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Abstract. We show that the Cesàro operator is bounded on the space of

Cauchy transforms.

1. Introduction

Cauchy transforms. An analytic function f on the unit disc D is a Cauchy
transform if it admits a representation

(1.1) f(z) =
∫ 2π

0

1
1− eiθz

dµ(θ), z ∈ D,

where µ ∈ M, the space of all finite complex valued Borel measures on the unit
circle T ≡ [0, 2π]. M is a Banach space under the total variation norm ‖µ‖. The
space K of all Cauchy transforms is a Banach space under the norm

(1.2) ‖f‖K = inf{‖µ‖ : µ ∈ M and (1.1) holds }.
The representation (1.1) is unique up to measures of vanishing Cauchy transform;

If ν ∈ M is such that

(1.3)
∫ 2π

0

einθ dν(θ) = 0, n = 0, 1, · · · ,

then µ and µ + ν represent the same function. By the F. and M. Riesz theorem
these measures ν have the form dν = g dθ

2π for some g ∈ H1
0 , the subspace of the

Hardy space H1 consisting of functions that vanish at 0. Thus K is isometrically
isomorphic to the quotient space M/H1

0 .
Each function in H1 is the Cauchy integral of its boundary values [D], thus

H1 ⊂ K. On the other hand for each θ the kernels 1
1−eiθz

are in the Hardy space
Hp for all p < 1 and it is clear that K ⊂

⋂
p<1H

p.
Next K is a dual space. Let C(T) be the space of continuous functions on T

with the sup norm. By the Riesz representation theorem the pairing

〈µ, f〉 =
∫ 2π

0

f(eiθ) dµ(θ), f ∈ C(T), µ ∈ M,

establishes an isometric isomorphism M = C(T)∗, and in particular the norm
of a measure µ considered as a linear functional on C(T) is equal to its total
variation ‖µ‖. Let A be the disc algebra of functions continuous on the closed disc
and analytic in the interior. A is identified with the subspace of those functions
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f ∈ C(T) for which the negative Fourier coefficients vanish:
∫ 2π

0
f(eiθ)einθ dθ = 0

for n = 1, 2, · · · . A linear functional ν ∈ C(T)∗ annihilates all functions in A if and
only if (1.3) holds. It follows that the dual space A∗ is isometrically isomorphic to
the space K of Cauchy transforms.

For f ∈ K the integral (1.1) may be written

f(z) = 〈µ, κz〉, z ∈ D,

where κz are the kernels κz(eiθ) = 1
1−eiθz

. Further

‖f‖K = inf{‖µ+ ν‖ : ν = g
dθ

2π
, g ∈ H1

0}

= sup{|〈µ, h〉| : h ∈ A, ‖h‖∞ ≤ 1} (by duality)

= ‖µ|A‖

where µ|A is restriction of µ on A.
Next we see the inf in (1.2) is attained, that is for each f ∈ K there is a µ

representing f such that ‖f‖K = ‖µ|A‖ = ‖µ‖. Indeed let µn, n = 1, 2, · · · be such
that each µn represents f and ‖µn‖ → ‖f‖K . Because the sequence is bounded it
has a weak∗ accumulation point µ = limk→∞ µnk

. Then

〈µ, κz〉 = lim
k→∞

〈µnk
, κz〉 = f(z), z ∈ D,

so µ represents f and for any h ∈ C(T) we have

|〈µ, h〉| = lim
k→∞

|〈µnk
, h〉| ≤ lim sup

k→∞
‖µnk

‖‖h‖∞ = ‖f‖K‖h‖∞

thus ‖µ‖ = ‖f‖K .
More general spaces of Cauchy transforms have been studied in the literature

[MG], see also [HN]. For each γ > 0 let Kγ be the space of all analytic functions f
on the disc that are representable as

(1.4) f(z) =
∫ 2π

0

1
(1− eiθz)γ

dµ(θ), z ∈ D,

for some µ ∈ M. These are Banach spaces with norm defined in analogy with (1.2)
and have properties similar to those of K = K1. They are nested by the inclusions
Kβ ⊂ Kγ for β < γ and are connected among themselves by the following two
properties, see [MG] for more details and proofs.

