CAUCHY TRANSFORMS AND CESÀRO AVERAGING OPERATORS

JOSEPH A. CIMA AND ARISTOMENIS G. SISKAKIS

ABSTRACT. We show that the Cesàro operator is bounded on the space of Cauchy transforms.

1. INTRODUCTION

Cauchy transforms. An analytic function f on the unit disc **D** is a Cauchy transform if it admits a representation

(1.1)
$$f(z) = \int_0^{2\pi} \frac{1}{1 - e^{i\theta}z} \, d\mu(\theta), \qquad z \in \mathbf{D},$$

where $\mu \in \mathbb{M}$, the space of all finite complex valued Borel measures on the unit circle $\mathbf{T} \equiv [0, 2\pi]$. \mathbb{M} is a Banach space under the total variation norm $\|\mu\|$. The space K of all Cauchy transforms is a Banach space under the norm

(1.2)
$$||f||_{K} = \inf\{||\mu|| : \mu \in \mathbb{M} \text{ and } (1.1) \text{ holds}\}.$$

The representation (1.1) is unique up to measures of vanishing Cauchy transform; If $\nu \in \mathbb{M}$ is such that

(1.3)
$$\int_{0}^{2\pi} e^{in\theta} d\nu(\theta) = 0, \qquad n = 0, 1, \cdots,$$

then μ and $\mu + \nu$ represent the same function. By the F. and M. Riesz theorem these measures ν have the form $d\nu = g \frac{d\theta}{2\pi}$ for some $g \in H_0^1$, the subspace of the Hardy space H^1 consisting of functions that vanish at 0. Thus K is isometrically isomorphic to the quotient space \mathbb{M}/H_0^1 .

Each function in H^1 is the Cauchy integral of its boundary values [D], thus $H^1 \subset K$. On the other hand for each θ the kernels $\frac{1}{1-e^{i\theta}z}$ are in the Hardy space H^p for all p < 1 and it is clear that $K \subset \bigcap_{p < 1} H^p$.

Next K is a dual space. Let $C(\mathbf{T})$ be the space of continuous functions on \mathbf{T} with the sup norm. By the Riesz representation theorem the pairing

$$\langle \mu, f \rangle = \int_0^{2\pi} f(e^{i\theta}) \, d\mu(\theta), \quad f \in C(\mathbf{T}), \ \mu \in \mathbb{M},$$

establishes an isometric isomorphism $\mathbb{M} = C(\mathbf{T})^*$, and in particular the norm of a measure μ considered as a linear functional on $C(\mathbf{T})$ is equal to its total variation $\|\mu\|$. Let \mathbf{A} be the disc algebra of functions continuous on the closed disc and analytic in the interior. \mathbf{A} is identified with the subspace of those functions

¹⁹⁹¹ Mathematics Subject Classification. Primary 30E20 47B38; Secondary 46E15.

This work was done in Fall 1997 when the second author was a visitor at the University of North Carolina. We would like to thank Prof. W. Wogen for encouraging discussions and interest in this work.

 $f \in C(\mathbf{T})$ for which the negative Fourier coefficients vanish: $\int_0^{2\pi} f(e^{i\theta})e^{in\theta} d\theta = 0$ for $n = 1, 2, \cdots$. A linear functional $\nu \in C(\mathbf{T})^*$ annihilates all functions in \mathbf{A} if and only if (1.3) holds. It follows that the dual space \mathbf{A}^* is isometrically isomorphic to the space K of Cauchy transforms.

For $f \in K$ the integral (1.1) may be written

$$f(z) = \langle \mu, \kappa_z \rangle, \qquad z \in \mathbf{D},$$

where κ_z are the kernels $\kappa_z(e^{i\theta}) = \frac{1}{1 - e^{i\theta}z}$. Further

$$\|f\|_{K} = \inf\{\|\mu + \nu\| : \nu = g\frac{d\theta}{2\pi}, \ g \in H_{0}^{1}\} \\ = \sup\{|\langle \mu, h \rangle| : h \in \mathbf{A}, \ \|h\|_{\infty} \le 1\}$$
(by duality)
= $\|\mu|_{\mathbf{A}}\|$

where $\mu|_{\mathbf{A}}$ is restriction of μ on \mathbf{A} .

