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Depolarized light scattering from critical polymer blends
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SUMMARY: Depolarized light scattering of binary polymer blends in disordered state near the demixing cri-
tical point is considered both theoretically and experimentally. It is shown that the depolarized scattering in
such systems is predominantly due to double scattering processes induced by composition fluctuations. For
long enough polymer chains, this scattering is stronger than the contribution from intrinsic anisotropy fluc-
tuations. The general equation for the static and dynamic double scattering function is obtained in terms of
the system structure factor. The scattering functions are calculated both analytically and numerically (dyna-
mic part) for polymer blends. We found that the depolarized intensity depends on the polymerization degree
N and the relative distance from the critical poirnt 1 —y*/y (wherey is the Flory-Huggins interaction para-
meter andy* its critical value) aslys, ~ N¥72, which is in good agreement with the experimental data. It is
also shown that the dynamic scattering function is decaying non-exponentially. We calculate the relaxation
rate and the non-exponentiality parameter as functions of the scattering angleTéwede theoretical predic-

tions are compared with experimental data for three chemically different blends.

1. Introduction amplitude of the initial beam, andae@) = [daf)

Polymer blends often phase separate in a certain tempe%p (qr) ‘f’r is the diEIegtriC polarizability ﬂucf[uation in
ture rangé. Their critical behavior near the boundary ofthe Fqur|er representatmn. Note that we define t.he SC"?‘t'
this range has received much attention recénffyne aim tered |nten5|_ty as the energy scattered into a unit spatial
of the present paper is to consider both theoretically anqule per unit time. )
experimentally the depolarized light scattering from com- For a blend of A and B homopolymers, the scattering
position fluctuations in a disordered (i.e. not yet phasltptens'ty, can be furt.her related to the structure factor of
separated, macroscopically uniform) blend near its criti€omposition fluctuatiors
cal poing). A

Let us consider a typical light scattering set up whena  da&(r) = — —d¢(r) op(r) = o(r) =<a(r)> (2
vertically polarized initial beam is scattered in the hori-
zontal plane. The vertical component of the scatteregthereg(r) = ¢a(r) is the local volume composition of A
light is then usually denoted as VV, and the horizontainonomersA = % is the refractive index contrash &
one as VH. The theory of single VV scattering from comn(g)), and we assume as usually local incompressibility
position fluctuations is well knowft—7) of the blendga(r) + ¢s(r) = 1 for anyr. Using egs. (1)

The scattering intensity is proportional to the correlaand (2) we get
tion function of the dielectric polarizability: A2
@ = 1) S@ 6
120 = S (BB ~ G eap@-ap (1)

whereS(q) = | ¢ (r)d¢(0)) exp (iqr)d’r is the structure

wherek, andk are the wavevector of the incident and thefactor.
scattered light, respectively; is the light speed in  For a symmetric blend with number of monomers per
vacuum,q = k — ko is the scattering vectoR, is the dis- chainNa = Ns = N and statistical segment lengt{6a
tance from the scattering sample to the detedtos % (asa= ag = a and mean square end-to-end distancéR’%
is the intensity of the initial beant, is the electric field = 6N &) the mean field structure factortis

a  Both fluctuations of total density and composition fluctuations contribute to the scattering intensity in the general case. However
the density contribution is normally negligible for polymer blehds
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1 1

SO = NgNa@) T = oNgNED)

_ZX

wherey is the Flory-Huggins paramete ¢ = {¢a) is the
averagecompositon, and

gx) = %(x+ e*-1)

is the Debye function.
Nearthe critical point (¢* = 0.5, y*N = 2) the structure
factorcanbeapproximatedas

S0)
S0 =17 g (4
where S(0) = X ¢ = R/\/18r is the correltion length
of the composiion fluctuation, t = (1 — y/x*) is the rela-
tive distanceto the critical point, and v, the monomer
volume. Substtuting eq. (4) into eq. (3) we get for the
singlescatteing intensity

A \*Nv 1
1) _
Ivv - IOkg( 2TC ) 4_[ 1+ ézqz (5)

whichis proportiond to N/z.

