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Abstract. We consider Hausdorff matrices as operators on Hardy spaces

of analytic functions. When the generating sequence of the matrix is
the moment sequence of a measure µ, we find conditions on µ such that

the matrix represents a bounded operator. The results unify and ex-

tend some known special cases of operators on Hardy spaces such as the
Cesàro and generalized Cesàro operators.

1. Introduction

1.1. Hausdorff matrices. Let ∆ be the forward difference operator defined
on scalar sequences {µn}∞0 by ∆µn = µn − µn+1 and

∆kµn = ∆(∆k−1µn) for k = 1, 2, · · · , ∆0µn = µn.

A Hausdorff matrix H = H(µn) with generating sequence {µn} is the lower
triangular matrix

H =


c0,0 0 0 · · ·
c1,0 c1,1 0 · · ·
c2,0 c2,1 c2,2 · · ·
...

...
...

...


with entries

cn,k =
(
n

k

)
∆n−kµk, k ≤ n.

These matrices have been studied for a long time, originally in connection
with summability of series and later as operators on sequence spaces. Their
basic properties can be found in [H1] or [GA]. An important special case
occurs when µn is the moment sequence of a measure. That is,

µn =
∫ 1

0

tn dµ(t), n = 0, 1, · · · ,
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where µ is a finite (positive) Borel measure on (0, 1]. These matrices are
denoted by Hµ and their entries are found to be

cn,k =
(
n

k

)∫ 1

0

tk(1− t)n−k dµ(t), k ≤ n.

When µ is probability measure the Hausdorff matrix Hµ is called totally reg-
ular.

It follows from the work of Hardy [H2] that if µ is a measure satisfying∫ 1

0

1
t1/p

dµ(t) <∞

then Hµ determines a bounded linear operator

(1.1) Hµ : {an} −→ {An}, An =
n∑

k=0

cn,kak n = 0, 1, · · · ,

on the sequence space lp, 1 < p <∞, whose norm is given by

‖Hµ‖lp→lp =
∫ 1

0

dµ(t)
t1/p

.

In recent years Hausdorff matrices, their generalizations and their continu-
ous analogues have been studied as operators on sequence spaces or on spaces
of functions by various authors, see for example [RH], [DE], [LE], [LM].

The purpose of this article is to consider Hausdorff matrices as operators
on spaces of analytic functions and in particular on Hardy spaces. Let D
denote the unit disc in the complex plane C and let X denote a Banach space
consisting of analytic functions on D. Let Hµ = (cn,k) be a Hausdorff matrix
arising from a Borel measure µ. If f(z) =

∑
n≥0 anz

n ∈ X we consider the
transformed power series

(1.2) Hµ(f)(z) =
∞∑

n=0

(
n∑

k=0

cn,kak

)
zn,

which is obtained by letting the matrix Hµ multiply the Taylor coefficients
of f . Putting aside for the moment the question of convergence we may ask
whether the linear transformation

f → Hµ(f)

is bounded when considered as a transformation on X.
We also consider the transpose matrix Aµ = H∗

µ, to act on Taylor coefficient
of a function f ∈ X. Formally,

(1.3) Aµ(f)(z) =
∞∑

k=0

( ∞∑
n=k

cn,kan

)
zk.
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The matrices Aµ are called quasi-Hausdorff matrices. The convergence of the
power series Aµ(f) is more delicate in this case. Nevertheless it is clear that
if f is a polynomial then Aµ(f) is also a polynomial and, assuming that X
contains the polynomials, we may ask if Aµ extends as a bounded operator
on X.

Various choices of the measure µ give rise to some well known classical
matrices. For example when µ is the Lebesgue measure one obtains the Cesàro
matrix which is known to be bounded on Hardy and Bergman spaces. A
weighted Lebesgue measure gives rise to generalized Cesàro operators which
are also known to be bounded on Hardy spaces (see remark at the end of
article). Other special cases of µ and the corresponding matrices can be
found in [RH].