Next we see the inf in (1.2) is attained, that is for each $f \in K$ there is a μ representing f such that $||f||_K = ||\mu||_{\mathbf{A}}|| = ||\mu||$. Indeed let μ_n , $n = 1, 2, \cdots$ be such that each μ_n represents f and $||\mu_n|| \to ||f||_K$. Because the sequence is bounded it has a weak^{*} accumulation point $\mu = \lim_{k\to\infty} \mu_{n_k}$. Then

$$\langle \mu, \kappa_z \rangle = \lim_{k \to \infty} \langle \mu_{n_k}, \kappa_z \rangle = f(z), \qquad z \in \mathbf{D},$$

so μ represents f and for any $h \in C(\mathbf{T})$ we have

$$|\langle \mu, h \rangle| = \lim_{k \to \infty} |\langle \mu_{n_k}, h \rangle| \le \limsup_{k \to \infty} \|\mu_{n_k}\| \|h\|_{\infty} = \|f\|_K \|h\|_{\infty}$$

thus $\|\mu\| = \|f\|_K$.

More general spaces of Cauchy transforms have been studied in the literature [MG], see also [HN]. For each $\gamma > 0$ let K_{γ} be the space of all analytic functions f on the disc that are representable as

(1.4)
$$f(z) = \int_0^{2\pi} \frac{1}{(1 - e^{i\theta}z)^{\gamma}} d\mu(\theta), \qquad z \in \mathbf{D},$$

for some $\mu \in \mathbb{M}$. These are Banach spaces with norm defined in analogy with (1.2) and have properties similar to those of $K = K_1$. They are nested by the inclusions $K_\beta \subset K_\gamma$ for $\beta < \gamma$ and are connected among themselves by the following two properties, see [MG] for more details and proofs.

(P1) If $f \in K_{\beta}$ and $g \in K_{\gamma}$ then $fg \in K_{\beta+\gamma}$, for all $\beta, \gamma > 0$.

(P2) $f \in K_{\gamma}$ if and only if $f' \in K_{\gamma+1}$, for all $\gamma > 0$.

We will not use these spaces except in the concluding remarks and the above two properties are the only ones we need.

The Cesàro operator. For a function $f(z) = \sum_{n\geq 0} a_n z^n$ analytic on **D** the Cesàro transformation of f is

$$\mathcal{C}(f)(z) = \sum_{n \ge 0} \left(\frac{a_0 + a_1 \cdots a_n}{n+1} \right) z^n.$$

It is well known that \mathcal{C} acts as a bounded linear operator on various spaces of analytic functions (see [A], [M], [S1], [S2], [X]) including the Hardy and Bergman spaces. In particular $\mathcal{C}(H^p) \subset H^p$ for each $p \in (0, \infty)$. Because $H^1 \subset K \subset \bigcap_{p < 1} H^p$ the question arises whether \mathcal{C} is also bounded on K. The purpose of this note is to show that \mathcal{C} , and its generalized versions \mathcal{C}^{α} defined below, are bounded on K. It is possible to give a quick proof of this fact for \mathcal{C} by appealing to the generalized spaces K_{γ} and their properties. The argument is presented in the remarks. That proof however does not apply to the generalized Cesàro operators \mathcal{C}^{α} . Our proof below relies on the duality $K = \mathbf{A}^*$

A simple calculation shows that we can write

$$\mathcal{C}(f)(z) = \frac{1}{z} \int_0^z f(\zeta) \, \frac{1}{1-\zeta} \, d\zeta,$$

and if we choose the integration path to be the curve

$$\zeta(t) = \zeta(t, z) = \frac{tz}{(t-1)z+1}, \qquad 0 \le t \le 1,$$

we find

(1.5)
$$C(f)(z) = \int_0^1 \frac{1}{(t-1)z+1} f\left(\frac{tz}{(t-1)z+1}\right) dt.$$

