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SUMMARY: Depolarized light scattering of binary polymer blends in disordered state near the demixing cri-
tical point is considered both theoretically and experimentally. It is shown that the depolarized scattering in
such systems is predominantly due to double scattering processes induced by composition fluctuations. For
long enough polymer chains, this scattering is stronger than the contribution from intrinsic anisotropy fluc-
tuations. The general equation for the static and dynamic double scattering function is obtained in terms of
the system structure factor. The scattering functions are calculated both analytically and numerically (dyna-
mic part) for polymer blends. We found that the depolarized intensity depends on the polymerization degree
N and the relative distance from the critical points = 1 –v*/v (wherev is the Flory-Huggins interaction para-
meter andv* its critical value) asIvh l N2/s2, which is in good agreement with the experimental data. It is
also shown that the dynamic scattering function is decaying non-exponentially. We calculate the relaxation
rate and the non-exponentiality parameter as functions of the scattering angle ands. These theoretical predic-
tions are compared with experimental data for three chemically different blends.

1. Introduction
Polymer blends often phase separate in a certain tempera-
ture range1). Their critical behavior near the boundary of
this range has received much attention recently2). The aim
of the present paper is to consider both theoretically and
experimentally the depolarized light scattering from com-
position fluctuations in a disordered (i.e. not yet phase
separated, macroscopically uniform) blend near its criti-
cal point3).

Let us consider a typical light scattering set up when a
vertically polarized initial beam is scattered in the hori-
zontal plane. The vertical component of the scattered
light is then usually denoted as VV, and the horizontal
one as VH. The theory of single VV scattering from com-
position fluctuations is well known2, 4 – 7).

The scattering intensity is proportional to the correla-
tion function of the dielectric polarizability:
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wherek0 andk are the wavevector of the incident and the
scattered light, respectively,c is the light speed in
vacuum,q = k – k0 is the scattering vector,R0 is the dis-
tance from the scattering sample to the detector,I0 � cE2

0
8p

is the intensity of the initial beam,E0 is the electric field

amplitude of the initial beam, anddæ(q) =
R
dæ(r)

exp(iqr)d3r is the dielectric polarizability fluctuation in
the Fourier representation. Note that we define the scat-
tered intensity as the energy scattered into a unit spatial
angle per unit time.

For a blend of A and B homopolymers, the scattering
intensity can be further related to the structure factor of
composition fluctuationsa:

dae�r� � A
2p

db�r� db�r� � b�r� ÿ pb�r�P �2�

whereb (r) 3 bA(r) is the local volume composition of A
monomers,A = @n

@�
is the refractive index contrast (n =

n(b)), and we assume as usually local incompressibility
of the blendbA(r) + bB(r) = 1 for any r. Using eqs. (1)
and (2) we get
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whereS(q) =
R
pdb (r)db(0)P exp(iqr)d3r is the structure

factor.
For a symmetric blend with number of monomers per

chain NA = NB = N and statistical segment length
���
6
p

a
(aA = aB = a and mean square end-to-end distance ispR2P
= 6N a2) the mean field structure factor is1)
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a Both fluctuations of total density and composition fluctuations contribute to the scattering intensity in the general case. However
the density contribution is normally negligible for polymer blends6).
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Sÿ1�q� � 1
bNg�Na2q2� �

1
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wherev is the Flory-Huggins parameter, b = pbAP is the
averagecomposition, and

g�x� � 2
x2
�x� eÿx ÿ 1�

is theDebye function.
Nearthecritical point (b* = 0.5, v*N = 2) thestructure

factorcanbeapproximatedas

S�q� � S�0�
1� n

2q2
�4�

whereS(0) = Nv
4s
; n � R=

�������
18s
p

is the correlation length
of the composition fluctuation, s = (1 – v/v*) is the rela-
tive distanceto the critical point, and v, the monomer
volume. Substituting eq. (4) into eq. (3) we get for the
singlescattering intensity,
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which is proportional to N/s.
It is well known that single scatteringfrom composi-

tion fluctuationsdoesnot produce a depolarizedcompo-
nent4): I �1�vh 3 0. On the other handit is known that multi-
ple scattering does give rise to non-zero depolarized
intensity8). In the presentpaper, we showthat the domi-
nantcontribution to the depolarized intensity arises from
doublescattering (schematically depictedin Fig. 1) char-
acterizedby a qualitatively different temperaturedepen-
dencecomparedto thepolarizedscattering I �1�vv .

Thepaperis organized asfollows. In section2 we con-
siderthedoublescatteringprocessqualitatively andshow
that it producesa dominant contribution to the depolar-
ized intensity ascomparedto thescatteringfrom orienta-
tional fluctuations.A quantitative description of theaver-

age double scattering intensity and the corresponding
intermediate(dynamic)scattering functionareconsidered
respectively in sections3 and 4. Section 5 is devotedto
calculation of the static intensity for a realistic experi-
mental setup,whereasin the Appendix B we formulate
the renormalization procedure establishing the scattering
propertiesof the systemwith arbitrary refractive index.
The theoretical(static and dynamic) resultsand experi-
mental dataarecomparedin section 6 andtheconcluding
remarks canbefoundin the lastsection 7. AppendixA is
dedicatedto the derivation of main theoretical resultsfor
thedepolarizedintensityof a double scatteringwave.