In this article we will examine the matrices Hµ and Aµ as operators on the
Hardy space Hp, 1 ≤ p <∞. We find sufficient conditions on the measure µ
that ensure boundedness. The main results are:

Theorem 1.1. Let µ be a finite Borel measure on (0, 1] and Hµ the corre-
sponding Hausdorff matrix.
(i) Suppose 1 < p < ∞ and

∫ 1

0
t

1
p−1 dµ(t) < ∞. Then Hµ is bounded on Hp

and

‖Hµ‖Hp→Hp ≤ C

∫ 1

0

t
1
p−1 dµ(t),

and the constant C can be taken C = 1 when p ≥ 2.
(ii) For p = 1, Hµ is bounded on H1 if and only if

∫ 1

0
log 1

t dµ(t) < ∞. In
this case

‖Hµ‖H1→H1 ≤ C ′
(
µ((0, 1]) +

∫ 1

0

log
1
t
dµ(t)

)
.

for some constant C ′.

Theorem 1.2. Let µ be a finite Borel measure on (0, 1] and Aµ the corre-
sponding quasi-Hausdorff matrix. If 1 ≤ p <∞ and

∫ 1

0
t−1/p dµ(t) <∞ then

Aµ is bounded on Hp and

‖Aµ‖Hp→Hp =
∫ 1

0

dµ(t)
t1/p

.

The proof of these theorems will make essential use of a relation between
Hausdorff matrices and certain composition operators. We point out this
relation in section 2. The proofs of the theorems are given in section 3. In
the rest of this section we present some background and fix the notation on
Hardy spaces.
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1.2. Hardy spaces. For 1 ≤ p < ∞ the Hardy space Hp is the space of
analytic functions f : D → C such that

‖f‖p = sup
r<1

(∫ 2π

0

|f(reiθ)|p dθ
2π

)1/p

<∞.

Hp is a Banach space with this norm and a Hilbert space for p = 2. If
1 ≤ p ≤ q < ∞ then H1 ⊃ Hp ⊃ Hq. Functions f ∈ Hp possess boundary
values f(eiθ) and these boundary functions are p-integrable on ∂D. Identifying
f with its boundary function provides an isometric embedding of Hp into
Lp(∂D). If f ∈ Hp then

(1.4) |f(z)| ≤ cp‖f‖p

(1− |z|)1/p
, z ∈ D

the constant cp depending only on p, see [DU, p. 36].
If 1 < p <∞ the dual space (Hp)∗ is Hq, 1

p + 1
q = 1, in the sense that the

continuous linear functionals on Hp are of the form Λg(f) = 〈f, g〉, where g
ranges over Hq, and the pairing is given by

(1.5) 〈f, g〉 =
1
2π

∫ 2π

0

f(eiθ)g(eiθ) dθ f ∈ Hp, g ∈ Hq

The duality (Hp)∗ ' Hq is only an isomorphism of Banach spaces and not an
isometry unless p = 2. In general for Λg ∈ (Hp)∗ we have

‖Λg‖ ≤ ‖g‖q ≤ Cq‖Λg‖
where Cq is a constant depending only on q.

Every analytic function a(z) : D → D induces a bounded composition
operator

Ca(f)(z) = f(a(z))
on the Hardy space Hp, see [DU, p. 29]. In addition if b(z) is a bounded
analytic function on D then the weighted composition operator

Ca,b(f)(z) = b(z)f(a(z))

is bounded on Hp.
Additional properties of Hardy spaces and composition operators can be

found in [DU], [CM], [SH].

2. Hausdorff matrices and composition operators

For each t ∈ (0, 1] the function φt given by

(2.1) φt(z) =
tz

(t− 1)z + 1
, z ∈ D

maps the disc into itself. At the same time the weight functions

(2.2) wt(z) =
1

(t− 1)z + 1
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are bounded on D for each t ∈ (0, 1] thus the weighted composition operators

(2.3) Tt(f)(z) = wt(z)f(φt(z)), 0 < t ≤ 1,

are bounded on Hp.
Also for each t ∈ (0, 1] the functions

(2.4) ψt(z) = tz + 1− t, z ∈ D,
map the disc into itself thus the induced composition operators

(2.5) Ut(f)(z) = f(ψt(z)), 0 < t ≤ 1,

are bounded on Hp.

