Cφn induced by the

discrete iterates of φ,
φn = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸

n

.

Assume now φ has fractional iterates. This means that there is a family Φ =
{φt : t ≥ 0} of analytic self-maps of D such that φ1 = φ and Φ satisfies

(1) φ0(z) ≡ z, the identity map of D.
(2) φt ◦ φs = φt+s for t, s ≥ 0.
(3) The map (t, z) → φt(z) is jointly continuous on [0,∞)×D.

We can then define fractional powers of Cφ by setting

Tt(f) = f ◦ φt, t ≥ 0.

Clearly Tn = Cφn
for integers n and each Tt is a bounded operator on X = Hp or

Ap (we will see this is also true on D). The family T = {Tt : t ≥ 0} satisfies:

(1) T0 = I, the identity operator on X.
(2) Tt ◦ Ts = Tt+s for t, s ≥ 0,

and is therefore a one parameter semigroup of bounded operators on X.
We now have at our disposal the tools of the general theory of one-parameter

semigroups in Banach spaces. We may study the composition semigroups T = {Tt}
for their own sake or we may study T with the aim to obtain information about
individual operators participating in the semigroup.
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Semigroups of composition operators and their weighted versions make up a
large class of explicit examples in the general theory of operator semigroups. Their
nonanalytic counterparts, sometimes called substitution semigroups or semiflows,
have been studied for a long time on Lebesgue spaces of integrable functions, on
spaces of continuous functions etc. In this setting the requirements on the inducing
functions Φ = {φt} are that φt is a measurable or measure preserving or continuous
transformation of some base set which has a measure or topological structure.

On spaces of analytic functions the study of composition semigroups was started
by E. Berkson and H. Porta [25]. In that paper the structure of semigroups of
functions Φ was determined and the basic properties of T on Hardy spaces were
obtained. It turns out that there are close connections between the function theo-
retic properties of Φ and the operator theoretic properties of T. Thus the interplay
between function theory and operator theory that is always present in single compo-
sition operators is also present in semigroups, with added the element of iteration.

Among the analytic self maps of the disc only the univalent ones can have frac-
tional iterates and univalency is not a sufficient condition for fractional iterates to
exist. In case φ has fractional iterates, properties of the composition operator Cφ

are in close relation with properties of the semigroup T of which it is a member.
Many times a question about Cφ can be translated to a question about T and
vice versa. For example to determine the point spectrum of Cφ one has to solve a
functional equation in X. Using the spectral theorem for semigroups the problem
is equivalent to finding the point spectrum of the infinitesimal generator of T, and
this involves solving a first order differential equation. The hard part is to deter-
mine which of the solutions belong to X. An application of semigroups to finding
the full spectrum of some composition operators can be found in [39, Th. 7.41].

It has been observed long ago that many properties of Cφ depend heavily on
the dynamical behavior of the iterates {φn}. When fractional iterates exist, all the
information about the Cφ or Cφn

is encapsulated in a single object: the infinitesimal
generator of Φ or equivalently the infinitesimal generator of T.

The resolvent operators of composition semigroups are averaging integration
operators as for example the Cesàro operator.

2. Semigroups of operators on Banach spaces

To make the paper self contained we recall some basic facts from the general
theory of semigroups. More details can be found in [44] [57] [84].

Let X be a Banach space and T = {Tt} a semigroup of bounded operators on
X. T is called strongly continuous (or c0-semigroup) if limt→0 ‖Tt(x)− x‖ = 0 for
each x ∈ X. If the stronger property limt→0 ‖Tt− I‖ = 0 holds then T is uniformly
continuous. The infinitesimal generator of a strongly continuous semigroup is the
(unbounded in general) operator defined by

A(x) = lim
t→0

Tt(x)− x

t
=

∂Tt(x)
∂t

∣∣∣
t=0

.

The generator A is defined only on those x ∈ X for which the limit exists. This set
of x’s is the domain D(A) of A. D(A) is a linear subset of X and is always dense
in X. It coincides with X if and only if A is bounded and this is equivalent to that
T is uniformly continuous. The generator A is always a closed operator, i.e. its
graph is closed in X×X.
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The collection of complex numbers λ for which λI − A has a bounded inverse
on X is the resolvent set ρ(A). For λ ∈ ρ(A) the resolvent operator is R(λ, A) =
(λI −A)−1. The spectrum of A is σ(A) = C \ ρ(A) and the point spectrum σπ(A)
is defined as in the case of bounded operators. Since A is a closed operator its
spectrum is a closed set in the plane. In contrast with bounded operators σ(A) can
vary in size from empty to a whole left half plane.

The growth bound (or type) of a strongly continuous semigroup is

ω = lim
t→∞

log ‖Tt‖
t

.

We have −∞ ≤ ω < ∞. For each τ > ω there is a M = M(τ) < ∞ such that
‖Tt‖ ≤ Meτt, t ≥ 0. The spectral radius of Tt is r(Tt) = eωt. If <(λ) > ω then
R(λ, A) is bounded and the Laplace formula holds

(2.1) R(λ, A)(x) =
∫ ∞

0

e−λtTt(x) dt for eachx ∈ X.

A corollary to the Hille-Yosida-Phillips theorem says that if ‖Tt‖ ≤ eωt for each t
then

(2.2) ‖R(λ, A)‖ ≤ 1
λ− ω

for eachλ > ω.

Roughly speaking operator semigroups are the operator analogue of the exponen-
tial function. When the semigroup is uniformly continuous (i.e. A is bounded) then
Tt = etA. With suitable interpretation this formula remains true for all strongly
continuous semigroups. The spectral theorem for semigroups says

(2.3) etσ(A) ⊆ σ(Tt) for t ≥ 0.

Equality holds (modulo the point 0) for some special classes such as uniformly
continuous or eventually compact semigroups, but in general the containment is
strict. For the point spectrum however there is equality

(2.4) etσπ(A) = σπ(Tt) \ {0} for t ≥ 0.

If {Tt} contains a compact operator then it is eventually compact i.e. its tail
consists of compact operators. If Tt is compact for every t > 0 then the semigroup
is called compact. A theorem [84] states that a semigroup is compact if and only
if R(λ, A) is compact for λ ∈ ρ(A) and limt→s ‖Tt − Ts‖ = 0 for each s > 0. It
is easy to construct composition semigroups which are eventually compact but not
compact. The resolvent equation

R(λ, A)−R(µ,A) = (µ− λ)R(λ, A)R(µ,A) λ, µ ∈ ρ(A),

implies that either R(λ, A) is compact for all λ ∈ ρ(A) or not compact for any λ.