It is well known that single scatteringfrom composi
tion fluctuationsdoesnot prodice a depolarizedconpo-
nent: 1/ = 0. On the othe handit is known that muiti-
ple scatteing does give rise to nonzero depolarized
intensity?. In the presentpaper we show that the domi-
nantcortribution to the depolaized intensiy arises from
doublescatteing (schematicaly depictedin Fig. 1) char
acterizedby a qualitaively differenttemperaturedepen-
dencecompaedto the polarized scatteing 1 (Y.

The paperis organized asfollows. In section2 we con-
siderthe doublescatteringprocessqualitaively andshow
thatit produwcesa dominant contiibution to the depolar
ized intensity ascomparedto the scatteringfrom oriena-
tional fluctuatiors. A quantitdive descripton of the aver

1 Initial wave

Y Depolarized component -

Fig. 1. Schematidllustration of the doublescatteringprocess
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age double saattering intensity and the corresponihg
intermediatgdynamic)scatteing functionareconsideed
respectively in sections3 and 4. Secton 5 is devotedto
calcuation of the static intensity for a reaistic experi-
mertal setup,whereasin the Appendx B we formulate
the renormalization procedire establshingthe scatteing
propertiesof the systemwith arbitray refradive index.
The theoretical(stafic and dynamic) resultsand experi-
merntal dataarecompaedin sedion 6 andthe conduding
remaks canbefoundin thelastsection 7. AppendixA is
dedcatedto the deiivation of main theaetical resultsfor
thedepolaizedintensityof a double scateringwave

2. Scalingresults

We considerpossble mechanismsfor demlarized (VH)
satteringfor homayeneougpolymer blendsneartheir cri-
tical point. Like in amorphos homomlymers onesource
of demlarized scatering is orientational fluctuations of
polymersegments® 1

i ~ lokgfe/v (6)

where fs is the segmentaloptical anisotrgy. Obviously
thisintensiy does not dependon N (andsothe scatteing
on anisdropy fluctuations is not a polymerspeific
effect) and we will show below that it is negigible for
sufficiently long chans.

Another source of depolaized scatering is multiple
satteringfrom composiion fluctuations. Sincenormally
the higherthe scdtering order, the smaler the scatteing
amgitude, we expectthatit is the doublescatteing from
conpositionfluctuationsthat might providethe dominant
cortribution to the VH intensity For an estimation of the
latter (omitting numeical factors)we consterfirst singe
satteringof afinite volumeV ~ L3 of typical sizeL. The
satteredintensity (per unit scatteringvolume) is given
by eq.(3). Let E; be the amditude of the scatteed field
inside the volume, the total scatteed intensity VI, ~
VIokd A2S(q) mustberougHy equalto cE2L?, wherel? is
abaut the suface areaof the scatteing volume. Thus, E2
~ BE2LKSA®S(q). Now we apply eq.(3) agan in orderto
gettheintensityof the doublescatteedwave:

L ~ ETA’S(q)

If g¢ <1 andg ~ ko, thenwe canusethe meanfield
resut of eq.(4) for a symmetric nearcritical blend: S(q)
=~ S(0) ~ Nv/z. Sothe scalirg resultfor the VH intensity
is

12 ~ TAKELS (ko) = IoA'KELNA? /72

Thus, we predictstrongerN andt dependenies of |,
conparedto the polarizedintensity I, oc S(0). It is the
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strongmolecuar weightdependaceof |, that makes the
VH scatteing of compositon fluctuationsa polymer-spe-
cific effect.

The ratio of the scatteing intensity due to anisdropy
fluctuationsanddolble scatterings

ani 2_2
Ivh ﬁsr

|2 N2BKILAY

vh

This ratio is of order of 1072 for polystyrene(PS)/poly
(isoprene)(Pl) and PS/mlybutadie® (PB) blends?; for
the poly(dimethysiloxane (PDMS)Ypoly(ethylmethylsi
loxane) (PEMS) systen? the segmetal s is negigibly
low. Thus double scatering of composiion fluctuations
shoulddominatein the VH intensityfor all blernds.

3. Analytical theory

We considerthe initial beamwith polarization vector g,
parallelto z axisandwavevecta k, parallelto x axis: E©
= goE€ 'Y First we considerthe cas of finite scatter
ing sampe, a sphereof radus L, so that the scatteing
volumeis V = 4733, andthe sizeof the sampleis larger
thanthewavelengh of scateredlight: Lk, > 1. Theinitial
beamis assumd to be a plane wave of infinite width
(thisapproxmationis lifted below seesectionb).