Lemma 2.1. Let µ be a finite Borel measure on (0, 1] and Hµ = (cn,k) the cor-
responding Hausdorff matrix. Suppose 1 ≤ p < ∞ and f(z) =

∑
n≥0 anz

n ∈
Hp. Then
(i) The power series Hµ(f)(z) in (1.2) represents an analytic function on D.
(ii) Hµ(f) can be written in terms of the weighted composition operators (2.3)
as

(2.6) Hµ(f)(z) =
∫ 1

0

wt(z)f(φt(z)) dµ(t)

for each z ∈ D.

Proof. (i). Since f ∈ Hp the sequence of Taylor coefficients of f is bounded
say by M < ∞. Write An =

∑n
k=0 cn,kak and use and the identity 1 =

(t+ 1− t)n =
∑n

k=0

(
n
k

)
tk(1− t)n−k to obtain

|An| ≤
n∑

k=0

(
n

k

)∫ 1

0

tk(1− t)n−k dµ(t)|ak|

≤M
∫ 1

0

n∑
k=0

(
n

k

)
tk(1− t)n−k dµ(t)

=Mµ{(0, 1]}.
Thus the coefficients of the series (1.2) are bounded and it follows that its
radius of convergence is ≥ 1.

(ii). Consider the composing functions φt defined in (2.1). Each φt fixes
the origin so from Schwarz’s lemma, for a fixed z ∈ D we have |φt(z)| ≤ |z|
for each t ∈ (0, 1]. Hence

sup
0<t≤1

|f(φt(z))| ≤ sup
|ζ|≤|z|

|f(ζ)| < cp‖f‖p

(1− |z|)1/p
.

Also the weight functions wt satisfy sup0<t≤1|wt(z)| ≤ 1/(1 − |z|). Thus the
integral

F (z) =
∫ 1

0

wt(z)f(φt(z)) dµ(t)
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is finite and defines F as an analytic function on D. Keeping z ∈ D fixed we
have

F (z) =
∫ 1

0

1
(t− 1)z + 1

f(
tz

(t− 1)z + 1
) dµ(t)

=
∫ 1

0

∞∑
k=0

ak
tkzk

((t− 1)z + 1)k+1
dµ(t)

=
∞∑

k=0

akz
k

∫ 1

0

tk

((t− 1)z + 1)k+1
dµ(t)

where the interchange between the sum and the integral is justified by the
uniform convergence on t. Next

tk

((t− 1)z + 1)k+1
=

∞∑
j=0

(
j + k

k

)
tk(1− t)jzj

=
∞∑

n=k

(
n

k

)
tk(1− t)n−kzn−k,

see [ZY, p. 77]. This series converges uniformly on t ∈ (0, 1] hence we may
interchange sum and integral to obtain∫ 1

0

tk

((t− 1)z + 1)k+1
dµ(t) =

∞∑
n=k

(
n

k

)∫ 1

0

tk(1− t)n−k dµ(t)zn−k

=
∞∑

n=k

cn,kz
n−k.

Putting these together we find

F (z) =
∞∑

k=0

∞∑
n=k

cn,kakz
n =

∞∑
n=0

(
n∑

k=0

cn,kak

)
zn = Hµ(f)(z),

where the change in the order of summation is valid because, as a consequence
of the first part of the proof, the last sum converges absolutely. This finishes
the proof.

�

We now turn to Aµ. Unlike the case of Hµ, the sums Bk =
∑∞

n=k cn,kan

defining the coefficients of the power series (1.3) may not be finite. These
sums are surely finite if f is a polynomial and we show that in this case Aµ(f)
can be represented by an integral involving composition operators. We then
use this integral to define Aµ(f) for other Hardy space functions.

Lemma 2.2. Let µ be a finite Borel measure on (0, 1] and Aµ the correspond-
ing quasi-Hausdorff matrix. Then
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(i) For each polynomial f , Aµ(f) can be written in terms of the composition
operators (2.5) as

(2.7) Aµ(f)(z) =
∫ 1

0

f(ψt(z)) dµ(t).