3. Semigroups of analytic functions

For an analytic self map φ of the disc the sequence of iterates {φn} behaves in a
rather predictable manner. According to the Denjoy-Wolff theorem, unless φ is an
elliptic Möbius automorphism of D, there is a point b in the closed disc such that
φn → b uniformly on compact subsets of D. If b is in the interior then it is a fixed
point of φ, while if b is on the boundary then it behaves as a fixed point in the sense
that limr→1 φ(rb) = b. This distinguished point is called the Denjoy-Wolff point
(DW point) of φ. In the exceptional case of elliptic automorphisms the sequence
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of iterates moves around an interior fixed point without converging to it. We call
also this point DW point and keep the notation b for the DW point in all cases.

Embedding the discrete iterates {φn} into a continuous parameter semigroup is
not always possible even for univalent φ. The problem is related to the existence
of “iterative roots” and leads to a question on functional equations. Complete
conditions on φ that characterize the embeddability are not known. The interested
reader can find more information in [112] and [113].

Nevertheless all semigroups of analytic self maps of D can be described as we
will see below. First we give some simple examples:
1. Rotation + shrinking. For <(c) ≥ 0 let

φt(z) = e−ctz.

If <(c) = 0 this is a group of rotations. It reduces to the trivial semigroup if c = 0.
In all other cases φt maps the disc properly into itself. The point 0 is a common
fixed point.
2. Shrinking the disc to a point. Let

φt(z) = e−tz + 1− e−t.

The typical image φt(D) is a small disc tangent to the unit circle at 1, whose
diameter goes to 0 as t →∞. The point b = 1 is a common DW point for all φt.
3. Shrinking the disc to a segment. Let

φt(z) = 1− (1− z)e−t

.

There are two fixed points 0 and 1 common to all φt of which b = 0 is the DW
point. The typical image φt(D) is an angular region inside D whose angle vertex
is at 1. The size of the angle shrinks to 0 as t →∞.
4. Shrinking the disc to a smaller disc. Let

φt(z) =
e−tz

(e−t − 1)z + 1
.

The points 0 and 1 are common fixed points and the DW point is b = 0. The
typical image φt(D) is a disc tangent to the unit circle at 1 whose diameter shrinks
to 1/2 as t →∞.
5. Group of hyperbolic automorphisms. Let

φt(z) =
(1 + et)z − 1 + et

(−1 + et)z + 1 + et
.

There are two common fixed points −1 and 1 of which b = 1 is the DW point.
Every φt maps the disc onto itself.
6. Splitting the disc into two halves. Let k(z) = z

(1−z)2 be the Koebe function
and k−1 its inverse. For t ≥ 0 let

φt(z) = k−1(k(z) + t).

The typical image φt(D) is a slit disc D \ (−1, rt] with rt ↗ 1 as t →∞.
One can make more examples like these but there is a general construction that

gives an unlimited list of semigroups. It amounts to conjugating one of the two
basic semigroups of the complex plane, z 7−→ e−ctz and z 7−→ z+ct, by an analytic
1-1 map whose range is invariant under that semigroup. More precisely we have,
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Semigroups of class Φ0. Let h : D → C be an analytic univalent function with
h(0) = 0. Suppose that Ω = h(D) satisfies the following property:

There is a c with <(c) ≥ 0 such that for each w ∈ Ω the entire
spiral {we−ct : t ≥ 0} is contained in Ω.

These are the spirallike (starlike if c is real) functions [46] and the above geometric
condition is equivalent to

(3.1) <
(1

c

zh′(z)
h(z)

)
≥ 0.

Given such an h we can write the functions

φt(z) = h−1(e−cth(z)), z ∈ D, t ≥ 0,

and it is easily seen that {φt} is a semigroup with common DW point b = 0.
Semigroups of class Φ1. Let h : D → C be analytic and univalent with h(0) = 0.
Suppose that Ω = h(D) satisfies the following property:

There is a direction c with <(c) ≥ 0 such that for each w ∈ Ω the
entire half line {w + ct : t ≥ 0} is contained in Ω.

Such functions form a subclass of the close-to-convex univalent functions [46] and
the geometric condition on Ω is equivalent to

(3.2) <
(1

c
(1− z)2h′(z)

)
≥ 0.

Given such an h the functions

φt(z) = h−1(h(z) + ct), z ∈ D, t ≥ 0,

form a semigroup with DW point b = 1.
It turns out that under a normalization, every semigroup of analytic self maps

of D can be written in one of the preceding two ways. Before we see this we recall
the basic structure of semigroups from [25]. Assume Φ = {φt} is a semigroup, then:

• Each φt is univalent.
• The limit

G(z) = lim
t→0

∂φt(z)
∂t

exists uniformly on compact subsets of D, and satisfies

(3.3) G(φt(z)) =
∂φt(z)

∂t
= G(z)

∂φt(z)
∂z

, z ∈ D, t ≥ 0.

The analytic function G(z) is the infinitesimal generator of Φ and charac-
terizes Φ uniquely.

• The functions φt, t > 0, share a common DW point b, and G(z) has the
unique representation

G(z) = F (z)(b̄z − 1)(z − b)

where F : D → C is analytic with < (F (z)) ≥ 0 for z ∈ D.
Let now Φ be an arbitrary semigroup with DW point b. Conjugating φt with

Möbius automorphisms of the disc produces another semigroup but leaves the es-
sential properties unchanged. If b is in the interior (on the circle) then the new
semigroup will have its DW point in the interior (resp. on the circle). We can
choose a suitable automorphism to conjugate and hence assume without loss of
generality that b = 0 (when b ∈ D) or b = 1 (when b ∈ ∂D).
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Case 1. If b = 0 then the generator is G(z) = −zF (z). Let h be the solution on
D of the following initial value problem

1
F (0)

zh′(z)
h(z)

=
1

F (z)
, h(0) = 0.

Because <(F ) ≥ 0 the solution

(3.4) h(z) = z exp
(∫ z

0

1
ζ

(F (0)
F (ζ)

− 1
)

dζ
)
.

is a univalent spirallike function [46] and Schröder’s functional equation holds

h(φt(z)) = e−F (0)th(z), z ∈ D, t ≥ 0.

It follows that Φ belongs to the class Φ0 of semigroups.
Case 2. If b = 1 then the generator is G(z) = (1− z)2F (z). Let h be defined by

h(z) =
∫ z

0

F (0)
(1− ζ)2F (ζ)

dζ.

Because <(F ) ≥ 0 the function h satisfies (3.2) and Abel’s functional equation
holds

h(φt(z)) = h(z) + F (0)t, z ∈ D, t ≥ 0.

It follows that in this case Φ is in class Φ1.
The unique univalent function h corresponding to Φ in either case is called

the associated univalent function. A semigroup Φ is characterized uniquely by
the pair {b, F (z)} or by the triple {b, c, h(z)}. The notation G=the generator,
F=the function of positive real part in G, h=the associated univalent function and
b=DW point, will be used exclusively with this assigned meaning. We also write
c=F (0)=−G′(0) if b = 0 and c=F (0)=G(0) if b = 1.