The electic field inducesdipole polarization in the
scatteing volume: d(r, t) = &) EQ(r, t), whereaef) is
the polarizability of the medum at point r. The corre-
spondingsinglescatteedwave is':

1 rl)

O(r,t) = /{graddlvd(rltl—r'—
}d3r1 (7)

The intensity of the single scatteredvave at large dis-
tanceR, (R, > L) from the scatteing volumeis | = i
{(Ee))(E*ey)), where g, is the unit vector defining the
polarizaion of the scateredwave

+ (%) 2d(ry, t—-0)

Iry —rl

é(k ko) r1d3

|1)_ (&081) okg/<a3

)2 )

whereq = k —k,, andk is thewavevectorof the scatteed
wave. In the cag of VV scatering (e, parllel to &) we
geteq.(3) andthe intensityis zerofor e, pardlel to the
x-y plane(VH scatteing): 1} = 0.

For a double scatteng processwe considera dipole
momentat point r, inducedby the partial wave E®)(r)

(e081) okg
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which was producel as a result of singe scatteing at
point r, (seeFig. 1). This dipole emits a doublescatteed
wave, its amplitude E® is related to E® via an equaton
anabgousto eq.(7). The total amplitude of the double
saatteredwave is given by the double integral d®r,d®
over all possble pairsof scatteringpointsr; andr:

e,JRO

En= /ae e eEd (r)d’r (8)

whereE®(r) is definedin eq.(7). As we noted before,we
are consideing a finite scatteing samplein this sedion.

Let usdefinethe form factor of the sampleH(r) as:H(r)

= 1 inside the sample,andH(r) = 0 otherwise .Using the
Fourier transformaton H(q) = [H(r)é*d® after some
algebra (seeAppendixA) we obtainthe generalequdion

for thetotal doublescatteing intensity:.

kg‘(%) [ sk-asa -kt () (9)
) y 3Q d3q
+*(k +ko—Q)) |:/ 2(Qf(a—-Q) (Zn) (27[)3
where
R CT)ICT)
f(q) =4 2~ (ky + 0)

i = v/—1 and0 derptesaninfinitesimal positive numter.
The functionf(q) is singularnearthe spherdql = k, in
the wave-vetor space Therefae it is the vicinity of this
sphee that gives dominantcortribution to I, in the limit
L — oo, i.e.when Q is sufficiently smalt Q ~ 1/L — 0. In
order to simplify the calculation of this integrd let us
apprommate the form factor by a Gaus3|an function:

H(r)=¢ = ,H(q) = L3(n/p)*%e 4 wherethe coefi-
ciert f = 3*°1227R is defined by the condition| H2(r) d°r
=V=4rL¥3.

After substtution of H(q) and S(q) (eg (4)), the inte-
gral of eq.(9) for large but finite L (Lk, > 1) is dominated
by two regions:the spherica zonelq — ko < 1/L andthe
regon q ~ 1/¢ > k,. We considerthe corresponhg sin-
gularandnonsingula partssepaately.

The singularpart can be calcdated analytically in the
limit koL > 1.

Theresultfor singularVH intensityl?, is:

. AV /32813
o = lo (20 koSZ(O)LWQ(Q kS) (10)
15
Q0 k) = an

sin*,co0,sirt (p, — 6)dp,do,
— singycogp, — 0)))(1 + 2k (1 — Sind,cosp,))

// (14 2k2&%(1
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whered is the scatteing angke. NotethatQ (0, k&) = 1in
the limit k¢ < 1. Exparding Q (0, k&) in Taylor series
for smallké we get

Q(6,kE) =1 — 4(ké)*

+(k—§)4 (100+ 4co®) — 8cogh) + O((ké)®)

Hencethel, intensiy attainsa maxmum at 6 = arccos
<+ =755

Thenonsingulapartcanbe alsocalculatedanalyticaly
in thelimit ko¢ < 1. Theresultis

1 4n

& 15 (11)

o AV
=l e SO

Theratio of singularto nonsingilar contribufonsis

()

Cleaty the non-singula partis nedigible if ko ~ 1, or
ko > 1 sincelLky, > 1, sowe do not needto considemon
singular contributons in theseregimes.Hene, only in
the regme ko¢ < 1 whereeq.(11) is valid, far abovethe
critical point (i.e., where ¢ is small), the nonsingula
contribution cancompetewith the singular one.