This representation of C is valid for all functions f analytic on **D**. Next observe that for each $t \in [0, 1]$ the functions

$$\phi_t(z) = \frac{tz}{(t-1)z+1}$$

map the disc into itself and we can consider the weighted composition operators

(1.6)
$$T_t(f)(z) = \frac{1}{(t-1)z+1} f(\phi_t(z)).$$

With this notation (1.5) says that C is the average of the weighted composition operators T_t :

$$\mathcal{C}(f)(z) = \int_0^1 T_t(f)(z) \, dt.$$

2. Proof of boundedness

Lemma 2.1. For each $t \in [0, 1]$ the weighted composition operators T_t are bounded on K and $||T_t||_{K \to K} = 1$.

Proof. We first verify the assertion for the endpoints. If t = 1, T_1 is the identity operator. If t = 0 then $T_0(f)(z) = f(0)\frac{1}{1-z}$ for each $f \in K$. Choose a representing measure μ for f such that $||f||_K = ||\mu||$, then

$$|f(0)| = \left| \int_{\mathbf{T}} d\mu(\theta) \right| \le \int_{\mathbf{T}} d|\mu|(\theta) = ||f||_{K}$$

and because $\|\frac{1}{1-z}\|_{K} = 1$ we conclude $\|T_0\| \le 1$. To obtain the equality observe that the constant function 1 has $\|1\|_{K} = 1$ and $T_0(1)(z) = \frac{1}{1-z}$.

Now let 0 < t < 1 and write

$$T_t(f)(z) = \frac{1}{tz}\phi_t(z)f(\phi_t(z))$$
$$= \frac{1}{tz}(C_t \circ M_z)(f)(z)$$

where C_t is the composition operator induced by ϕ_t and M_z is multiplication by z. Both are bounded on K (for the boundedness of composition operators on K see [BC]) and further, if a function $F \in K$ vanishes at 0 then $F(z)/z \in K$. It follows that T_t maps K into itself. We next show that $||T_t|| \leq 1$. Let $f \in K$ be the Cauchy integral of μ with $||f||_K = ||\mu|| = ||\mu||_{\mathbf{A}}||$ and let $\nu_t \in \mathbb{M}$ be a representing measure for $T_t(f)$, then

$$\int_{0}^{2\pi} \frac{1}{1 - e^{i\theta}z} \, d\nu_t(\theta) = \frac{1}{(t - 1)z + 1} f(\phi_t(z))$$
$$= \int_{0}^{2\pi} \frac{1}{(t - 1)z + 1} \frac{1}{1 - e^{i\theta}\phi_t(z)} \, d\mu(\theta)$$
$$= \int_{0}^{2\pi} \frac{1}{1 - (te^{i\theta} + 1 - t)z} \, d\mu(\theta).$$

It follows that ν_t is a representing measure for $T_t(f)$ if and only if

$$\int_0^{2\pi} e^{in\theta} \, d\nu_t(\theta) = \int_0^{2\pi} (te^{i\theta} + 1 - t)^n \, d\mu(\theta) \qquad \text{for all } n = 0, 1, 2, \cdots.$$

Now the linear span of the set $\{e^{in\theta} : n = 0, 1, 2, \cdots\}$ coincides with the linear span of $\{(te^{i\theta} + 1 - t)^n : n = 0, 1, 2, \cdots\}$ and the closure of each in the sup norm is the disc algebra **A**. Taking linear combinations and then limits of such linear combinations we see that for each $h \in \mathbf{A}$,

(2.1)
$$\int_{0}^{2\pi} h(e^{i\theta}) \, d\nu_t(\theta) = \int_{0}^{2\pi} h(te^{i\theta} + 1 - t) \, d\mu(\theta).$$

Next let $S_t(h) = h \circ \psi_t$ be the composition operator induced by $\psi_t(z) = tz + 1 - t$ on **A**. Clearly $||S_t||_{\mathbf{A}\to\mathbf{A}} = 1$ and (2.1) says that

$$\langle \nu_t, h \rangle = \langle \mu, S_t(h) \rangle, \qquad h \in \mathbf{A}.$$