(ii) Suppose 1 ≤ p <∞ and
∫ 1

0
t−1/p dµ(t) <∞. Then for every f ∈ Hp the

above integral is finite and defines an analytic function on D.

Proof. (i). Suppose f(z) =
∑∞

n=0 anz
n is a polynomial so that an = 0 for

n > N . It is clear that in this case Aµ(f) is a polynomial of degree at most
N . Let ψt is given by (2.4). Then clearly the integral (2.7) is finite for each
z ∈ D and we have∫ 1

0

f(ψt(z)) dµ(t) =
∞∑

n=0

an

∫ 1

0

(tz + 1− t)n dµ(t)

=
∞∑

n=0

an

(
n∑

k=0

(
n

k

)∫ 1

0

tk(1− t)n−k dµ(t)zk

)

=
∞∑

n=0

an

(
n∑

k=0

cn,kz
k

)

=
∞∑

k=0

( ∞∑
n=k

cn,kan

)
zk

= Aµ(f)(z),

where the interchange of sums and integrals is justified because all sums are
finite.

(ii). Let f ∈ Hp. Applying (1.4) we find

|f(ψt(z))| ≤
cp‖f‖p

(1− |tz + 1− t|)1/p
≤ cp‖f‖p

t1/p(1− |z|)1/p
,

for each z ∈ D and 0 < t ≤ 1. From the hypothesis it follows that the integral

G(z) =
∫ 1

0

f(ψt(z)) dµ(t)

is finite for each z ∈ D and defines G as an analytic function on D. �

Using the above Lemma we can define Aµ on analytic functions f ∈ Hp by
the integral, whenever µ satisfies the hypothesis of the Lemma. The resulting
function Aµ(f) is analytic on the disc and it makes sense examine if Aµ is a
bounded operator on Hp.
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Remarks
(1) Suppose µ is a measure satisfying

(2.8)
∫ 1

0

dµ(t)
t

<∞.

Then the series (1.3) does define an analytic function on D for every f ∈ H1.
This is because

|Bk| ≤
∞∑

n=k

cn,k|an| ≤M
∞∑

n=k

cn,k = M
∞∑

n=k

(
n

k

)∫ 1

0

tk(1− t)n−k dµ(t)

=M
∫ 1

0

tk
∞∑

n=k

(
n

k

)
(1− t)n−k dµ(t)

=M
∫ 1

0

tk
1

(1− (1− t))k+1
dµ(t)

=M
∫ 1

0

dµ(t)
t

,

so that the coefficients Bk are finite and they form a bounded sequence.
(2) If dµ(t) = dt the Lebesgue measure, then (2.8) is not fulfilled. Nevertheless
the series (1.3) converges and defines for each f ∈ H1 an analytic function on
D. Indeed the elements cn,k are found to be cn,k = 1

n+1 , k = 0, 1, · · ·n, (Aµ is
the transpose of the Cesàro matrix). The coefficients Bk of (1.3) are given by

Bk =
∞∑

n=k

an

n+ 1
, k = 0, 1, · · · .

Now Hardy’s inequality for functions f(z) =
∑

n≥0 anz
n ∈ H1 says

(2.9)
∞∑

n=0

|an|
n+ 1

≤ π‖f‖1,

see [DU, p. 48]. It follows that for each f ∈ H1 the coefficients Bk are finite
and they form a bounded sequence so that the series (1.3) converges on the
disc.

Lemma 2.3. Suppose 1 < p < ∞ and 1
p + 1

q . Then under the pairing (1.5)
the following duality

(2.10) 〈wtf ◦ φt, h〉 = 〈f, h ◦ ψt〉

holds for all f ∈ Hp and h ∈ Hq.