(12)

4. Dynamic depolarizedscattering

The scatteed field time correlation function 1(t) =
CSF;% (E(O)E*(t)> (see eqg.(1)) can be obtained from
photoncorrelation spectroscpy measurerants.It is easy
to showthat egs.(3) and (9) can be genealized for the
dynamiccase anO||0WS'

vv = |okg 2 S(k k0> ) (13)
lnlt) — Iok3< )/s<k 0, S(0 — ko, )(F* (@)
. ¢Q | do’q
+f <k+ko—q>>[/ Q- G| G (19

whereS(q, t) = [ <a(r, )¢(0,0)) €d’r is the dynamic
structurefactor (the intermediatescatteing function); we
assumethat gt > ¢, wheret is the shortestrelaxation
time thatwe corsidet

Nearthe critical point the dynamic structurefactor can
be approimatedas S(q, t) =S(q, 0)e °**, whereD is the
cooperaive diffusion consant. Using eqs.(13) and (14)
we obtain the comespondingntermedide scatteing func-
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tionsfor the singlepolarized anddoubledepolarizedsin
gular contiibution, ké < 1) scatteing comporents:

(0, 1) = I(g, 0)e "o 0/21 (15)
15,(0,1) = 15,(q, 0)e "' (cog(0/2) Z1(I"ocos0/2)t)
+Sinf(0/2)Z,(I,cog0/2)t)) (16)

wherel, = 4Dkj and

15 . .
— (a”sinha — 3a cosha + 3sinha)

15 .
= (a*cosha — 5¢° sinha

53]
=
&

\

+12q cosha — 12sinha)

Thus,in contrasto the simpleexponetial decayof the
dynamic VV saatteringfunction, we predict a non-expo-
nertial decayfor the VH processin agreementwith the
experimentaldata(seesedion 6).

For ko¢ = 1 the dynamt scatteringfunctionsarecalcu
latedusingnumeical integraion. The relaxaton function
I5.(0, t) is approximatedby a streichedexponetial func-
tion exp(—(It)?), where I' is the relaxationrate and g
(=1) is the non-exporentiality paraneter The theoretical
angular dependenciesof thesefitting pammetersfor dif-
ferert ko¢ are shown in Fig. 2. The cag k¢ = 0 come-
spords to eq.(16) the solid line correspndsto the VV
singe scatteing (eq.(15)).

We seethat the VH relaxationrate is predictal to be
equal to the VV relaxationratefor § =180°: I'yy = I'w =
4DK3. Both VV and VH relaxationsslow down when 6
decreasegowards 0 = 0. Howeverthe decreaeof purely
diffusive I'yy is more pronaunced: I,y = 0 for 6 = 0O,
whereas Iy decreaes down to a consant rate. The
deceaseof I'yy is more steepnearthe critical point (for
smal t, i. e. large ko) andbecomesvealer with increas-
ing distancefrom the critical temperatue (low kq&). Note
that asfor the VH processthe dynamic scattering func-
tion has non-exonentid form, eq.(16), so that the
relaxation rate depends on the time range where we
appoximate it by a streéched exponetial function. At
shortt the VH correlation function eq.(16) deceases
with consantrate I, = 4DKZ, but for large t the rate is
slower: I = (1 — cos £ 2-)4DK;. This rangeof larget is
resnsiblefor the deceaseof I,y with decreasingd; its
cortribution increasewith increasingko£. For 6 = 180°
both relaxationtimesareequd, andfor 8 — 0 the scatter
ing function decaysaccordirg to a power law at long
times i.e., Iy = 0. We thus predicta spectrumof pro-
ceseswith relaxationratesranging from 7' to about
'Y Note that scatteing experimers at = 180° are
impossible.
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Fig.2. Theoetical predictionsfor the angula depemienceof
the normalized (17(4Dk?)) relaxaion rate I” and of the non-
exponentialityparamegr § for the scatteringfunction (egs.(15),
(16)). Lines with symbols correspondto VH scattering,lines
without symbolscorrespondo VV scatteing

The non-singular contibution to the dynamic structure
factorof eq.(14) (regionof largeq) is:

150 = 1503( )

52
where
© gy 1-4 . a<l
J(a)zi/ e—ﬂzdyz Vel ?»1
T Jo (1+y) AT

Thusthe relationrate corresponihg to this termis I'ys
~ DI&, i.e., I'y; is higherthanthe singularrelaxatbn rate
if ko is small. However as we show the non-singular
contribution is small for the systens underconsideation
(seesedion 6).