2. Scalingresults
We considerpossible mechanismsfor depolarized (VH)
scatteringfor homogeneouspolymerblendsneartheir cri-
tical point.Like in amorphous homopolymers, onesource
of depolarized scattering is orientational fluctuations of
polymersegments5,9,10):
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4
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where bs is the segmentaloptical anisotropy. Obviously
this intensity does not dependon N (andsothescattering
on anisotropy fluctuations is not a polymer-specific
effect) and we wil l show below that it is negligible for
sufficiently long chains.

Another sourceof depolarized scattering is multiple
scatteringfrom composition fluctuations.Sincenormally
the higher the scattering order, the smaller the scattering
amplitude, we expectthat it is thedoublescattering from
compositionfluctuationsthatmight providethedominant
contribution to theVH intensity. For anestimation of the
latter (omitting numerical factors)we considerfirst single
scatteringof a finit e volumeV l L3 of typical sizeL. The
scatteredintensity (per unit scatteringvolume) is given
by eq.(3). Let E1 be the amplitude of the scattered field
inside the volume, the total scattered intensity VI1 l
VI0k0

4A2S(q) mustberoughly equalto cE2
1L

2, whereL2 is
about the surfaceareaof the scattering volume. Thus,E2

1

l E2
0Lk4

0A
2S�q�. Now we apply eq.(3) again in order to

gettheintensityof thedoublescatteredwave:

I �2�vh l E2
1k
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If qn s 1 andq l k0, thenwe canusethe mean-field
result of eq.(4) for a symmetric nearcritical blend:S(q)
L S(0) l Nv/s. So the scaling result for the VH intensity
is

I �2�vh l I0A
4k8

0LS2�k0� � I0A
4k8

0LN2v2=s2

Thus,we predict strongerN ands dependencies of Ivh

comparedto the polarized intensity, Ivv V S(0). It is theFig. 1. Schematicillustrationof thedoublescatteringprocess
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strongmolecular weightdependenceof Ivh thatmakes the
VH scattering of composition fluctuationsa polymer-spe-
cific effect.

The ratio of the scattering intensity due to anisotropy
fluctuationsanddouble scatteringis

I ani
vh

I �2�vh

l
b

2
ss

2

N2v3k4
0LA4

This ratio is of orderof 10–2 for polystyrene(PS)/poly-
(isoprene)(PI) and PS/polybutadiene (PB) blends3); for
the poly(dimethylsiloxane) (PDMS)/poly(ethylmethylsi-
loxane) (PEMS) system3) the segmental bs is negligibly
low. Thus double scattering of composition fluctuations
shoulddominatein theVH intensityfor all blends.

3. Analytical theory
We considerthe initial beamwith polarization vector e0

parallelto zaxisandwavevector k0 parallelto x axis:E(0)

= e0E0ei�k0rÿxt�: First we considerthecase of finite scatter-
ing sample, a sphereof radius L, so that the scattering
volumeis V = 4pL3/3, andthesizeof thesampleis larger
thanthewavelength of scatteredlight: Lk0 S 1. Theinitial
beamis assumed to be a plane wave of infinite width
(this approximationis lifted below, seesection5).

The electric field induces dipole polarization in the
scattering volume: d (r, t) = æ(r )E(0)(r, t), whereæ(r ) is
the polarizability of the medium at point r. The corre-
spondingsinglescatteredwave is11):

E�1��r ; t� �
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The intensityof the singlescatteredwave at large dis-
tanceR0 (R0 S L) from the scattering volumeis I � cR2

8p

p(Ee1)(E*e1)P, where e1 is the unit vector defining the
polarization of thescatteredwave
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whereq = k – k0, andk is thewavevectorof thescattered
wave.In the case of VV scattering (e1 parallel to e0) we
get eq.(3) and the intensity is zero for e1 parallel to the
x-y plane(VH scattering): I �1�vh � 0:

For a doublescattering process, we considera dipole
momentat point r, inducedby the partial wave E(1)(r )

which was produced as a result of single scattering at
point r 1 (seeFig. 1). This dipole emits a doublescattered
wave, its amplitudeE(2) is related to E(1) via an equation
analogousto eq.(7). The total amplitudeof the double
scatteredwave is given by the double integral d3r1d3r
over all possible pairsof scatteringpointsr1 andr:

Evh � k2
0

ei xc R0

R0

Z
ae�r �eÿikr e1E
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whereE(1)(r) is definedin eq.(7). As we notedbefore,we
areconsidering a finite scattering samplein this section.
Let usdefinethe form factor of the sampleH(r ) as:H(r )
= 1 inside the sample,andH(r ) = 0 otherwise.Using the
Fourier transformation H(q) =

R
H(r )eiqrd3r after some

algebra (seeAppendixA) we obtainthegeneralequation
for thetotal doublescattering intensity:
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where

f �q� � 4p
�e0q��e1q�

q2 ÿ �k0 � i0�2

i � �������ÿ1
p

and0 denotesaninfinitesimal positivenumber.
The function f(q) is singularnearthesphere0q 0 = k0 in

the wave-vector space.Therefore it is the vicinity of this
sphere that gives dominantcontribution to Ivh in the limit
L e v, i. e.when Q is sufficiently small: Q l 1/L e 0. In
order to simplify the calculation of this integral let us
approximate the form factor by a Gaussian function:

H�r� � eÿ
br2

L2 , H�q� � L3�p=b�3=2eÿ L2q2

4b wherethe coeffi-
cient b = 32/3p1/32–7/3 is definedby thecondition7 H2(r )d3r
= V = 4pL3/3.