We therefore have

$$\begin{split} \|T_t(f)\|_K &= \|\nu_t|_{\mathbf{A}}\|\\ &= \sup\{|\langle \nu_t, h\rangle| : h \in \mathbf{A}, \ \|h\|_{\infty} \le 1\}\\ &= \sup\{|\langle \mu, S_t(h)\rangle| : h \in \mathbf{A}, \ \|h\|_{\infty} \le 1\}\\ &\le \|\mu|_{\mathbf{A}}\|\|S_t\|_{\mathbf{A} \to \mathbf{A}}\\ &= \|f\|_K, \end{split}$$

and we conclude $||T_t|| \leq 1$. To obtain the equality notice that the function $f(z) = \frac{1}{1-z}$ is an eigenfunction of T_t corresponding to the eigenvalue 1. The proof is complete.

Theorem 2.2. The Cesàro operator is bounded on K and $\|C\|_{K\to K} = 1$.

Proof. Pick $f \in K$ with $||f||_K \leq 1$. For each $z \in \mathbf{D}$ we can write the integral in (1.5) as a limit of Riemann sums

$$\mathcal{C}(f)(z) = \lim_{n \to \infty} R_n(f)(z),$$

where

$$R_n(f)(z) = \frac{1}{n} \sum_{k=1}^n \frac{1}{(t_k - 1)z + 1} f(\phi_{t_k}(z)),$$

and $t_k = \frac{k}{n}$, $k = 1, 2, \dots, n$. Let $\mu_n \in \mathbb{M}$ be such that μ_n represents $R_n(f)$ and $\|\mu_n\| = \|R_n(f)\|_K$. From the lemma we have $\|\mu_n\| \leq 1$ and because the unit ball of

M is weak^{*} compact there is a subsequence $\{\mu_{n_m}\}$ and a $\mu \in \mathbb{M}$ such that $\mu_{n_m} \to \mu$ in the weak^{*} topology. Then

$$\begin{aligned} \mathcal{C}(f)(z) &= \lim_{m \to \infty} R_{n_m}(f)(z) = \lim_{m \to \infty} \langle \mu_{n_m}, \kappa_z \rangle = \langle \mu, \kappa_z \rangle \\ &= \int_0^{2\pi} \frac{1}{1 - e^{i\theta} z} \, d\mu(\theta) \end{aligned}$$

thus $\mathcal{C}(f) \in K$. Further since $\|\mu_n\| \leq 1$ and the set $\{k_z : z \in \mathbf{D}\}$ has dense linear span in **A** the uniform boundedness principle applies and gives $\|\mu\| = \|\mathcal{C}(f)\|_K \leq 1$. It follows that $\|\mathcal{C}\| \leq 1$. Finally $\frac{1}{1-z}$ is an eigenfunction of \mathcal{C} corresponding to the eigenvalue 1 thus $\|\mathcal{C}\| = 1$.

3. Generalized Cesàro operators

For each complex α with $\Re(\alpha) > -1$ and k a nonnegative integer let A_k^{α} be defined as the kth coefficient in the expansion

$$\frac{1}{(1-x)^{\alpha+1}} = \sum_{k=0}^{\infty} A_k^{\alpha} x^k,$$

so that

$$A_k^{\alpha} = \frac{\Gamma(k+\alpha+1)}{\Gamma(k+1)\,\Gamma(\alpha+1)} = \frac{(\alpha+1)\cdots(\alpha+k)}{k!}$$

The generalized Cesàro transformation \mathcal{C}^{α} , defined on analytic functions f(z) = $\sum_{n>0} a_n z^n$, is

(3.1)
$$C^{\alpha}(f)(z) = \sum_{n=0}^{\infty} \left(\frac{1}{A_n^{\alpha+1}} \sum_{k=0}^n A_{n-k}^{\alpha} a_k \right) z^n.$$