Proof. Suppose f ∈ Hp. We can write f as a Cauchy integral

f(z) =
1
2π

∫ 2π

0

f(eiθ)
1− e−iθz

dθ.
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Write g(z) = Tt(f)(z) then

g(z) =
1

(t− 1)z + 1
f(

tz

(t− 1)z + 1
)

=
1

(t− 1)z + 1
1
2π

∫ 2π

0

f(eiθ)
1− e−iθtz

(t−1)z+1

dθ

=
1
2π

∫ 2π

0

f(eiθ)
1− (e−iθt+ 1− t)z

dθ

=
∞∑

n=0

(
1
2π

∫ 2π

0

(e−iθt+ 1− t)nf(eiθ) dθ
)
zn,

so that

(2.11)
∫ 2π

0

e−inθg(eiθ) dθ =
∫ 2π

0

(e−iθt+ 1− t)nf(eiθ) dθ, n = 0, 1, 2, ...

or equivalently,

〈g, einθ〉 = 〈f, (eiθt+ 1− t)n〉 n = 0, 1, 2, ...

Now the set {einθ : n = 0, 1, 2, ..} spans Hq and clearly the same is true for the
set {(eiθt + 1 − t)n : n = 0, 1, 2, ...}. Taking linear combinations of elements
of each set and then limits of such combinations in the Hq norm we conclude
that for each h ∈ Hq we have

〈g, h〉 = 〈f, h ◦ ψt〉

where ψt(z) = tz + 1− t, as desired. �

3. Hausdorff matrices on Hardy spaces

We start by finding estimates for the Hardy space norms of the composition
operators.

Lemma 3.1. For each 1 ≤ p <∞ the Hardy space norms of the composition
operators Ut(f)(z) = f(tz + 1− t) are given by

(3.1) ‖Ut‖Hp→Hp =
1
t1/p

, 0 < t ≤ 1.

Proof. Suppose 1 ≤ p <∞ and let λ ∈ C with <(λ) < 1/p. The functions

fλ(z) =
1

(1− z)λ

belong to Hp and we have

fλ(ψt(z)) =
1
tλ
fλ(z),

so t−λ is an eigenvalue of Ut. It follows that ‖Ut‖Hp→Hp ≥ t−1/p.
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The opposite inequality can be seen as follows. Theorem 9.4 of [CM] implies
that ‖Ut‖H2→H2 = 1/

√
t so that the assertion of the lemma is valid for p = 2.

Now for f ∈ Hp with Blaschke factor B(z) write f(z) = B(z)F (z). Then

‖Ut(f)‖p
p =

∫
∂D
|B(ψt(z))|p|F (ψt(z))|p |dz|

≤
∫

∂D
|F (ψt(z))|p |dz|

=
∫

∂D
|F p/2(ψt(z))|2 |dz|

≤ ‖Ut‖2
H2→H2‖F p/2‖2

2

= (1/t)‖F‖p
p

= (1/t)‖f‖p
p,

which gives the opposite inequality and the proof is complete.
�

Lemma 3.2. For the Hardy space norms of the weighted composition opera-
tors

Tt(f)(z) =
1

(t− 1)z + 1
f(

tz

(t− 1)z + 1
)

we have:
(i) If 2 < p <∞ then

‖Tt‖Hp→Hp ≤ t−1+1/p, 0 < t ≤ 1.

(ii) If 1 < p < 2 then there is a constant Cp depending only on p such that

‖Tt‖Hp→Hp ≤ Cpt
−1+1/p, 0 < t ≤ 1.

(ii) If p = 1 then there is a constant C ′ such that

‖Tt‖H1→H1 ≤ C ′(1 + log
1
t
), 0 < t ≤ 1.

Proof. For 1 ≤ p < ∞ let Hp(P) be the Hardy space of the right half plane
P = {z : <(z) > 0}, consisting of analytic functions f : P → C such that

‖f‖p
Hp(P) = sup

0<x<∞

∫ ∞

−∞
|f(x+ iy)|p dy <∞.

These are Banach spaces, isometric to the corresponding Hardy spaces of the
disc through the linear map Vp : Hp(P) → Hp,

Vp(f)(z) =
(4π)1/p

(1− z)2/p
f(µ(z)), where µ(z) =

1 + z

1− z
.