Appropriate choices of h produce examples of Φ or T with various desired prop-
erties. For example we can arrange for φt to have any number of fixed points on
the boundary or to leave an arc on the boundary invariant. We can also arrange
for the orbits {φt(a) : t ≥ 0} of interior points a to approach the DW point on the
boundary in a tangential or nontangential way, or for the limiting set ∩t≥0φt(D)
to consist of any number of connected components. The following is a construc-
tion of a semigroup T such that each composition operator Tt is not compact but
the resolvent operator is compact. Let h be the Riemann map from D onto the
starlike region Ω = D ∪ {z : 0 < <(z) < ∞, 0 < =(z) < 1}, with h(0) = 0. Let
φt(z) = h−1(e−th(z)). It is easily seen that φt(∂D) intersects ∂D in a set of posi-
tive measure so none of the induced composition operators is compact. By results
in section 6 the resolvent operator is compact on Hp. If in the definition of Ω we
change the condition on <(z) to 0 < <(z) < 1 then we obtain a semigroup that is
eventually compact but not compact.

4. Strong continuity of composition semigroups

Let T = {Tt} be a composition semigroup. Strong continuity requires that
limt→0 ‖f ◦ φt − f‖ = 0 for each f ∈ X. Assume X contains the polynomials then
with P a polynomial we can write

‖f ◦ φt − f‖ ≤ ‖f ◦ φt − P ◦ φt‖+ ‖P ◦ φt − P‖+ ‖P − f‖
≤ (‖Tt‖+ 1)‖P − f‖+ ‖P ◦ φt − P‖.
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Table 1. Examples of semigroups

G(z) h(z) φt(z)

b = 0 −zc, <c ≥ 0 z e−ctz

−z(1− z) z
1−z

e−tz
(e−t−1)z+1

−(1− z) log 1
1−z log 1

1−z 1− (1− z)e−t

−z(1− zn) z

(1−zn)
1
n

e−tz

((e−nt−1)zn+1)
1
n

− 1−z2

2 log 1+z
1−z log 1+z

1−z
(1+z)e−t

−(1−z)e−t

(1+z)e−t+(1−z)e−t

b = 1 1− z log 1
1−z e−tz + 1− e−t

c(1− z)2, <c ≥ 0 z
1−z

(1−ct)z−1+ct
−ctz+1+ct

1
2 (1− z2) 1

2 log 1+z
1−z

(1+et)z−1+et

(−1+et)z+1+et

(1−z)α

1+α , α ∈ (−1, 1] 1
1+α

(
(1− z)−α−1 − 1

)
1−

(
(1− z)−α−1 + t

)− 1
α+1

Assume further that polynomials are dense in X and that there is a δ > 0 such
that sup0≤t<δ ‖Tt‖ < ∞. Then to obtain strong continuity we only need to show
limt→0 ‖P ◦ φt − P‖ = 0 for each polynomial and this will follow if we can show
limt→0 ‖φt(z) − z‖ = 0. The latter condition holds in many classical spaces as a
result of the dominated convergence theorem.

Using this kind of argument one can show strong continuity of T on several
function spaces. We recall the results from [25] on Hardy spaces. Suppose 1 ≤ p <
∞, then

• Each composition semigroup is strongly continuous on Hp.
• The infinitesimal generator Γ of T is given by

Γ(f)(z) =
∂f(φt(z))

∂t

∣∣∣∣
t=0

= G(z)f ′(z),

where G(z) is the generator of Φ.
• T is not uniformly continuous unless it is trivial, i.e. G ≡ 0.

Similar statements hold on Bergman spaces Ap (in fact on weighted Bergman spaces
[105]) and on the Dirichlet space D [108]. On all these spaces the generator Γ is a
differential operator given by the same formal expression.

There are spaces of analytic functions where strong continuity can fail for some or
all composition semigroups. For example on the disc algebra A(D) strong continuity
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is equivalent to limt→0 ‖φt(z)−z‖∞ = 0. Many semigroups of functions satisfy this
condition (example φt(z) = e−tz + 1 − e−t) but some others do not (example
φt(z) = 1− (1− z)e−t

).
On H∞ no composition semigroup is strongly continuous unless it is trivial.

The easiest way to see this is to use a dichotomy result from the general theory
of semigroups [75], which says that on a class of spaces which includes H∞, every
strongly continuous semigroup is automatically uniformly continuous. This means
that the generator is bounded and for composition semigroups this implies the
semigroup is trivial.

We discuss also the case of BMOA, the space of analytic functions whose bound-
ary values have bounded mean oscillation. Recall the norm

‖f‖∗ = |f(0)|+ sup
a∈D

‖f ◦ φa − f(a)‖H2 ,

where φa(z) = a−z
1−āz . The subspace V MOA consists of those f ∈ BMOA such

that lim|a|→1 supa∈D ‖f ◦φa− f(a)‖H2 = 0. Alternatively V MOA is the closure in
BMOA of the analytic polynomials. Using the norm inequality

‖f ◦ φ‖∗ ≤
(
1 +

1
2

log
1 + |φ(0)|
1− |φ(0)|

)
‖f‖∗,

which holds for any analytic self map of the disc, and the fact that polynomials
are dense in V MOA, one can show that every composition semigroup is strongly
continuous on V MOA.

There is another characterization of V MOA as follows. Suppose f ∈ BMOA
then the following conditions are equivalent

(1) f ∈ V MOA.
(2) limt→0 ‖f(eitz)− f(z)‖∗ = 0.
(3) limt→0 ‖f(e−tz)− f(z)‖∗ = 0,

see [93] or [117]. Thus functions in V MOA are characterized by their strong con-
tinuity behavior under the rotation group φt(z) = eitz or under the semigroup
φt(z) = e−tz. The question arises whether there are other semigroups that can
be used to test V MOA functions. Examples show that in general there are func-
tions, depending on Φ, that are not in V MOA and which pass the test of strong
continuity. For example take

φt(z) = e−tz + 1− e−t and f(z) = log
1

1− z
,

then limt→0 ‖f ◦ φt − f‖∗ = limt→0 t = 0 but f /∈ V MOA. More generally let
h ∈ BMOA \ V MOA be a starlike univalent function with h(0) = 0, let φt(z) =
h−1(e−th(z)) and take f = h. Then

lim
t→0

‖f ◦ φt − f‖∗ = ‖f‖∗ lim
t→0

|e−t − 1| = 0,

but f = h /∈ V MOA.
Thus for a given Φ there is a largest subspace Y = YΦ ⊆ BMOA such that

Φ is strongly continuous on Y . Clearly V MOA ⊆ Y and Y = V MOA for the
rotation group. We do not know if it is possible to have Y = BMOA for nontrivial
Φ. Similar phenomena arise on the Bloch space B and also on a whole chain of
subspaces of BMOA, called Qp-spaces. See [14], [15] for definitions and properties
of these spaces.
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5. Spectrum of the infinitesimal generator

The spectral theorem for semigroups (2.3) says that if we know the spectrum of
the generator then we have information about spectra of single operators participat-
ing in the semigroup and conversely. Point spectra can be determined completely
this way using (2.4).