(P1) If f ∈ Kβ and g ∈ Kγ then fg ∈ Kβ+γ , for all β, γ > 0.
(P2) f ∈ Kγ if and only if f ′ ∈ Kγ+1, for all γ > 0.

We will not use these spaces except in the concluding remarks and the above two
properties are the only ones we need.

The Cesàro operator. For a function f(z) =
∑

n≥0 anz
n analytic on D the

Cesàro transformation of f is

C(f)(z) =
∑
n≥0

(
a0 + a1 · · · an

n+ 1

)
zn.

It is well known that C acts as a bounded linear operator on various spaces of
analytic functions (see [A], [M], [S1], [S2], [X]) including the Hardy and Bergman
spaces. In particular C(Hp) ⊂ Hp for each p ∈ (0,∞). Because H1 ⊂ K ⊂ ∩p<1H

p

the question arises whether C is also bounded on K. The purpose of this note is to
show that C, and its generalized versions Cα defined below, are bounded on K.
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It is possible to give a quick proof of this fact for C by appealing to the generalized
spaces Kγ and their properties. The argument is presented in the remarks. That
proof however does not apply to the generalized Cesàro operators Cα. Our proof
below relies on the duality K = A∗

A simple calculation shows that we can write

C(f)(z) =
1
z

∫ z

0

f(ζ)
1

1− ζ
dζ,

and if we choose the integration path to be the curve

ζ(t) = ζ(t, z) =
tz

(t− 1)z + 1
, 0 ≤ t ≤ 1,

we find

(1.5) C(f)(z) =
∫ 1

0

1
(t− 1)z + 1

f

(
tz

(t− 1)z + 1

)
dt.

This representation of C is valid for all functions f analytic on D. Next observe
that for each t ∈ [0, 1] the functions

φt(z) =
tz

(t− 1)z + 1
map the disc into itself and we can consider the weighted composition operators

(1.6) Tt(f)(z) =
1

(t− 1)z + 1
f(φt(z)).

With this notation (1.5) says that C is the average of the weighted composition
operators Tt:

C(f)(z) =
∫ 1

0

Tt(f)(z) dt.

2. Proof of boundedness

Lemma 2.1. For each t ∈ [0, 1] the weighted composition operators Tt are bounded
on K and ‖Tt‖K→K = 1.

Proof. We first verify the assertion for the endpoints. If t = 1, T1 is the identity
operator. If t = 0 then T0(f)(z) = f(0) 1

1−z for each f ∈ K. Choose a representing
measure µ for f such that ‖f‖K = ‖µ‖, then

|f(0)| =
∣∣∫

T

dµ(θ)
∣∣ ≤ ∫

T

d|µ|(θ) = ‖f‖K

and because ‖ 1
1−z‖K = 1 we conclude ‖T0‖ ≤ 1. To obtain the equality observe

that the constant function 1 has ‖1‖K = 1 and T0(1)(z) = 1
1−z .

Now let 0 < t < 1 and write

Tt(f)(z) =
1
tz
φt(z)f(φt(z))

=
1
tz

(Ct ◦Mz)(f)(z)

where Ct is the composition operator induced by φt and Mz is multiplication by z.
Both are bounded on K (for the boundedness of composition operators on K see
[BC]) and further, if a function F ∈ K vanishes at 0 then F (z)/z ∈ K. It follows
that Tt maps K into itself.
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We next show that ‖Tt‖ ≤ 1. Let f ∈ K be the Cauchy integral of µ with
‖f‖K = ‖µ‖ = ‖µ|A‖ and let νt ∈ M be a representing measure for Tt(f), then∫ 2π

0

1
1− eiθz

dνt(θ) =
1

(t− 1)z + 1
f(φt(z))

=
∫ 2π

0

1
(t− 1)z + 1

1
1− eiθφt(z)

dµ(θ)

=
∫ 2π

0

1
1− (teiθ + 1− t)z

dµ(θ).