A calculation shows that the inverse of Vp is

V −1
p (g)(z) =

1
π1/p(1 + z)2/p

g(µ−1(z)), g ∈ Hp.
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Now let T̃t : Hp(P) → Hp(P) be the operators defined by

T̃t = V −1
p TtVp.

Because Vp and V −1
p are isometries we have ‖Tt‖Hp→Hp = ‖T̃t‖Hp(P)→Hp(P).

A calculation shows that for f ∈ Hp(P),

T̃t(f)(z) =
(

z + 1
tz + 2− t

)1− 2
p

f(tz + 1− t).

Further it is easy to see that

(3.2)
∣∣∣∣ z + 1
tz + 2− t

∣∣∣∣ ≤ 1
t

for each z ∈ P and t ∈ (0, 1].
(i) Suppose first p ≥ 2 then p− 2 ≥ 0 and using the last inequality we find

‖T̃t(f)‖Hp(P) = sup
0<x<∞

(∫ ∞

−∞

∣∣∣∣ z + 1
tz + 2− t

∣∣∣∣p−2

|f(t(x+ iy) + 1− t)|p dy

)1/p

≤ t−1+ 2
p sup

0<x<∞

(∫ ∞

−∞
|f(t(x+ iy) + 1− t)|p dy

)1/p

= t−1+ 2
p sup

1−t<u<∞

(∫ ∞

−∞
|f(u+ iv)|p dv

t

)1/p

,

where we have made the change of variables u = tx+ 1− t and v = ty,

≤ t−1+ 1
p sup

0<u<∞

(∫ ∞

−∞
|f(u+ iv)|p dv

)1/p

= t−1+ 1
p ‖f‖Hp(P)

and the conclusion follows for p ≥ 2.
(ii) Suppose next 1 < p < 2, then the above estimates fail because p − 2

is negative and there is no suitable lower inequality to replace (3.2). We can
however use duality. Let f ∈ Hp and let q be the conjugate index. Recalling
the representation of bounded linear functionals on Hp we have

‖Tt(f)‖p =sup{|Λ(Tt(f))| : Λ ∈ (Hp)∗, ‖Λ‖ ≤ 1}
=sup{|〈Tt(f), g〉| : g ∈ Hq, ‖Λg‖ ≤ 1}.

Using (2.10) we find

|〈Tt(f), g〉| = |〈f, Ut(g)〉| ≤ ‖f‖p‖Ut(g)‖q ≤ ‖f‖p‖g‖qt
1/q,

therefore,

‖Tt(f)‖p ≤ (sup{‖g‖q : ‖Λg‖ ≤ 1})‖f‖pt
1/q = Cqt

1− 1
p ‖f‖p

and this is the desired conclusion.
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(iii) Suppose now p = 1. In this case we first show that if f ∈ H1 with
f(0) = 0 then ‖Tt(f)‖1 ≤ ‖f‖1. Indeed we can write f(z) = zg(z) with
g ∈ H1 and ‖f‖1 = ‖g‖1. Applying the operator Tt we find

Tt(f)(z) =
tz

((t− 1)z + 1)2
g(

tz

(t− 1)z + 1
).

The weighted composition operators

St(g)(z) =
1

((t− 1)z + 1)2
g(

tz

(t− 1)z + 1
),

are clearly bounded on H1 and Tt(f)(z) = tzSt(g)(z). Thus

‖Tt(f)‖1 = t‖St(g)‖1 ≤ t‖St‖H1→H1‖g‖1 = t‖St‖H1→H1‖f‖1.

We can now repeat the method of part (i) of the proof to estimate ‖St‖H1→H1 .
Thus let S̃t = V −1

1 StV1, then ‖St‖H1→H1 = ‖S̃t‖H1(P)→H1(P). A calculation
shows that if h ∈ H1(P) then

S̃t(h)(z) = h(tz + 1− t).

As in the case (i) we integrate for the norm to obtain

‖S̃t(h)‖H1(P) ≤
1
t
‖h‖H1(P).

It follows that ‖St‖H1→H1 ≤ 1/t and we conclude ‖Tt(f)‖1 ≤ ‖f‖1 whenever
f ∈ H1 and f(0) = 0.