To determine the point spectrum σπ(Γ) one has to solve Γ(f) = λf for f and
λ. This is the differential equation G(z)f ′(z) = λf(z). Recall the form of the
generator. If b = 0 then

G(z) = −c
h(z)
h′(z)

,

while if b = 1,
G(z) =

c

h′(z)
.

A straightforward solution of the differential equation in each case gives the point
spectrum on Hp. If b = 0 then

σπ(Γ) = {−ck : h(z)k ∈ Hp, k = 0, 1, 2, . . . }
while if b = 1 then

σπ(Γ) = {cλ : eλh(z) ∈ Hp}.
Thus in case of an interior DW point the point spectrum consists of a finite or

infinite number of eigenvalues, depending on the “Hardy space size” of the associ-
ated univalent function. These eigenvalues are simple and they form a discrete set
in the left half plane. In contrast, the point spectrum is usually large when the DW
point is on the boundary. For example if the associated univalent function h maps
the disc inside a strip then by subordination h ∈ BMOA and then eh(z) ∈ Hq for
some positive q [88] so σπ(Γ) contains a small disc around 0.

The available examples show that to find the full spectrum of Γ requires more
elaborate work. The following fact from the operational calculus for unbounded
closed operators relates σ(Γ) to the spectrum σ(R(λ, Γ)) of the resolvent operator.
For λ ∈ ρ(Γ) the function Θλ(z) = 1

λ−z is analytic in a neighborhood of σ(Γ)
and Θλ(σ(Γ) ∪ {∞}) = σ(R(λ, Γ)). Hence there is a 1-1 map between σ(Γ) and
σ(R(λ, Γ)).

Hence when b = 0 and if R(λ, Γ) is a compact operator then σ(Γ) is a pure
point spectrum. Compactness of the resolvent will be discussed in the next section.
If R(λ, Γ) is not compact then the general shape of σ(Γ) is roughly as follows
(assuming for simplicity that c is real): In addition to some eigenvalues, it contains
a large portion of, and sometimes a whole, left half plane {z : <(z) ≤ s} where
s = s(h) depends on the Hardy space size of the associated univalent function h.

When b = 0 the resolvent operator R(λ, Γ) can be computed at the point
λ=c=F (0) and has a convenient form. To see that c ∈ ρ(Γ) observe that ‖Tt‖Hp = 1
for each t when b = 0. Thus the growth bound of T is ω = 0 hence c ∈ ρ(Γ) if
<(c) > 0. A straightforward calculation confirms this also when <c = 0. Inverting
the operator cI − Γ we obtain

(5.1) R(c,Γ)(f)(z) =
1

ch(z)

∫ z

0

f(ζ)h′(ζ) dζ.

We give below some examples of spectra of Γ on Hp.

Semigroups with DW point b = 0.
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Example 5.1. Let φt(z) = e−ctz, with associated univalent function h(z) ≡ z.
The resolvent reduces to the integration operator

R(c,Γ)(f)(z) =
1
cz

∫ z

0

f(ζ) dζ

which is compact on Hp. Thus

σ(Γ) = σπ(Γ) = {−kc : k = 0, 1, 2, . . . }.

Example 5.2. Let φt(z) = 1 − (1 − z)e−t

, with h(z) = log(1/(1 − z)). Using the
angular derivative criterion [39, Cor. 3.21] we see that each composition operator
Tt, t > 0, is compact, and it follows that R(λ, Γ) is compact. Thus

σ(Γ) = σπ(Γ) = {−k : k = 0, 1, 2, . . . }.

Example 5.3. Let

φt(z) =
e−tz

(e−t − 1)z + 1
.

Here h(z) = z/(1− z) and we find σπ(Γ) = {0}. For each λ ∈ C with <(λ) ≤ −1/p
and each positive integer n define

Pn(z) = 1 +
n∑

k=1

λ(−1)k

k

(
n

k

)
zk,

and let fn,λ(z) = (1− z)λePn(z). A calculation shows that the differential equation
(λI − Γ)(y) = λfn,n+λ+1, equivalently,

z(1− z)y′(z) + λy(z) = λ(1− z)λ+n+1ePn(z)

has the unique analytic solution y(z) = fn,λ(z) on the unit disc. If we choose n
such that <(n + λ + 1) > −1/p then fn,n+λ+1 ∈ Hp. If λI − Γ were invertible
then we would have fn,λ = R(λ, Γ)(fn,n+λ+1) ∈ Hp which is impossible because
<(λ) ≤ −1/p. It follows that the half plane {z : <(z) ≤ −1/p} is contained in σ(Γ).

We can proceed to determine σ(Γ) along the lines of [103] by considering a
weighted composition semigroup, but it is easier here to use the spectra of single
composition operators in the semigroup. For each t, φt has the interior DW point
0 and a single fixed point 1 on the boundary, with angular derivative φ′t(1) =
et. Further each φt is analytic in a neighborhood of the disc, hence we have the
spectrum on Hp, σ(Tt) = {z : |z| ≤ e−t/p} ∪ {1}. Using the spectral theorem (2.3)
we conclude

σ(Γ) = {z : <(z) ≤ −1/p} ∪ {0}.
Similar arguments applied to the semigroup φt(z) = k−1(e−tk(z)) where k(z) =
z/(1− z)2, give the Hp spectrum [106],

σ(Γ) = {z : <(z) ≤ −1/2p} ∪ {0}.

Example 5.4. Let φt(z) = h−1(e−th(z)) where h : D → Ω is a starlike map with
h(0) = 0. Suppose that Ω = h(D) has the following property,

sup{r : D(z, r) ⊂ Ω} < ∞,

that is, the radii of schlicht discs D(z, r) that can be inscribed in Ω are bounded.
Thus Ω can be a strip of finite width or a Y-shaped union of half strips extending
to infinity in each direction. Such an h is in the Bloch space B and since it is
univalent it is also in BMOA [88]. Since BMOA ⊂ Hp for all finite p we conclude
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that h ∈ ∩p<∞Hp. In the next section we will see that this implies compactness of
R(λ, Γ) hence

σ(Γ) = σπ(Γ) = {0,−1,−2, . . . }.

Semigroups with DW point b = 1.

Example 5.5. Let φt(z) = e−tz + 1− e−t. This is obtained as

φt(z) = h−1(h(z) + t), with h(z) = log
1

1− z
.

We have eλh(z) = (1− z)−λ ∈ Hp if and only if <(λ) < 1/p, hence

σπ(Γ) = {z : <(z) < 1/p}.

Using the norm estimate ‖Tt‖Hp ≤ 2et/p we find for the growth bound ω ≤ 1/p,
thus σ(Γ) ⊆ {z : <(z) ≤ 1/p}. Since σ(Γ) is a closed set we obtain

σ(Γ) = {z : <(z) ≤ 1/p}.