After substitution of H (q) andS(q) (eq. (4)), the inte-
gral of eq.(9) for largebut finite L(Lk0 S 1) is dominated
by two regions:the spherical zone 0q – k0 0 h 1/L andthe
region q l 1/n S k0. We considerthe corresponding sin-
gular andnon-singular partsseparately.

The singularpart can be calculated analytically in the
limit k0L S 1.

Theresultfor singularVH intensityI s
vh is:

I s
vh � I0

A4V

�2p�4 k8
0S
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X�h; kn� � 15
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ZZ
sin3hqcos2hqsin2�uq ÿ h�duqdhq

�1� 2k2n
2�1ÿ sinhqcos�uq ÿ h����1� 2k2n

2�1ÿ sinhqcosuq��
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whereh is thescattering angle.NotethatX (h, kn) e 1 in
the limit k0n s 1. Expanding X (h, kn) in Taylor series
for smallkn weget

X�h; kn� � 1ÿ 4�kn�2

� �kn�
4

7
�100� 4coshÿ 8cos2h� �O��kn�6�

Hencethe I s
vh intensity attainsa maximum at h = arccos

1
4
L 75.58.
Thenonsingularpartcanbealsocalculatedanalytically

in thelimit k0n s 1. Theresultis
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Theratio of singularto nonsingular contributionsis
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Clearly thenon-singular part is negligible if k0n l 1, or
k0n S 1 sinceLk0 S 1, sowe do not needto considernon-
singular contributions in theseregimes.Hence, only in
the regime k0n s 1 whereeq.(11) is valid, far abovethe
critical point (i. e., where n is small), the non-singular
contributioncancompetewith thesingular one.

4. Dynamic depolarizedscattering
The scattered field time correlation function I�t� �
cR2

0
8p

pE(0)E*( t)P (see eq.(1)) can be obtained from
photoncorrelationspectroscopy measurements.It is easy
to show that eqs.(3) and (9) can be generalized for the
dynamiccaseasfollows:
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whereS(q, t) =
R
pb (r, t)b (0,0)P eiqr d3r is the dynamic

structurefactor (the intermediatescattering function); we
assumethat qt S c–1, where t is the shortestrelaxation
time thatweconsider.

Nearthecritical point thedynamicstructurefactor can
be approximatedasS�q; t�LS�q; 0�eÿDq2t, whereD is the
cooperative diffusion constant. Using eqs.(13) and (14)
we obtain thecorrespondingintermediate scattering func-

tionsfor thesinglepolarizedanddoubledepolarized(sin-
gular contribution,kn s 1) scattering components:

Ivv�q; t� � Ivv�q; 0�eÿC0sin2�h=2�t �15�

I s
vh�q; t� � I s
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whereC0 = 4Dk2
0 and

N1�a� � 15
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�a2sinhaÿ 3a cosha� 3sinha�

N2�a� � 15
a5
�a3 coshaÿ 5a2 sinha

�12a coshaÿ 12sinha�

Thus,in contrastto thesimpleexponential decayof the
dynamic VV scatteringfunction, we predict a non-expo-
nential decayfor the VH process, in agreementwith the
experimentaldata(seesection 6).

For k0n L 1 thedynamic scatteringfunctionsarecalcu-
latedusingnumerical integration. Therelaxation function
I s

vh�q; t� is approximatedby a stretchedexponential func-
tion exp(–(Ct)b), where C is the relaxation rate and b

(f1) is thenon-exponentiality parameter. The theoretical
angular dependenciesof thesefitting parametersfor dif-
ferent k0n are shown in Fig. 2. The case k0n = 0 corre-
sponds to eq.(16) the solid line correspondsto the VV
single scattering (eq.(15)).

We seethat the VH relaxationrate is predicted to be
equal to the VV relaxation ratefor h =1808: CVH = CVV =
4Dk2

0. Both VV and VH relaxationsslow down when h

decreasestowards h = 0. Howeverthe decreaseof purely
diffusive CVV is more pronounced:CVV = 0 for h = 0,
whereasCVH decreases down to a constant rate. The
decreaseof CVH is moresteepnearthe critical point (for
small s, i. e. largek0n) andbecomesweaker with increas-
ing distancefrom thecritical temperature (low k0n). Note
that as for the VH processthe dynamic scattering func-
tion has non-exponential form, eq.(16), so that the
relaxation rate depends on the time range where we
approximate it by a stretched exponential function. At
short t the VH correlation function eq.(16) decreases
with constant rateC�0�vh � 4Dk2

0, but for large t the rate is
slower: C�v�vh = (1 – cos h

2
�4Dk2

0. This rangeof large t is
responsiblefor the decreaseof Cvh with decreasingh; its
contribution increaseswith increasingk0n. For h = 1808
both relaxationtimesareequal, andfor h e 0 thescatter-
ing function decaysaccording to a power law at long
times, i. e.,C�v�vh = 0. We thus predict a spectrumof pro-
cesseswith relaxationratesranging from C

�v�
vh to about

C
�0�
vh . Note that scattering experiments at h = 1808 are

impossible.
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The non-singular contribution to thedynamic structure
factorof eq.(14) (regionof largeq) is:

I ns
vh�t� � I ns

vh�0�J
Dt

n
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(

Thusthe relationratecorresponding to this term is Cns

l D/n2, i. e.,Cns
vh is higherthanthesingularrelaxation rate

if k0n is small. However, as we show, the non-singular
contribution is small for the systems underconsideration
(seesection 6).