It follows that νt is a representing measure for Tt(f) if and only if∫ 2π

0

einθ dνt(θ) =
∫ 2π

0

(teiθ + 1− t)n dµ(θ) for all n = 0, 1, 2, · · · .

Now the linear span of the set {einθ : n = 0, 1, 2, · · · } coincides with the linear
span of {(teiθ + 1 − t)n : n = 0, 1, 2, · · · } and the closure of each in the sup norm
is the disc algebra A. Taking linear combinations and then limits of such linear
combinations we see that for each h ∈ A,

(2.1)
∫ 2π

0

h(eiθ) dνt(θ) =
∫ 2π

0

h(teiθ + 1− t) dµ(θ).

Next let St(h) = h◦ψt be the composition operator induced by ψt(z) = tz+1−t
on A. Clearly ‖St‖A→A = 1 and (2.1) says that

〈νt, h〉 = 〈µ, St(h)〉, h ∈ A.

We therefore have

‖Tt(f)‖K = ‖νt|A‖
= sup{|〈νt, h〉| : h ∈ A, ‖h‖∞ ≤ 1}
= sup{|〈µ, St(h)〉| : h ∈ A, ‖h‖∞ ≤ 1}
≤ ‖µ|A‖‖St‖A→A

= ‖f‖K ,

and we conclude ‖Tt‖ ≤ 1. To obtain the equality notice that the function f(z) =
1

1−z is an eigenfunction of Tt corresponding to the eigenvalue 1. The proof is
complete. �

Theorem 2.2. The Cesàro operator is bounded on K and ‖C‖K→K = 1.

Proof. Pick f ∈ K with ‖f‖K ≤ 1. For each z ∈ D we can write the integral in
(1.5) as a limit of Riemann sums

C(f)(z) = lim
n→∞

Rn(f)(z),

where

Rn(f)(z) =
1
n

n∑
k=1

1
(tk − 1)z + 1

f(φtk
(z)),

and tk = k
n , k = 1, 2, · · · , n. Let µn ∈ M be such that µn represents Rn(f) and

‖µn‖ = ‖Rn(f)‖K . From the lemma we have ‖µn‖ ≤ 1 and because the unit ball of
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M is weak∗ compact there is a subsequence {µnm} and a µ ∈ M such that µnm → µ
in the weak∗ topology. Then

C(f)(z) = lim
m→∞

Rnm
(f)(z) = lim

m→∞
〈µnm

, κz〉 = 〈µ, κz〉

=
∫ 2π

0

1
1− eiθz

dµ(θ)

thus C(f) ∈ K. Further since ‖µn‖ ≤ 1 and the set {kz : z ∈ D} has dense linear
span in A the uniform boundedness principle applies and gives ‖µ‖ = ‖C(f)‖K ≤ 1.
It follows that ‖C‖ ≤ 1. Finally 1

1−z is an eigenfunction of C corresponding to the
eigenvalue 1 thus ‖C‖ = 1.

�

3. Generalized Cesàro operators

For each complex α with <(α) > −1 and k a nonnegative integer let Aα
k be

defined as the kth coefficient in the expansion

1
(1− x)α+1

=
∞∑

k=0

Aα
kx

k,

so that

Aα
k =

Γ(k + α+ 1)
Γ(k + 1) Γ(α+ 1)

=
(α+ 1) · · · (α+ k)

k!
.

The generalized Cesàro transformation Cα, defined on analytic functions f(z) =∑
n≥0 anz

n, is

(3.1) Cα(f)(z) =
∞∑

n=0

(
1

Aα+1
n

n∑
k=0

Aα
n−kak

)
zn.

These operators were introduced in [ST] on Hardy spaces and have been subse-
quently studied and proved bounded on all Hardy spaces in [A] and [X]. Because
of the identity 1

Aα+1
n

∑n
k=0A

α
k = 1, we can view Cα as a weighted versions of C = C0

for the specific sequence of weights Aα
0 , Aα

1 , Aα
2 ,· · · .