Example 5.6. Let h(z) = 1
2 log 1+z

1−z and

φt(z) = h−1(h(z) +
1
2
t) =

(1 + et)z − 1 + et

(−1 + et)z + 1 + et
.

This is a group of hyperbolic automorphisms. We have eλh(z) = ( 1+z
1−z )λ/2 ∈ Hp if

and only if −1/p < <(λ/2) < 1/p. It follows that

σπ(Γ) = {z : −1/p < <(z) < 1/p}.

On the other hand the angular derivative at the DW point is φ′t(1) = e−t thus
the spectrum of Tt on Hp is σ(Tt) = {z : e−t/p ≤ |z| ≤ et/p}. As in the previous
example we conclude

σ(Γ) = {z : −1/p ≤ <(z) ≤ 1/p}.

Example 5.7. Let h(z) = z/(1− z) and

(5.2) φt(z) = h−1(h(z) + it) =
(1− it)z + it

−itz + 1 + it

This is a group of parabolic automorphisms with DW point b = 1. We find eλh(z) =
e

λz
1−z ∈ Hp if and only if λ ≤ 0. It follows that

σπ(Γ) = {iλ : λ ≤ 0}.

The growth bound in this case is ω = 0. Recalling the spectra of Tt [39] we find
σ(Γ) = σπ(Γ) = {iλ : λ ≤ 0}.

6. Compactness of the resolvent operator

In the previous section we saw that in the case of an interior DW point, σ(Γ) is a
pure point spectrum if the resolvent R(λ, Γ) is compact. In this section we discuss
compactness of R(λ, Γ). Compactness is characterized on Hardy and Bergman
spaces by a number of equivalent conditions in terms of the associated univalent
function h. Characterizations are also given for membership of R(λ, Γ) in the
Schatten classes Sp(H2) of the Hilbert space H2 and similarly for A2.
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Recall that for compactness we may calculate R(λ, Γ) at the convenient point
c ∈ ρ(Γ), and R(c,Γ) is a constant multiple of the following averaging operator,

Rh(f)(z) =
1

h(z)

∫ z

0

f(ζ)h′(ζ) dζ.

Define two auxiliary operators Ph and Qh as follows

Ph(f)(z) =
1

zh(z)

∫ z

0

f(ζ)ζh′(ζ) dζ,

and

Qh(f)(z) =
1
z

∫ z

0

f(ζ)
ζh′(ζ)
h(ζ)

dζ,

and denote by Mz the operator of multiplication by the independent variable z.
Obviously Ph is bounded on Hp since Rh is, and we will see in a moment that Qh

is also bounded. First by direct computation the following identities hold

(6.1) MzPh = RhMz, Qh = Ph + QhPh.

Next using the identity zh′(z)/h(z) = 1 + z(log h(z)
z )′ we can write

Qh(f)(z) =
1
z

∫ z

0

f(ζ) dζ +
1
z

∫ z

0

f(ζ)ζ
(
log

h(ζ)
ζ

)′
dζ

= J(f)(z) + LhMz(f)(z),

where J is the integration operator and Lh is

Lh(f)(z) =
1
z

∫ z

0

f(ζ)
(
log

h(ζ)
ζ

)′
dζ.

We will use a result about certain operators Tg studied in [8],

(6.2) Tg(f)(z) =
1
z

∫ z

0

f(ζ)g′(ζ) dζ

of which Lh is a special case. To state this result we need the analytic Besov spaces
Bp. For 1 < p < ∞, Bp consists of analytic f such that

‖f‖p
Bp

=
∫
D

|f ′(z)|p(1− |z|2)p−2 dm(z) < ∞,

where dm(z) is the Lebesgue area measure on D. These are small spaces, all
contained in V MOA. More details for Bp can be found in [117].

Let Tg be as above with g analytic on the disc and 1 ≤ p < ∞. Then the
following hold [8].

• Tg is bounded on Hp if and only if g ∈ BMOA.
• Tg is compact on Hp if and only if g ∈ V MOA.
• Tg is in the Schatten class Sq(H2) if and only if g ∈ Bq, 1 < q < ∞.

Now for any univalent function h with h(0) = 0 the function log(h(z)/z) is in
BMOA [16]. The operator Lh above is identical to Tg with g = log(h(z)/z). It
follows that Lh is bounded on Hp and since J is compact, Qh is also bounded.
Further (6.1) implies that Rh is compact if and only if Qh is compact if and only if
Lh is compact and this is equivalent to log(h(z)/z) ∈ V MOA.

For the Schatten classes of Rh we can use the same reasoning together with
the fact that J ∈ Sq(H2) for all q > 1. We find Rh ∈ Sq(H2) if and only if
log(h(z)/z) ∈ Bq.
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The conditions above have other equivalent forms due to the fact that the as-
sociated univalent functions h are of special form, i.e. spirallike. First, a result of
function theory says that if g is analytic in V MOA then eg ∈ ∩p<∞Hp [88]. It
follows that if Rh is compact then h ∈ ∩p<∞Hp. The converse of this also holds,
that is if h ∈ ∩p<∞Hp then Rh is compact [6]. As a byproduct of these we find
that for h univalent spirallike,

h ∈ ∩p<∞Hp if and only if log
h(z)

z
∈ V MOA.

Recall now the form of the generator G(z)=−zF (z), <(F ) ≥ 0. Then <(1/F ) ≥
0 and assuming for simplicity F (0) = 1 we can write the Herglotz representation of
1/F ,

1
F (z)

=
∫ 2π

0

eiθ + z

eiθ − z
dµ(θ),

where µ is a probability measure on the unit circle. Integrating (3.4) with a change
of the order of integration we find

h(z) = z exp
(

2
∫ 2π

0

log
1

1− e−iθz
dµ(θ)

)
.

From [25, Th. 4.10] we see that such a function h is in Hp for all finite p if and only
if µ has no point masses on the unit circle, so this condition on µ is also equivalent
to compactness of Rh.

Next we derive a geometric condition on F (z). Let w ∈ ∂D then we can write
µ = µ{w}δw +µ1 where δw is the Dirac measure at w and µ1 is the rest of µ. From
the Herglotz formula

1
F (z)

= µ{w}w + z

w − z
+
∫

∂D

ζ + z

ζ − z
dµ1(ζ),

so that
w − z

F (z)
= µ{w}(w + z) +

∫
∂D

(ζ + z)
w − z

ζ − z
dµ1(ζ).

Letting z → w nontangentially from inside the disc, the integral above goes to zero
by the bounded convergence theorem. Taking reciprocals we may then write (with
the convention 1

0 = ∞)

lim
z→w

F (z)
z − w

= − 1
2wµ{w}

.