5. Finite width effects
Let usconsidernow a different setup.We assume that the
scattering sampleis infinite, but the width of the initial
and scattered beams is finite with characteristic radii Li

and Lp respectively. This situation is close to the real
experimental setup, whereLp wasa radius of pinholesfor
theoutcomingbeam(seesection 6) with Li = 0.5mm and
Lp = 0.1mm3,7).

Theinitial beam(alongthex-axis) is characterizedby

E�0� � e0B�y; z�E0e
i�k0rÿxt� �17�

where k0 is parallel to the x axis, E0 is the electric field
amplitude in thecenterof thebeamandthefunction

B�y; z� � e
ÿ ln 2�y2�z2�

2L2
i

describesthedependenceof theamplitude on thedistance
from the beamaxis. The definition of Li implies that the
intensity at the distanceLi from the beamaxis is 1/2 of
the maximum intensity at the beam axis, I (0): I (Li) =
1
2

I (0).
Using equation(7) twice (and also using the wave-

zone assumption, 0 r – r 1 0 S 1/k0), we can calculate the
amplitude of the doublescatteredVH wave(hereall cal-
culations are performed in the real spacerather than in
theFourier representation):

Es
vh � k4

0

ZZ
ae�r �ae�r 1�

N
�E�0��r 1��r ÿ r 1����r ÿ r 1�e1�

0r ÿ r 1 0
3 ei�k0r1�k0 rÿr1 0�d3r d3r1 �18�

Usingexpression (17) for E(0)(r ), replacingS(k – k0) by
S(0) andassuming thatLi S 1/k0 S n, we get thesingular
part of theVH intensity:
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vh � I0k
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Z
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Z
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d3r B2�r 1�
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wheree1 is the polarization vector of the scattered wave.
Here the first integral over r 1 (the point of the first scat-
tering event) should becalculatedwith infinite limits, and
the integral

R
pinholes

d3r is calculatedwith infini te limits in
the y-direction and is limited by pinholes in the (xz)
plane. We havecalculatedtheseintegralsanalytically for
thescattering angleh = 908. Theresult is

I s
vh � I0S

2�0�k8
0

A
2p

� �4 p3L2
i L

2
p

4ln2
�20�

Notethat this result is in agreement with eq.(10), if we
take into accountthat the effective scatteringvolume is
Veff l LiL2

p.
We canusethepreviousresult, eq.(11), in orderto cal-

culate the nonsingular term. The total intensity I ns
vh is

defined by the r.h.s. of eq.(11) multiplied by the scatter-
ing volumeVeff �

R
pinholes

B2�r�d3r: the nonsingularinten-
sity is a sumof additivelocal contributionssincetherele-
vant wave-vectors q (seeeq.(9)) are large, q l 1/n S

Fig. 2. Theoretical predictionsfor the angular dependenceof
the normalized(C/(4Dk2

0)) relaxation rate C and of the non-
exponentialityparameter b for thescatteringfunction (eqs.(15),
(16)). Lines with symbolscorrespondto VH scattering,lines
without symbolscorrespondto VV scattering
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1/Lp. The integral,
R

pinholes
, has the same meaningas in

eq.(19):

Veff �
Z v

ÿv
dy
Z Lp

0

rdr
Z 2p

0

due
ÿ ln 2�y2�r2cos2u�

L2
i

� L3
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���
p
p

2ln3=22
Q ln2

L2
p

L2
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� �
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where

Q�x� �
Z 2p

0

�1ÿ eÿxcos2u�
cos2u

du �22�

Q(x) e 2px for x s 1. In the experiments this para-
meter is indeed small, x� ln2

L2
p

L2
i
L 0:03, so we can

safelyusethex s 1 asymptotics,andso

Veff � p3=2�������
ln2
p LiL

2
p

Thefinal resultfor thenonsingularpart is
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Theratio of thesingular to nonsingularpartsis
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4n

3 15
16
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ln2

r
This equation agreeswell with eq.(12), except a slight

difference in thenumerical coefficient (4 insteadof 3.22)
if we substituteL in eq.(12) by the radiusof the initial
beam,Li. It is alsousefulto notethat in theoppositecase,
Lp S Li Q(x) e 6.67

���
x
p

, andthenonsingulartermis pro-
portional to L2

i Lp, so that
I s
vh

Ins
vh

is proportional to Lp in this
regime.

6. Comparisonwith the experimental data
The experimental setupis characterizedby the following
parameters: laserwavelength k = 532nm, the radiusof
the initial beamis Li = 0.5 mm, the radiusof pinholesLp

= 0.1 mm. The experimental procedure for the photon
correlation spectroscopy (PCS) measurementsand the

precautions for correct polarization conditions were
described in ref.3) Dilute latexspheredispersionsdisplay-
ing diffusiondynamicswith a polarized(VV) intensityup
to 5 Mhz exhibit no dynamic anisotropic scatteringover
the examined q-range(scattering angle 12 7 1508). In
particular, the model PDMS/PEMS blendswith very low
refractive index contrast (seeTab.1) have allowed VH
measurementsvery nearto T* andfor scatteringanglesas
low as 108. At theseextremeconditions,the polarized
intensityreachesthelimit imposedby theextinctioncoef-
ficient (l10–7) of theGlan-Thompsonanalyzer.