Our proof above applies to show that all Cα, <(α) > −1, are bounded operators
on K. Indeed the integral form of Cα is (see [ST])

Cα(f)(z) =
α+ 1
zα+1

∫ z

0

f(ζ)
(z − ζ)α

(1− ζ)α+1
dζ,

and integrating on the same path ζ(t) = tz
(t−1)z+1 we find

Cα(f)(z) = (α+ 1)
∫ 1

0

1
(t− 1)z + 1

f

(
tz

(t− 1)z + 1

)
(1− t)α dt,

which expresses Cα as a weighted average of the same weighted composition oper-
ators Tt:

Cα(f)(z) = (α+ 1)
∫ 1

0

Tt(f)(z)(1− t)α dt.

The argument in the proof of Theorem 2.2 applies with these changes: The Riemann
sums that approximate Cα(f)(z) now are

Rα
n(f)(z) = (α+ 1)

1
n

n∑
k=1

1
(tk − 1)z + 1

f(φtk
(z))(1− tk)α,
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and if ε > 0 is given we have

‖Rα
n(f)‖K ≤ |α+ 1| 1

n

n∑
k=1

(1− tk)<(α)

≤ |α+ 1|
∫ 1

0

(1− t)<(α) dt+ ε

=
|α+ 1|
<(α) + 1

+ ε

for all large n. The rest applies without change and we obtain

Corollary 3.1. For each complex number α with <(α) > −1 the weighted Cesàro
operator Cα is bounded on K and ‖Cα‖K→K ≤ |α+1|

<(α)+1 .

4. Concluding remarks

Remark 1. The following proof of boundedness is conceptually similar to the
one given in Theorem (2.2). First identify preadjoint of C on the disc algebra. A
computation shows that the duality A∗ = K may be realized by the integral pairing

〈f, g〉0 = lim
r→1

∫ 2π

0

g(eiθ)f(re−iθ)
dθ

2π
, g ∈ A, f ∈ K.

and a further computation gives

〈Cf, g〉0 = 〈f,Ag〉0,
where A is the operator acting on functions g(z) =

∑
n≥0 anz

n ∈ A by

A(g)(z) =
∫ 1

0

g(tz + 1− t) dt =
∞∑

n=0

( ∞∑
k=n

ak

k + 1

)
zn.

From the integral expression it is clear that A is a bounded operator on A and the
duality C = A∗ implies that C is bounded on K.

Further it is easy to see that each fλ(z) = (1−z)λ, <(λ) > 0, is an eigenfunction
of A corresponding to the eigenvalue 1

λ+1 . It follows that the disc {z : |z− 1
2 | ≤

1
2}

is contained in the spectrum of A and each interior point is an eigenvalue. With
some additional computation which we omit it is possible to show that in fact the
spectrum of A on the disc algebra is this closed disc. By duality then the spectrum
of C on K is this same disc.

Remark 2. We can obtain a short proof of the boundedness of C by using the
properties (P1) and (P2) of the generalized spaces Kγ of Cauchy transforms defined
in the introduction, as follows. Let f ∈ K. Then from (P1) we have f(z) 1

1−z ∈ K2

because 1
1−z ∈ K and from (P2) we find that the function

F (z) =
∫ z

0

f(ζ)
1

1− ζ
dζ,

is in K. Further F (0) = 0 hence F (z)/z ∈ K. Thus f ∈ K implies C(f) ∈ K. The
boundedness follows from the closed graph theorem. As remarked earlier this proof
does not apply to Cα for α 6= 0. On the other hand this arguments shows that C is
a bounded operator on Kγ for each γ ≥ 1.

Remark 3. Speaking of the space K is equivalent to speaking about one-sided
sequences of Fourier–Stieltjes coefficients. Averages of Fourier–Stieltjes cosine and
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sine coefficients of measures were studied in [G], where it is shown, using different
techniques, that sequences of these averages are again Fourier–Stieltjes sequences.

The authors wish to thank the referee for his careful remarks and suggestions.
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[S2] A. G. Siskakis, The Cesàro operator is bounded on H1, Proc. Amer. Math. Soc. 110

(1990), 461–462.
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