This limit can be finite only when µ{w} 6= 0 and then only if the nontangential
limit F (w) def= limz→w F (z) is equal to zero. This means that F (D) touches the
imaginary axis at 0. We interpret the limit

F ′(w) def= lim
z→w

F (z)− F (w)
z − w

as the angular derivative of F at w. We see that when F ′(w) is finite then F (D)
touches the imaginary axis in a substantial way. And F ′(w) is finite if and only if
µ{w} 6= 0.

The preceding arguments can be applied with small changes to Bergman spaces
Ap. Here the Bloch space B and the little Bloch space B0 replace BMOA and
V MOA. For the operators Tg analogous statements hold [9] for 1 ≤ p < ∞.

• Tg is bounded on Ap if and only if g ∈ B.
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• Tg is compact on Ap if and only if g ∈ B0.
• Tg ∈ Sq(A2) if and only if g ∈ Bq, 1 < q < ∞.

Using this we can obtain characterizations of compactness of Rh on Ap in terms
of h or F . The conditions turn out to be the same as for Hardy spaces because of
the following result from function theory [88]. For any h univalent on the disc with
h(0) = 0,

log
h(z)

z
∈ B0 if and only if log

h(z)
z

∈ V MOA.

We collect all these conditions for the resolvent in the following

Theorem 6.1. Suppose 1 ≤ p < ∞. Let T be a semigroup of composition operators
induced by the semigroup of functions Φ on Hp or Ap. Let G(z) = −zF (z) be the
generator of Φ, µ the measure in the Herglotz representation of 1/F and h the
associated univalent function. Then
a. The following are equivalent:

(1) Rh is compact on Hp.
(2) Rh is compact on Ap.

(3) log h(z)
z ∈ V MOA.

(4) log h(z)
z ∈ B0.

(5) h ∈ ∩p<∞Hp.
(6) h ∈ ∩p<∞Ap.
(7) µ{w} = 0 for all w ∈ ∂D.
(8) F has no finite angular derivative on ∂D.

b. For q > 1 the following are equivalent:
(1) Rh ∈ Sq(H2).
(2) Rh ∈ Sq(A2).
(3) log h(z)

z ∈ Bq.

To see that (6)⇒(5) in (a) assume for simplicity h is starlike and consider growth.
If h ∈ ∩p<∞Ap then |h(z)| = O((1− |z|)−2/p) for all positive p. If there is a q such
that h /∈ Hq, then there is a w ∈ ∂D such that µ{w} = a > 0. From [91, Prop.
3.19] it follows that |h(rw)| > d(1 − r)−a/π for some d > 0 and all 0 < r < 1 and
this a contradiction.

The above conditions for compactness suggest that on Hardy and Bergman
spaces, the essential norm ‖Rh‖e = inf{‖Rh −K‖ : K a compact operator} or the
essential spectral radius re(Rh) may be comparable to one or more of the following
quantities

(i) dist
(
log

h(z)
z

, V MOA
)
, (ii)

∑
w∈∂D

µ{w}, (iii)
1

s(h)
,

where s(h) = sup{p > 0 : h ∈ Hp} is the Hardy space size of the associated
univalent function [85].

We next discuss the case of the Dirichlet space. As a consequence of the norm
estimate

‖f ◦ φ‖D ≤
(
1 +

(
log

1 + |φ(0)|
1− |φ(0)|

)1/2)
‖f‖D,

which is valid for any univalent analytic self map φ of the disc, the growth bound
of every composition semigroup on D is ω ≤ 0 [108]. To discuss compactness of
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the resolvent operator in the case of an interior DW point we may employ the
arguments of the Hardy space case, but this time we cannot go as far.The reason
is that we do not have good analogues of the results for operators Tg on D. In
particular the operator Qh is bounded on D if and only if the measure

dν(z) =
∣∣∣(log

h(z)
z

)′∣∣∣2dm(z)

is a Carleson measure for D in the sense of [110] and Qh is compact if and only
if dν(z) is a vanishing Carleson measure. The identity (6.1) shows that the latter
condition on dν(z) is equivalent to compactness of Rh. However this Carleson
measure characterization of compactness is not as transparent as the Hardy space
conditions.

For the Schatten classes of Rh on D the situation is even less clear. An easy
calculation shows that Rh ∈ S2(D) (the Hilbert-Schmidt class) if and only if∫

D

∣∣∣(log
h(z)

z

)′∣∣∣2 log
1

1− |z|2
dm(z) < ∞.

For other Schatten classes Sq(D) one needs to know the Schatten classes of the
operators Tg on D. Partial results can be obtained when q is an even integer (see
also [10, Th. 25], [92, Th. 1]). For example Rh ∈ S4(D) if and only if∫∫

D×D

∣∣∣(log
h(z)

z

)′∣∣∣2∣∣∣(log
h(w)

w

)′∣∣∣2 log
1

1− z̄w
log

1
1− w̄z

dm(z)dm(w) < ∞.

Analogous conditions can be written for q = 6, 8, . . ., but these do not suggest
anything for noninteger values of q. The analogy in behavior of Rh to Hankel
operators with symbol λ(z) = log(h(z)/z) on Hardy and Bergman spaces (see [11],
[117]), suggests that Rh may also behave like a Hankel operator on D with symbol
λ(z).

7. Weighted composition semigroups

Let X be a Banach space of analytic functions and Φ be a semigroup of analytic
self maps of the disc. If w : D → C is analytic, the formula

(7.1) St(f)(z) =
w(φt(z))

w(z)
f(φt(z)), f ∈ X,

defines, for suitable w, bounded operators on X. The family S = {St : t ≥ 0} is an
operator semigroup. If w ≡ 1 it reduces to an unweighted semigroup.

An obvious choice of w that makes St bounded operators is to take w an invertible
pointwise multiplier of X (i.e. such that for each f ∈ X both wf and f/w are in
X). There are however many other possible choices. For example if the DW point
is b = 0 then w(z) = z is a good choice and in fact w(z) = zr, r real, which are not
even analytic on D, give semigroups of bounded operators on Hp

St(f)(z) =
(φt(z)

z

)r

f(φt(z)).

As another example let φt(z) = 1 − (1 − z)e−t

. The function w(z) = 1/(1 − z) is
far from being a multiplier of Hp but the resulting semigroup

St(f)(z) =
w(φt(z))

w(z)
f(φt(z)) = (1− z)1−e−t

f(φt(z)),
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consists of bounded operators on Hp.
In a more general setting let the semigroup Φ be given. A cocycle for Φ is a

family m = {mt : t ≥ 0} of analytic functions mt : D → C satisfying

(1) m0 ≡ 1
(2) mt+s(z) = mt(z)ms(φt(z)) for each z ∈ D and t, s ≥ 0.
(3) The map t → mt(z) is continuous for each z ∈ D.

Given Φ and a suitable w, the family of functions

mt(z) =
w(φt(z))

w(z)
, z ∈ D, t ≥ 0,

is a cocycle for Φ. A coboundary for Φ is a cocycle that can be written in this form
for some w. Not all cocycles are coboundaries [60].