Fig. 3 shows the relaxation functions Ivv�q; t� and
Ivh�q; t� for PDMS/PEMSA at T = 40.78C andh =128 (q
= 3.4610–3 nm–1) obtainedfrom the experimental polar-
ized (VV) anddepolarized (VH) intensityautocorrelation
functionsG(q, t) 3 pI (q, t) I (q, 0)P; 0C(q, t) 0 = ((G(q, t) –
1)/f*) 1/2, where f* is a known instrumental (coherence)
factor. At this low scattering angle, theanisotropic relaxa-
tion function is muchfaster(about30 times) thantheiso-
tropic interdiffusion process. Alternatively, the slow pro-
cess,with dynamics very similar to the interdiffusion iso-
tropic process(Fig. 3), could partially result from VV
leakageat thelowest scatteringangles.

Firstly, we have chosento analyse the experimental
correlation functions by the inverse Laplace transform
technique, C(q, t) =

R
L (lns )exp(–t/s )d ln s, to obtain

the distribution relaxationfunction L (lns). The isotropic
interdiffusion processis expectedly unimodal conforming
to a single exponential function (eq.(15)) whereasthe
anisotropic Cvh(q, t) clearly displays a bimodal L (lns)
(Fig. 3); the experimental Cvh(q, t) can be also repre-
sented by a double exponential decay function. The
amplitude of the slow processinitially decreaseswith h

from 128 to 208 andthenincreasesabove408 (seeFig. 6
below). While theorigin of theinitial reductionwith scat-
tering angle might beobscuredby a possible contribution
from the strong polarized intensity (strong at low q’s,
eq.(5)), the fact that the slow VH contribution increases
with further increaseof theta(Fig. 6) irrespectively of the
laser wavelength (633 nm, 532 nm) excludesany spur-
ious effects; underthe sameconditions,Ivv is by a factor
of two weakerat 633 nm (eq.(3)). The variation of the
shape of theanisotropic Cvh(q, t) with scattering angle for
PDMS/PEMS (A) (n = 27 nm at 313.8K) and (B) (n =
54 nm at 322.4K) is shown in Fig. 4 for theta15, 30 and

Tab.1. Molecularcharacteristicsof thepolymerblends: averagedegreeof polymerizationN, average statistical segmenta, mono-
mervolumev, average refractionindexn anddifferencein refractionindices Dn, critical temperatureT* andparameters A, B anda
(seeEq.(24))

Blend N a/Å v/Å3 A B a n Dn T* in 8C

PS/PI 26.5 6.4 144 39 0.0419 1.55 1.54 0.11 95
PS/PB 20 5.9 126 37.9 0.0111 1.11 1.55 0.075 66
PDMS/PEMSA 252 5.3 149 3.22 0.0029 1.40 1.40 0.025 36
PDMS/PEMSB 249 5.3 149 3.22 0.0029 1.40 1.40 0.025 45.5
PDMS/PEMSC 275 5.3 149 3.22 0.0029 1.40 1.40 0.025 55
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708. Up to about558, the experimental Cvh(q, t) can be
describedby two distinct relaxationmodes.Fromthetwo
processes, the slow Cs relaxation rate clearly increases
with theta, whereasthe fastCf rateexhibits a weaker var-
iation with h.

Basedon this data analysis, the contribution of the
slow process(second peakin L (lns) of Fig. 3) wasfound
to increaseabove about408 whereastheintensity If of the
fastprocessremainsvirtually constant.Thiscanbehardly
justified asVV leakagesincethepolarizedIvv intensityis
a decreasingfunction of q (and hence h). Moreover, the
samebehavior is alsoobservedat T = 48.38C for which
Ivv is about three times weaker than at T = 40.78C. We
thereforeclaim that two relaxation processesarepresent
in Ivh(q, t) from which theslow onedominatesaboveh x
408; in fact, it is this slow processthat was reportedin
ref.3) For h H 558 the relaxation spectrumlooks like one
broad mode (rather than two modes) which becomes
more narrow as h is further increased. At h = 1508 the
decayis almost single exponential with better than 2%
accuracy (seeFig. 4f andthelower plot in Fig. 2).

Next we comparetheexperimental depolarizedintensi-
ties with the theoretical predictions (eqs.(20), (B2),
(10)). It is convenient to considerthe scattering intensity
normalizedby the initial intensity, I0, and the scattering
volume, Veff, taking into account the relative distanceto
thecritical point DT/T* = (T* – T)/T*:

J 3
Ivh�DT=T��2

I0Veff
� k8n4 Dn

2p

� �4 Nv
a

� �2

Li60:94 �24�

wherea is theproportionality coefficient betweens, used
in theory, and DT/T* measuredin experiment: s =

Fig. 3. Experimental anisotropic (VH) andisotropic(VV) scatteringfunctionsfor
PDMS/PEMSA at 313.8K, h =128 andkn = 0.44(k = 532nm) alongwith thecor-
respondingdistributionrelaxation L (ln s) functions

Fig. 4. Experimental anisotropic relaxation function (a)–(c)
for PDMS/PEMSA (kn = 0.44,T = 313.8K) andB (kn = 0.87,T
= 322.4 K) shown respectively as open and solid symbolsat
three scattering angles. Theoretical predictions (d)–(f) are
shown as solid curves together with experimental data for
blendA
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aDT/T*, Dn = n1 – n2 is the differenceof the refractive
indicesof two components.We usethestandard approxi-
mation:v (T) = A/T – B togetherwith literature values for
theparametersA andB. Thedefinition of s implies thata
= 1 + BN/2. Numerical valuesof the relevant parameters
usedin calculationsarelistedin Table1.