These operators were introduced in [ST] on Hardy spaces and have been subsequently studied and proved bounded on all Hardy spaces in [A] and [X]. Because of the identity $\frac{1}{A_n^{\alpha+1}}\sum_{k=0}^n A_k^{\alpha} = 1$, we can view \mathcal{C}^{α} as a weighted versions of $\mathcal{C} = \mathcal{C}^0$ for the specific sequence of weights A_0^{α} , A_1^{α} , A_2^{α} , \cdots . Our proof above applies to show that all \mathcal{C}^{α} , $\Re(\alpha) > -1$, are bounded operators

on K. Indeed the integral form of \mathcal{C}^{α} is (see [ST])

$$\mathcal{C}^{\alpha}(f)(z) = \frac{\alpha+1}{z^{\alpha+1}} \int_0^z f(\zeta) \frac{(z-\zeta)^{\alpha}}{(1-\zeta)^{\alpha+1}} \, d\zeta,$$

and integrating on the same path $\zeta(t) = \frac{tz}{(t-1)z+1}$ we find

$$\mathcal{C}^{\alpha}(f)(z) = (\alpha+1) \int_0^1 \frac{1}{(t-1)z+1} f\left(\frac{tz}{(t-1)z+1}\right) (1-t)^{\alpha} dt,$$

which expresses \mathcal{C}^{α} as a weighted average of the same weighted composition operators T_t :

$$\mathcal{C}^{\alpha}(f)(z) = (\alpha+1) \int_0^1 T_t(f)(z)(1-t)^{\alpha} dt.$$

The argument in the proof of Theorem 2.2 applies with these changes: The Riemann sums that approximate $\mathcal{C}^{\alpha}(f)(z)$ now are

$$R_n^{\alpha}(f)(z) = (\alpha+1)\frac{1}{n}\sum_{k=1}^n \frac{1}{(t_k-1)z+1}f(\phi_{t_k}(z))(1-t_k)^{\alpha},$$

and if $\varepsilon > 0$ is given we have

$$\begin{aligned} \|R_n^{\alpha}(f)\|_K &\leq |\alpha+1| \frac{1}{n} \sum_{k=1}^n (1-t_k)^{\Re(\alpha)} \\ &\leq |\alpha+1| \int_0^1 (1-t)^{\Re(\alpha)} dt + \varepsilon \\ &= \frac{|\alpha+1|}{\Re(\alpha)+1} + \varepsilon \end{aligned}$$

for all large n. The rest applies without change and we obtain

Corollary 3.1. For each complex number α with $\Re(\alpha) > -1$ the weighted Cesàro operator C^{α} is bounded on K and $\|C^{\alpha}\|_{K \to K} \leq \frac{|\alpha+1|}{\Re(\alpha)+1}$.

4. Concluding Remarks

Remark 1. The following proof of boundedness is conceptually similar to the one given in Theorem (2.2). First identify preadjoint of C on the disc algebra. A computation shows that the duality $\mathbf{A}^* = K$ may be realized by the integral pairing

$$\langle f,g\rangle_0 = \lim_{r \to 1} \int_0^{2\pi} g(e^{i\theta}) f(re^{-i\theta}) \frac{d\theta}{2\pi}, \qquad g \in \mathbf{A}, \quad f \in K.$$

and a further computation gives

$$\langle \mathcal{C}f,g\rangle_0 = \langle f,\mathcal{A}g\rangle_0$$

where \mathcal{A} is the operator acting on functions $g(z) = \sum_{n \ge 0} a_n z^n \in \mathbf{A}$ by

$$\mathcal{A}(g)(z) = \int_0^1 g(tz + 1 - t) \, dt = \sum_{n=0}^\infty \left(\sum_{k=n}^\infty \frac{a_k}{k+1} \right) z^n.$$

From the integral expression it is clear that \mathcal{A} is a bounded operator on \mathbf{A} and the duality $\mathcal{C} = \mathcal{A}^*$ implies that \mathcal{C} is bounded on K.