A large class of cocycles is constructed in the following way. Let g be arbitrary
analytic on D then the functions

(7.2) mt(z) = exp
(∫ t

0

g(φs(z)) ds

)
, z ∈ D, t ≥ 0,

define a cocycle for Φ. In particular if G is the generator of Φ and w is analytic
such that w′(z)G(z)/w(z) is also analytic (this allows w to have zeros only at the
DW point) then choosing g = w′G/w we have

g ◦ φs =
w′ ◦ φs

w ◦ φs
G ◦ φs =

w′ ◦ φs

w ◦ φs

∂

∂s
(φs) =

∂(w◦φs)
∂s

w ◦ φs

so the cocycle obtained for this g

mt(z) = exp

(∫ t

0

∂(w◦φs)
∂s

w ◦ φs
ds

)
=

w ◦ φt

w
,

is a coboundary.
If m is a cocycle for Φ the formula

(7.3) Ut(f)(z) = mt(z)f(φt(z)), f ∈ X,

defines a semigroup U = {Ut} of operators on X provided that each Ut is bounded.
A condition sufficient to make each Ut bounded is that each mt is a multiplier of X.
On Hardy and Bergman spaces this means mt ∈ H∞ for each t and this is equivalent
to lim supt→0 ‖mt‖∞ < ∞ [68]. If Φ is a group of Möbius automorphisms, only
cocycles consisting of bounded functions give bounded operators Ut on Hp and Ap.
For other Φ however mt need not be bounded in order to obtain bounded Ut. This
is due to the fact that a weighted composition operator Cm,φ(f) = mf ◦ φ can be
bounded on a space X without m having to be a multiplier of X. For example if
φ maps D inside a smaller disc of radius r < 1 then every m ∈ Hp produces a
bounded Cm,φ on Hp. See [13] for some results on this.

The question of strong continuity of weighted composition semigroups S or U is
more complex than in the unweighted case, and depends on the weight fuctions. For
coboundaries mt = w ◦ φt/w then the following conditions imply strong continuity
on Hp, 1 ≤ p < ∞, [102],

(C1) lim sup
t→0

‖w ◦ φt

w
‖∞ ≤ 1.



SEMIGROUPS OF COMPOSITION OPERATORS 17

(C2) w ∈ Hq for some q > 0, and lim sup
t→0

‖w ◦ φt

w
‖∞ < ∞.

Further if either of these conditions is satisfied then S is not uniformly continuous
on Hp unless Φ is the trivial semigroup. W. König [68] extended these results to
arbitrary cocycles m. He proved,

• If 1 ≤ p < ∞ and U is strongly continuous on Hp then g = ∂mt

∂t |t=0 exists,
it is analytic on D and m is given by (7.2).

• If m is of the form (7.2) and supz∈D <(g(z)) < ∞ then U is strongly
continuous on Hp and the infinitesimal generator is given by

∆(f)(z) = G(z)f ′(z) + g(z)f(z),

where G is the generator of Φ.
• If U is uniformly continuous on Hp then Φ is trivial and g is bounded.

Thus the generator ∆ is a perturbation, by the multiplication operator Mg(f) =
gf which may be unbounded, of the generator Γ of the unweighted semigroup.
In particular if mt = w ◦ φt/w is a coboundary then the generator is ∆(f) =
Gf ′ + (w′G/w)f = (G/w)(wf)′ and we have the following formal identity

(7.4) Mw ◦∆ = Γ ◦Mw,

where Mw is the operator of multiplication by w. This is an intertwining property
for generators inherited from a corresponding property of the semigroups. Indeed
comparing the unweighted semigroup {Tt} with {St} we see that

Mw ◦ St = Tt ◦Mw for all t ≥ 0.

In case Mw is bounded on X this relation is precise and can be used to study
the unweighted and weighted semigroup simultaneously. Further, this intertwining
relation is inherited by the resolvent operators.

Spectra of generators of weighted composition semigroups can be discussed in
much the same way as for the unweighted case. In particular the point spectra are
found by solving a first order differential equation [68], [102]. Because of the above
intertwining relation σ(Γ) and σ(∆) are related and sometimes, modulo eigenval-
ues, they coincide. The constant functions are no longer eigenvectors for St and
examples show that, in the case of an interior DW point, if we replace w in (7.1)
by a larger power wn then some additional eigenvalues of Tt are removed. And
there is a critical value of n, related to the Hardy space size of the associated uni-
valent function such that when n exceeds this critical value all eigenvalues have
been removed. For Hardy and Bergman spaces compactness of resolvent in case
of an interior DW point can be discussed as for unweighted semigroups. If w is a
bounded function in which case Mw is a bounded operator on Hp the conditions
for compactness are those for unweighted semigroups. This can be seen from the
form of the resolvent at c or at 0 assuming the latter is in ρ(∆),

R(c,∆)(f)(z) =
1

w(z)h(z)

∫ z

0

f(ζ)w(ζ)h′(ζ) dζ,

R(0,∆)(f)(z) =
1

w(z)

∫ z

0

f(ζ)w(ζ)
h′(ζ)
h(ζ)

dζ.

For general w we do not have information on compactness of these resolvents.

Examples and applications of weighted composition semigroups
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Example 7.1. Let φt(z) = e−tz + 1− e−t, w(z) = 1− z and

St(f)(z) =
w(φt(z))

w(z)
f(φt(z)) = e−tf(φt(z)).

The generator of {St} is

∆(f)(z) = (1− z)f ′(z)− f(z) = ((1− z)f(z))′.

Using (7.4) and the spectrum of the generator of the unweighted semigroup from
example (5.5) we find σp(∆) = {z : <(z) ≤ −1 + 1

p}, [σp(∆) denotes the spectrum
of ∆ as an operator on Hp]. Thus 0 ∈ ρ(∆) if and only if p > 1. Denoting by A
the resolvent R(0,∆) we have

A(f)(z) =
1

z − 1

∫ z

1

f(ζ) dζ

If p = 1 then 0 ∈ σ(∆) and this is an immediate proof that A is not bounded on
H1. With the standard basis for Hp the matrix for A is

1, 1/2, 1/3, · · ·
0, 1/2, 1/3, · · ·
0, 0, 1/3, · · ·
...

...
...


This is the transpose of the matrix for C, the Cesàro operator. On H2 therefore A
and C are Hilbert space adjoints. This relation between the Cesàro operator and
the semigroup {St} was exploited in [37] to show that C is subnormal on H2.

Norm estimates for St can be used in conjunction with (2.2) to obtain the norm
and spectrum of A,

‖A‖Hp =
p

p− 1
and σp(A) = {z : |z − p

2(p− 1)
| ≤ p

2(p− 1)
},

for all p > 1. See [103] for details.

Example 7.2. Let φt(z) = e−tz
(e−t−1)z+1 and

St(f)(z) =
φt(z)

z
f(φt(z)).