Computed (using the results obtainedin section 5 and
in Appendix B) andmeasureddepolarizedintensitiesat h
= 908 for the threehomogeneousblendsat differenttem-
peraturesnearphaseseparation areplottedin Fig. 5. One
can seea good agreementbetweenthe predictions and
the experimental results for relatively long chainPDMS/
PEMS blends as well as for short chain PS/PI blend,
whereasfor the PS/PBblendthe calculatedIvh is about5
times weaker than the experimental intensities. For the
latter blend (PS/PB), the experimental slope of the log-
log plot Ivh(DT/T) is smaller than2. The deviation of the
theoreticalpredictions for J from horizontal line means
that the non-singular term is significant in the corre-
spondingregion. Note that for PS/PIand PS/PBblends,
the non-singular term is noticeable (in comparisonwith
the singularone)only far enoughfrom the critical point
(for DT/T A 0.03, see left part of plots in Fig. 5). For
PDMS/PEMS, the singular term dominatesfor all tem-
peraturesunder consideration since the polymerization
degreeof PDMS/PEMS is about10 timeshigher thanfor
theother two blends.

The behavior of Ivh(h) as a function of the scattering
angledependson temperature becauseof the temperature
dependence of n. The theory (eq.(10)) predicts Ivh(h ) =
constfor smallkn. For largerkn a maximumof Ivh at h L
758 is predicted; the intensitydecreasesat higherangles
(seeFig. 6). On the experimental side, Ivh(h) normalized

to that of theneattoluenealsoshows a maximum, which
is morepronouncedhoweverthanthe theoreticalpredic-
tion. Moreover, theexperimental Ivh exhibits anadditional
increaseat very high angles.This latter featureis not pre-
dicted. Nevertheless,the predicted maximum occurs in
the vicinity of 758 irrespectively of k0 andq asindicated
by the data takenwith k = 633 nm. The Ivh for PDMS/
PEMS (B) with larger kn is indeed higherthanthe Ivh of
(A) with lower kn. It is noticeable that the theoretical
broad peak aroundh = 758 encompassesthe two peak
experimentalpatternof Ivh(h).

Let us comparenow the observed relaxationratesand
non-exponentiality parameters b or dynamic scattering
processeswith the theoretical predictions. The time
dependencieshavebeenfitted by the ‘‘stretched” expo-
nential, I (t) = I (0)exp(–(C t)b) for all angleshigher than
408. At lower anglesh f 408 two relaxationprocesses
were experimentallyobserved(Fig. 3, 4). Over theh = 40
7 1508, the predictedb for k0n = 0.4 (Fig. 2b) agrees
well with the valuesobtained from the experimentalVH
scatteringfunctions.The non-exponentiality parameter b
is closeto 1 for large anglesand is around 0.9 for small
angles exceptfor one point h = 158 both in theory and
experiment (Fig. 2(b)). Note that the accuracy of fitting
by two stretched exponents for such small angles (h f
158) is poor.

As shown in Fig. 7, Cvh is higherthanCvv = 4Dk2
0 sin2h

both in the theoryandin theexperiment.Theexperimen-
tal fast ratesexpressed as reducedquantities Cvh/(4Dk2

0)
compare well with the theoreticalreducedrates, which
vary from about0.6 to 1, respectively, at low and high
angles for kn = 1. In fact, PDMS/PEMS A andB mimic
thetheoreticalbehavior for low andhigh kn, respectively;

Fig. 5. Comparisonbetween the experimental andtheoretical (a) absolutevaluesof the scatteringintensi-
tiesand(b) renormalizedscatteringintensitiesJ definedby eq.(24)
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with increasing kn, Cvh/(4Dk2
0� decreasesat low angles.

The experimental relaxation ratealsotends to 1 for large
angles,but for small angles it is more closeto Cvv. This
featurecanbe explainedin part by the fact that mostCvh

shownin Fig. 7 hadbeenobtained from theexperimental
correlation function after extraction of fast VH mode
which gains intensityat low angles.

Finally, a more direct comparisonbetweentheoretical
and experimental scattering functions for PDMS/PEMS
A is shown in Fig. 4. Note two relaxation processes
observedfor h = 208. The fast processdisappears at
higher scatteringangles,so that the dataand the theory
are in agreement for higher angles,the agreement being
very good for h = 1508.

7. Conclusion
In conclusion, we presenteda theoretical interpretationof
the depolarized light scattering of polymer blends in
terms of the double scattering process. The theory
accountsfor many observed features of the depolarized
scattering. In particular, note a goodagreement between
thepredictedandthemeasuredtemperaturedependencies
of the depolarized intensity for PDMS/PEMS blends

which was obtainedwith no adjustable parameters: it is
theabsoluteintensities(rather thanreducedones)thatare
compared.
However several observations have not beenexplained
by thetheory:
1. The measured intensity for PS/PB blend is much

higher thanthe predictedone.Note that the predicted
intensity is quitesensitiveto thepositionof thecritical
point which might not beknown accuratelyenough.

2. A noticeable fast modeis observed for PDMS/PEMS
blends at low scatteringangles.It is tempting to attri-
bute this fast mode to the initial (short time) VH
relaxation, which is predicted to relax with the
reducedrateC0

vh=�4Dk2
0� L 1 (seesection 4), and the

slow mode to the long-time relaxation tail with
Cv

vh=�4Dk2
0� � 1ÿ cosh

2
: However the theoreticalratio

of intensitiesof thesemodesIfast/Islow is much lower
thanthatobtainedexperimentally.