Next let F ∈ H1 be arbitrary. Write F (z) = F (0) + f(z) where f(0) = 0
and ‖f‖1 = ‖F − F (0)‖1 ≤ ‖F‖1 + |F (0)| ≤ 2‖F‖1. We then have

Tt(F )(z) = Tt(F (0) + f(z)) = F (0)
1

(t− 1)z + 1
+ Tt(f)(z)

so that

‖Tt(F )‖1 ≤ |F (0)|‖ 1
(t− 1)z + 1

‖1 + ‖Tt(f)‖1

≤ ‖F‖1‖
1

(t− 1)z + 1
‖1 + ‖f‖1

≤ ‖F‖1‖
1

(t− 1)z + 1
‖1 + 2‖F‖1

=
(

2 + ‖ 1
(t− 1)z + 1

‖1

)
‖F‖1.

Now we need the well known inequality

1
2π

∫ 2π

0

1
|1− reiθ|

dθ ≤ C log
1

1− r
, 0 < r < 1,

where C is a constant. This can be found for example in [PO] where it is
shown that, as r → 1, the integral is asymptotically equivalent to 1

π log 1
1−r .
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The inequality can also be derived by an elementary estimate of the integral
upon making first the change of variables s = tan θ. We omit the details.
Applying this inequality to the function 1

1−(1−t)z we find

‖ 1
(t− 1)z + 1

‖1 ≤ C log
1
t
, 0 < t < 1,

and this gives

‖Tt(F )‖1 ≤ (2 + C log
1
t
)‖F‖1

≤ C ′(1 + log
1
t
)‖F‖1,

where C ′ = max(2, C). This finishes the proof.
�

Using the above norm estimates we can now prove Theorems 1.1 and 1.2.

3.1. Proof of Theorem 1.1. (i) Suppose 1 < p <∞ and let f ∈ Hp. From
Lemma (2.1) the power series (1.2) represents an analytic function on D and
for its Hardy space norm we have

‖Hµ(f)‖p =sup
r<1

(
1
2π

∫ 2π

0

|Hµ(f)(reiθ)|p dθ
)1/p

=sup
r<1

(
1
2π

∫ 2π

0

∣∣∣∣∫ 1

0

Tt(f)(reiθ) dµ(t)
∣∣∣∣p dθ

)1/p

≤
∫ 1

0

(
sup
r<1

1
2π

∫ 2π

0

∣∣Tt(f)(reiθ)
∣∣p dθ)1/p

dµ(t),

where we have used Minkowski’s integral inequality before putting the sup
inside the integral. Continuing,

=
∫ 1

0

‖Tt(f)‖p dµ(t)

≤C
∫ 1

0

t1−
1
p dµ(t)‖f‖p,

with the constant C = 1 when p ≥ 2 and C = Cp (the constant of Lemma 3.2
(ii)) when 1 < p < 2.
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(ii) Suppose p = 1 and f ∈ H1. Lemma (2.1) says again that the power
series Hµ(f) represents an analytic function on D, and

‖Hµ(f)‖1 =sup
r<1

(
1
2π

∫ 2π

0

|Hµ(f)(reiθ)| dθ
)

=sup
r<1

(
1
2π

∫ 2π

0

∣∣∣∣∫ 1

0

Tt(f)(reiθ) dµ(t)
∣∣∣∣ dθ)

≤
∫ 1

0

(
sup
r<1

1
2π

∫ 2π

0

∣∣Tt(f)(reiθ)
∣∣ dθ) dµ(t),

=
∫ 1

0

‖Tt(f)‖1 dµ(t)

≤C ′
∫ 1

0

(1 + log
1
t
) dµ(t)‖f‖1

=C ′
(
µ((0, 1]) +

∫ 1

0

log
1
t
dµ(t)

)
‖f‖1.