Further it is easy to see that each $f_{\lambda}(z) = (1-z)^{\lambda}$, $\Re(\lambda) > 0$, is an eigenfunction of \mathcal{A} corresponding to the eigenvalue $\frac{1}{\lambda+1}$. It follows that the disc $\{z : |z - \frac{1}{2}| \leq \frac{1}{2}\}$ is contained in the spectrum of \mathcal{A} and each interior point is an eigenvalue. With some additional computation which we omit it is possible to show that in fact the spectrum of \mathcal{A} on the disc algebra is this closed disc. By duality then the spectrum of \mathcal{C} on K is this same disc.

Remark 2. We can obtain a short proof of the boundedness of C by using the properties (P1) and (P2) of the generalized spaces K_{γ} of Cauchy transforms defined in the introduction, as follows. Let $f \in K$. Then from (P1) we have $f(z)\frac{1}{1-z} \in K_2$ because $\frac{1}{1-z} \in K$ and from (P2) we find that the function

$$F(z) = \int_0^z f(\zeta) \frac{1}{1-\zeta} \, d\zeta,$$

is in K. Further F(0) = 0 hence $F(z)/z \in K$. Thus $f \in K$ implies $\mathcal{C}(f) \in K$. The boundedness follows from the closed graph theorem. As remarked earlier this proof does not apply to \mathcal{C}^{α} for $\alpha \neq 0$. On the other hand this arguments shows that \mathcal{C} is a bounded operator on K_{γ} for each $\gamma \geq 1$.

Remark 3. Speaking of the space K is equivalent to speaking about one-sided sequences of Fourier–Stieltjes coefficients. Averages of Fourier–Stieltjes cosine and

sine coefficients of measures were studied in [G], where it is shown, using different techniques, that sequences of these averages are again Fourier–Stieltjes sequences.

The authors wish to thank the referee for his careful remarks and suggestions.

References

- [A] K.F. Andersen, Cesàro averaging operators on Hardy spaces, Proc. Royal Soc. Edinburgh 126A (1996), 617–624.
- [BC] P. Bourdon and J. A. Cima, On integrals of Cauchy-Stieltjes type, Houston J. Math. 14 (1988), 465–474.
- [CM] J. A. Cima and T. H. MacGregor, Cauchy transforms of measures and univalent functions, Lecture Notes in Math., vol. 1275, Spinger-Verlag 1987, pp. 78–88.
- [D] P. L. Duren, *Theory of* H^p spaces, Academic Press, New York 1970.
- [G] C. Georgakis, On the arithmetic mean of Fourier-Stieltjes coefficients, Proc. Amer. Math. Soc. 33 (1972), 477–484.
- [GM] D. Giang and F. Móricz, The Cesàro operator is bounded on the Hardy space H¹, Acta Sci. Math. (Szeged) 61 (1995), 535–544.
- [HN] R. Hibschweiler and E. Nordgren, Cauchy transforms of measures and weighted shift operators on the disc algebra, Rocky Mountain J. Math. 26 (1996), 627–654.
- [MG] T. H. MacGregor, Analytic and univalent functions with integral representations involving complex measures, Indiana Univ. Math. J. 36 (1987), 109–130.
- [M] J. Miao, The Cesàro operator is bounded on H^p , $p \in (0, 1)$, Proc. Amer. Math. Soc. **116** (1992), 1077–1079.
- [S1] A. G. Siskakis, Composition semigroups and the Cesàro operator on H^p, J. London Math. Soc. (2) 36 (1987), 153–164.
- [S2] A. G. Siskakis, The Cesàro operator is bounded on H^1 , Proc. Amer. Math. Soc. **110** (1990), 461–462.
- [ST] K. Stempak, Cesàro averaging operators, Proc. Royal Soc. Edinburgh 124A (1994), 121– 126.
- [X] J. Xiao, Cesàro-type operators on Hardy, BMOA and Bloch spaces, Arch. Math. 68 (1997), 398–406.

Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599 $E\text{-}mail\ address: \texttt{cima@math.unc.edu}$

Department of Mathematics, UNIV. of Thessaloniki, 54006 Thessaloniki, Greece E-mail address: siskakis@ccf.auth.gr