Fig. 6. Theexperimental(upper) andtheoretical(lower) angu-
lar dependencies of the depolarized intensities. Theoretical
curvesareshownfor four differentk0n values.Theexperimental
intensities are for two PDMS/PEMS blends: for A at T =
313.8K and k = 532 nm (kn = 0.44) and 633 nm (kn = 0.39)
shownasopensquares andtriangles,respectively;at T = 321K,
k = 532 nm (kn = 0.21)assolid squares. The datafor the blend
B areshownby opencyclesat T = 322.4K, k = 532 nm (kn =
0.87)

Fig. 7. Comparison between theoretical and experimental
relaxationratesfor theanisotropicscatteringfrom PDMS/PEMS
mixturesasa function of the scatteringangle.Solid (thick) li ne
denotesthe variation of the interdiffusion rate 4Dk2

0 sin2(h/2),
whereasthethinnersolid lineswith (+) and(6) are thetheoreti-
cal predictionsfor Cvh/(4Dk2

0) for two different k0n values.The
empty symbols denote the experimental reduced fast rate
whereasthesolid symbolsarefor theexperimentalreducedslow
rate in threePDMS/PEMS blends:A at T = 313.8K, k = 532nm
(triangle) andk = 633 nm (squares),B at T = 322.4K andk =
532nm (cycles);andC at T = 338K atk = 488nm (ref. 3))
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It might be alsotempting to attributethe fast modeto
the non-singularcontribution to dynamic doublescat-
tering which is also characterizedby fast decay. An
analysis shows,however, that the non-singular inten-
sity is too low in comparisonwith that observed. An
interestingfeatureof the fast modeis that its relaxa-
tion rate is increasing as the scattering angle
decreases:this is anunusualbehavior.

3. The observed VH intensity sharply increases at very
high angles while the theory predicts a (smooth)
decreaseof Ivh in this regime.We areleavingelucida-
tion of theabovepointsfor futureefforts.

Appendix A: Derivation of a general
expressionfor doublescattering
In this appendix we present the derivation of eq.(9) for
the depolarizedscatteringintensity for arbitrary structure
factor and form factor of the sample. We start from
eq.(8) andsubstitute theamplitudeof thesinglescattered
waveE(1) from equation(7):

Evh�R� � ÿk2
0

eik0R0

R0

E0

Z
�e0q��qe1� ae�q9� ae�qÿ k0�

N
ei�qr1�q9rÿkr�k0 0rÿr1 0�

0r ÿ r 10
H�r �H�r 1�d3rd3r1

d3q

�2p�3
d3q9
�2p�3

Thenwe changevariablesasr 1 e r 2 = r 1 – r andintro-
duce the Fourier image of the form factor H (q) =

7 H (r )eiqr d3r, H (r ) = 7 H (q1)e
ÿiq1r

d3q1
�2p�3

;

Evh�R� � ÿk2
0

eik0R0

R0

E0

Z
�e0q��qe1� ae�q9� ae�qÿ k0�

N
ei�qr2�k0r2ÿq2r2�

r2
ei�q�q9ÿkÿq1ÿq2�H�q1�H�q2�

N
d3q

�2p�3
d3q1

�2p�3
d3q9
�2p�3

d3q2

�2p�3 d3rd3r2

Then we can take the integral over r, which gives
d(q2 – (q + q9 – k – q1)) andthenintegrateoverq2:

Evh�R� � ÿ w
c

� �2 ei w
c R0

R0
E0

Z
�e0q��qe1� ae�q9� ae�qÿ k0�

N
ei�r2�kÿq9�q1��k0r2�

r2

H�q1�H�q� q9ÿ k ÿ q1�

N
d3q

�2p�3
d3q1

�2p�3
d3q9
�2p�3 d3r2

Let usintroducea function f (q) = (e0q)(e1q) 7 ei�qr�kr�
r

d3r
and makeuseof the fact that the function H (q) is loca-

lized in the region qa 1
L
s k, so that q1 s k and q L

k – q9:

Evh�R� � ÿ w
c

� �2 ei w
c R0

R0

E0

Z
ae�q9� ae�qÿ k0�f �k ÿ q9� q1�

NH�q1�H�q� q9ÿ k ÿ q1�
d3q

�2p�3
d3q9
�2p�3

d3q1

�2p�3

Ivh � c
4p

w
c

� �4

E2
0

Z
f �k ÿ q9� q1�f �k ÿQ9�Q1�

N pae�q9� ae�qÿ k0� ae�ÿQ9� ae�k0 ÿQ�P

NH�q1�H�Q1�H�q� q9ÿ k ÿ q1�H�Q�Q9ÿ k ÿQ1�

N
d3q

�2p�3
d3q1

�2p�3
d3q9
�2p�3

d3Q

�2p�3
d3Q9
�2p�3

d3Q1

�2p�3

At thisstageweusetheWick’s theoremvalid for Gaus-
sianfluctuations12):

pae�q1� ae�q2� ae�q3� ae�q4�P � pae�q1� ae�q2�P

N pae�q3� ae�q4�P� pae�q1� ae�q3�Ppae�q2� ae�q4�P

� pae�q1� ae�q4�Ppae�q2� ae�q3�P

Using the definition of the structure factor
pdb (q1)db (q2)P = (2p)3S(q1)d (q1 + q2) weget

paeq9� ae�qÿ k0� ae�ÿQ9� ae�k0 ÿQ�P �

A
2p

� �4

S�q9�S�qÿ k0��2p�6�d�q9ÿQ9�d�qÿQ�

� d�q9ÿQ� k0�d�ÿQ9� qÿ k0��

where A
2p

is a proportionality coefficient betweenæ(q)
anddb (q). Notethat thethird termwill containafter inte-
gration the term H (k – k0) which is non-negligible only
for 0k – k0 0 s k0, i. e. it canbeneglectedprovidedthat the
scatteringangle is not extremelysmall. Thus