Thus Hµ is bounded on H1 whenever
∫ 1

0
log(1

t ) dµ(t) <∞.
Conversely suppose Hµ is bounded on H1, then the image Hµ(1) of the

constant function 1 is in H1. The power series of Hµ(1)(z) is

Hµ(1)(z) =
∫ 1

0

1
(t− 1)z + 1

dµ(t)

=
∞∑

n=0

(∫ 1

0

(1− t)n dµ(t)
)
zn.

Now apply Hardy’s inequality (2.9) in the form
∑

n≥1
|an|
n ≤ 2π‖f‖1 to obtain

∞∑
n=1

1
n

∫ 1

0

(1− t)n dµ(t) ≤ 2π‖Hµ(1)‖1 ≤ 2π‖Hµ‖H1→H1 .

Putting the sum inside the integral we have∫ 1

0

log
1
t
dµ(t) ≤ 2π‖Hµ‖H1→H1

and the proof is complete.

3.2. Proof of Theorem 1.2. Suppose 1 ≤ p < ∞. If
∫ 1

0
t−1/p dµ(t) < ∞

then by Lemma 2.2, for each f ∈ Hp the analytic function Aµ(f) is well
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defined in the disc and for its Hardy space norm we have

‖Aµ(f)‖p = sup
r<1

(
1
2π

∫ 2π

0

|Aµ(f)(reiθ)|p dθ
)1/p

= sup
r<1

(
1
2π

∫ 2π

0

∣∣∣∣∫ 1

0

Ut(f)(reiθ) dµ(t)
∣∣∣∣p dθ

)1/p

≤
∫ 1

0

(
sup
r<1

1
2π

∫ 2π

0

∣∣Ut(f)(reiθ)
∣∣p dθ)1/p

dµ(t)

=
∫ 1

0

‖Ut(f)‖p dµ(t)

≤
∫ 1

0

1
t1/p

dµ(t)‖f‖p.

This shows that Aµ is bounded on Hp and gives the inequality ‖Aµ‖Hp→Hp ≤∫ 1

0
t−1/p dµ(t) for the norm. To show the opposite inequality recall that for

each λ ∈ C with <(λ) < 1/p the functions fλ(z) = 1
(1−z)λ belong to Hp.

Applying Aµ to these functions we find

Aµ(fλ)(z) =
∫ 1

0

fλ(tz + 1− t) dµ(t)

=
∫ 1

0

1
tλ
dµ(t)fλ(z).

This says fλ is an eigenfunction ofAµ corresponding to the eigenvalue
∫ 1

0
t−λ dµ(t),

hence the point spectrum of Aµ contains the set{∫ 1

0

t−λ dµ(t) : <(λ) < 1/p
}
.

Thus ‖Aµ‖Hp→Hp ≥
∫ 1

0
t−1/p dµ(t) and the proof is complete.

3.3. Some remarks. Theorem 1.1 covers the case of the generalized Cesàro
operators Cα which were studied on Hardy and other spaces by different meth-
ods in [ST], [AN] and in [XI]. In our approach these operators arise from the
measures

dµ(t) = (1− t)αdt, <(α) > −1,
and Theorem 1.1 says that Cα are bounded on Hp for p ≥ 1. On the other
hand, in the above mentioned works it is shown that Cα are in fact bounded
on Hp for all 0 < p < ∞. This leads to the question of finding conditions
on µ that imply the boundedness of Hµ on Hp for 0 < p < 1. Because these
spaces are not Banach spaces our method will not apply directly, since for
example the proof of Theorem 1.1 is valid only when the norm is a Banach
space norm.
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After this paper was accepted we have learned of the paper [RU] of O.
Rudolf, where he has obtained results which partly overlap with those of
our Theorem 1.1 (i) and Theorem 1.2. More precisely he obtains part (i)
of Theorem 1.1 for 2 ≤ p < ∞. However in the range 1 ≤ p < 2 he gives
a sufficient condition for boundedness of Hµ which is neither natural nor
optimal, and does not distinguish the case p = 1, in which as our Theorem
1.1 shows the integrability of log(1/t) characterizes boundedness. He also
obtains Theorem 1.2 except for p = 1. His work includes further studies
for Hausdorff matrices on Bergman spaces and examination of their spectra,
topics that we have not considered here.
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