The generator is given by

∆(f)(z) = −z(1− z)f ′(z)− (1− z)f(z) = −(1− z)(zf(z))′.

For the spectrum of ∆ we can use the spectrum of the generator of the unweighted
semigroup in example (5.3), and (7.4) to find σ(∆) = {z : <(z) < −1/p}. Thus
0 ∈ ρ(∆) and R(0,∆) = C the Cesàro operator,

C(f)(z) =
1
z

∫ z

0

f(ζ)
1

1− ζ
dζ =

∞∑
n=0

( 1
n + 1

n∑
k=0

ak

)
zn.

It requires some work to obtain the norms ‖St‖Hp = e−t/p which are valid however
only for p ≥ 2. The growth bound therefore is ω = −1/p for p ≥ 2 and by (2.2)
we find ‖C‖Hp = p for p ≥ 2. The case 1 ≤ p < 2 is discussed in [103] where
some variation of the weighted semigroup produces only one sided estimates for the
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norm. In [106] it is shown that there are values of p > 1 such that ‖C‖Hp > p. On
the other hand we have

σp(C) = {z : |z − p

2
| ≤ p

2
},

for all p ≥ 1. Using this semigroup in a similar manner we can study C on the
Bergman space [107].

It is interesting to note that C can be also obtained from the semigroup φt(z) =
1− (1−z)e−t

= h−1(e−th(z)) with h(z) = log(1/(1−z)). Indeed from (5.1) we find

R(1,Γ)(f)(z) =
1

log(1/(1− z))

∫ z

0

f(ζ)
1

1− ζ
dζ.

If we write R(1,Γ) as a Laplace transform (2.1) and then change variables we obtain

C(f)(z) =
log(1/(1− z))

z

∫ 1

0

f(1− (1− z)s) ds.

Example 7.3. For any semigroup Φ with generator G(z) = −zF (z) let

St(f)(z) =
φt(z)

z
f(φt(z)).

This is strongly continuous on Hp and the generator is

∆(f)(z) = −zF (z)f ′(z)− F (z)f(z) = −F (z)(zf(z))′.

The special case F (z) = 1−z
1+z corresponds to φt(z) = k−1(e−tk(z)) where k(z) =

z/(1 − z)2 is the Koebe function. In some sense this is extremal among the semi-
groups with DW point 0 and every other such semigroup is “subordinate” to this.
By studying first the extremal semigroup we find 0 ∈ ρ(∆) for all Φ with DW point
0 and this implies that the resolvent QF = R(0,∆),

QF (f)(z) =
1
z

∫ z

0

f(ζ)
1

F (ζ)
dζ,

is a bounded operator on Hp for all F with <(F ) ≥ 0. Writing F in terms of
the associated univalent function we see that QF is identical to the operator Qh of
section 6. This is another proof (without use of operators Tg) that Qh are bounded
on Hp. In addition we see that QF is compact if and only if the measure in the
Herglotz representation of 1/F has no point masses on the unit circle.

Example 7.4. Let Φ be any semigroup of functions with generator G and choose
w(z) = G(z) to obtain

St(f)(z) =
G(φt(z))

G(z)
= φ′t(z)f(φt(z)),

This is an interesting and intriguing operator semigroup. In principle there should
be conditions (for example on G) characterizing those Φ for which St are bounded
operators say on Hp. Additional conditions should imply strong continuity. We do
not know any such conditions.

Example 7.5. The groups of isometries from Hp onto Hp, 1 ≤ p < ∞, p 6= 2, are
weighted composition semigroups. This is a consequence of Forelli’s theorem [51]
which says that if 1 ≤ p < ∞, p 6= 2 and T is a linear isometry from Hp onto Hp

then T is given by
T (f)(z) = eiγ(φ′(z))1/pf(φ(z)),
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where γ is a real number and φ a Möbius automorphism of the disc. On H2

this formula does give an onto isometry but there are many more isometries that
cannot be described as weighted composition operators. The groups of Möbius
automorphisms of D were determined explicitly in [21]. After normalization they
are essentially the ones in example 5.1 with c pure imaginary (elliptic), example 5.6
(hyperbolic), and example 5.7 (parabolic). The one-parameter groups of isometries
are given by

Ut(f)(z) = eiγt(φ′t(z))1/pf(φt(z)), −∞ < t < ∞,

where {φt} is a one-parameter group of automorphisms of D. The generators and
spectral properties of {Ut} were studied in [21].

There are also linear isometries of Hp which are not onto. These are again
weighted composition operators but the weights are more general. Semigroups of
such isometries were studied in [19]. Further, groups of isometries on Hardy spaces
of the torus or of the unit ball of Cn were studied in [23], [24], [26].

8. Final Remarks

There are several questions about the operator semigroups T, S, and U that
remain to be studied. For example we have very little information in case the DW
point of Φ is on the boundary. Composition semigroups can (or should) be studied
in parallel with single composition operators. Even though the inducing functions
are strongly restricted by the requirement of participating in a continuous parameter
semigroup, results from semigroups can give insight for properties of general single
composition operators. In fact it may be possible to use semigroups more directly
to study single composition operators. It is shown in [33] that under some mild
conditions on φ, for each z ∈ D all sufficiently large fractional iterates of φ can be
defined at z.

We have not discussed analytic semigroups, that is those Φ = {φt} for which
there is a sector S in the plane containing the positive x-axis such that Φ extends
to a family {φw}, w ∈ S, with the semigroup properties satisfied. These give rise to
analytic composition semigroups {Tw} which behave better as operator semigroups,
for example there is equality in the spectral theorem (2.3).

Semigroups of functions in several complex variables are studied in [2]. I am
not aware of any papers studying semigroups of composition operators on spaces
of holomorphic functions in several variables.

Finally we would like to mention an observation which leads to some questions.
The univalent function h associated to a semigroup of functions Φ, is in principle
determined by the boundary of the region Ω onto which it maps the disc conformally.
The size of h and its other properties depend heavily on the geometry of ∂Ω. It
follows that properties of the induced operator semigroup T may be related to the
geometry of the boundary. For example how much different are the two operator
semigroups, one induced by φt(z) = e−tz (for which h(z) ≡ z) and the second by
φt(z) = h−1(e−th(z)) where h maps the disc onto a bounded starlike region with a
fractal boundary?
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École Norm. Sup. (Sér. 3) 1 1884, supplément, 3–41.

[68] W. König, Semicocycles and weighted composition semigroups on Hp, Michigan Math. J.

37 (1990), 469–476.
[69] T. L. Kriete, Cosubnormal dilation semigroups on Bergman spaces, J. Operator Theory

17 (1987), 191–200.

[70] T. L. Kriete and H. C. Rhaly, Translation semigroups on reproducing kernel Hilbert spaces,
J. Operator Theory 17 (1987), 33–83.

[71] Y. Kubota, Iteration of holomorphic maps of the unit ball into itself, Proc. Amer. Math.

Soc. 88 (1983), 476–485.
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