Ivh � c
4p

w
c

� �4

E2
0

Z
S�q9�S�qÿ k0�f �k ÿ q9� q1�

NH�q1�H�Q1�H�q� q9ÿ k ÿ q1�H�q� q9ÿ k ÿQ1�

N �f ��k ÿ q�Q1� � f ��k � k0 ÿ q�Q1��

N
d3q

�2p�3
d3q9
�2p�3

d3Q1

�2p�3
d3q1

�2p�3

Then we do a number of substitutions and obtain the
final result, takinginto account that theargument of H (q)
is alwayssmaller thank0 andthat
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Z
H�q�H�q� q1�

d3q

�2p�3 �Z
H�r 1�H�r 2�ei�r1q�r2�q�q1�� d3q

�2p�3 d3r1d
3r2 �

Z
H2�r 1�ir1q1d3r1 � H�q1� �A1�

sinceH2(r ) = H (r ) by definition.

1� q9eq99 � q9ÿ k � q:

Ivh � c
4p

w
c

� �4

E2
0

Z
S�q99� k ÿ q�S�qÿ k0�f �qÿ q99� q1�

NH�q1�H�Q1�H�q99ÿ q1�H�q99ÿQ1��f ��qÿ q99�Q1�

� f ��k � k0 ÿ q�Q1��
d3q

�2p�3
d3q99
�2p�3

d3Q1

�2p�3
d3q1

�2p�3

Whenceweconcludethatq1 s k0, Q1 s k0, q99 s k0.

2) q e qn = q + q1 – q99. Herewe canneglectq1 andq99
in S:

Ivh � c
4p

w
c

� �4

E2
0

Z
S�k ÿ qn�S�qn ÿ k0�f �qn�H�q1�

NH�Q1�H�q99ÿ q1�H�q99ÿQ1��f ��qn ÿ q1 �Q1�

� f ��k � k0 ÿ qn ÿ q99� q1 �Q1��

N
d3qn

�2p�3
d3q99
�2p�3

d3Q1

�2p�3
d3q1

�2p�3

3) This stepmustbedoneseparatelyfor two termscon-
taining f*:

a) Q1e Q2 = Q1 – q1:

I �a�vh �
c

4p

w
c

� �4

E2
0

Z
S�k ÿ qn�S�qn ÿ k0�f �qn�H�q1�

NH�Q2 � q1�H�q99ÿ q1��f ��qn ÿQ2�H�q99ÿQ2 ÿ q1��

N
d3qn

�2p�3
d3q99
�2p�3

d3Q2

�2p�3
d3q1

�2p�3

Using eq.(A1) we get
R

H (q99 – q1)H (q99 – Q2 – q1)
d3q99
�2p�3 = H (Q2);

R
H (q1)H (Q2 + q1) d3q1

�2p�3 = H (Q2) and

obtain
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Z
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b) Q1 e Q2 = Q1 + q1 – q99:

I �b�vh �
c

4p
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Z
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NH�ÿQ2 � q1�
d3qn

�2p�3
d3q99
�2p�3

d3Q2

�2p�3
d3q1

�2p�3

Using eq.(A1)
R

H (q99 – q1)H (Q2 – q1 + q99) d3q99
�2p�3 =

H (Q2);
R

H (q1)H (q1– Q2) d3q1

�2p�3 = H (Q2). Thus we get

total intensityIvh � I �a�vh � I �b�vh :

Ivh � c
4p

w
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� �4
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Z
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Substituting q for q – Q2 we finally obtain eq.(9).

Appendix B: Generalization for the casen m 1
In sections 2–5 we assumedthat the mean refractive
index of theblendis closeto unity n L 1. Here we gener-
alize the results, equations (20), (23), for anyn. This will
allow usto compare theabsolutevaluesof theintensities.

In the general casestartingfrom Maxwell’ s equations
we get the following equation describing a singlescatter-
ing event4)

rot rot E � graddiv Eÿ DE � ÿ 7
c2

q2E
qt2

where7 = n2 is thepolymerdielectricconstant,E = E(0) +
E9 is the sumof the initial andthe scatteredwaves.After
some simplifications we obtain anequation for thesingle
scatteredwave

7
c2

q2E9
qt2
ÿ DE9 � 4p grad

1
n2

divaeE�0� �B1�

The solutionof this equation hasthe same form asthe
first termin equation(7) with additionalprefactorn–2 and
k = n(w/c). The prefactor leadsto an additional factor of
n–8 in thedouble scatteredintensity(sincewe apply equa-
tion (B1) twice, and then raisethe amplitude to the sec-
ond power) andthe secondpoint leadsto the factor n8 in
singular term for the double scattering intensity (since it
is proportional to k8) andto the factor n4 in non-singular
term. Hencethe two pointscanceleachother in singular
contribution andthe non-singular contribution stayswith
theadditional factor n–4.

We alsohaveto usea moreaccurate relation between
qae
qb

andA: qae
qb
� n

2p
A (compare with eq.(2)); this renor-



190 A. N. Semenov, A. E. Likhtman,D. Vlassopoulos, K. Karatasos,G. Fytas

malization givesrise to theadditional factorn4 in theVH
intensity.

Thus we obtain the following renormalization of
eq.(20):

I s
vh e n4I s

vh �B2�

while thenon-singular termremains thesamedueto can-
cellationof thetwo factors.
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