5. Finite width effects

Let usconsiternow a differert setup.We assune thatthe
scatteing sampleis infinite, but the width of the initial
and scatteed beans is finite with chalcteridic radi L;
and L, resgectively. This situation is close to the real
experimendl setup whereL, wasa radus of pinholesfor
the outcomingbeam(seesection 6) with L; = 0.5mm and
L, =0.1mm?7,

183
Theinitial beam(alongthe x-axis)is chamcterizedoy

E(O) — eOB(y, Z) Eoei(kgr—m[) (17)
where ko is parallel to the x axis, E; is the electric field
amgitude in the centerof the beamandthefunction

_In2y2+2)
By, =e ™

descibesthedependeneof theamgitude onthedistance
from the beamaxis. The definition of L; implies thatthe
intensity at the distanceL; from the beamaxis is 1/2 of
the maxmum intensity at the beamaxis, | (0): 1(L) =
= 1(0).

Using equation(7) twice (and also using the wave
zore assumfion, Ir — ryl > 1/k;), we can calculate the
amgitude of the doublescatteredvVH wave (hereall cal-
culations are pefformed in the real spaceratherthanin
theFouiier representatio):

e, =K [[ ==

(B0 = r))((r = T)e) Jpgrrkr rigy o,

3 (18)
Ir —r,l

Usingexpresin (17) for EO(r), repacing S(k — ko) by
S(0) andassuning thatL; > 1/k, > £, we getthe singular
patt of theVH intensity:

15— 1KES(0) / d3r1/ o B(r)
pinholes

(19)

(& —r)) e =)\
( )

3
Ir —r,l

wheree, is the polarizaion vecta of the scatteed wave
Here the first integral overr; (the point of the first scat-
tering evert) shoud be calculaedwith infinite limits, and
theintegral fpinmlesd3r is calcdatedwith infinite limits in
the y-diredion and is limited by pinholes in the (x2
plare. We havecalcuatedtheseintegralsanalyticaly for
the scatteing angled = 90°. Theresllt is

4TE3|_-2|_2
A) L (20)

=150 (51 ) s

Notethatthisrestlt is in agreemehwith eq.(10), if we
take into accountthat the effective scatteringvolume is
Vert ~ LiL3.

We canusethe previousrestt, eq.(11), in orderto cal-
culate the nonsingilar term. The total intensity I is
defined by ther.h.s. of eq.(11) multiplied by the scatter
ing volume Ve = fpinm,esBz(r)d3r: the norsingularinten-
sity is asumof additivelocd contribuionssincetherele-
van wave-vetors q (seeeq.(9)) arelarge, q ~ 1/¢ >
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1/L,. The integrd, fp
eq.(19):

e Lp 2n _In 2(y2+r2c052¢)
2
Veﬁ:/ dy/ rdr/ dpe "
J - 0 JO

has the sane meaningasin

inholes'

L3/1 L2
= Zl'n‘S{Z_ZQ(lnz o > (21)
where
(1 e—xcoszqz
Qx) = /0 %d(ﬁ (22)

Q(x) = 2nx for x < 1. In the experimets this para
meter is indeel smal, x =In2-% =0.03, so we can
safelyusethex < 1 asymptdics, andso

32

Ve = ——LiL2
T Vin2 P
Thefinal resultfor the nonsingulampartis
AN'LLZ 42
I"S = [kiS(0) [ — R 23
BRSO (5 ) 5 e 23

Theratio of thesingular to nonsingulapartsis

13, 15 [«
N LKE
e <16\ n2

This equaion agreeswell with eq.(12), excep a slight
differercein the numeical coeficient (4 insteadof 3.22)
if we substituteL in eq.(12) by the radiusof the initial
beam L. It is alsousefulto notethatin the oppositecase,
L, > Li Q(X) — 6.67 ./, andthe norsingulartermis pro-
portionalto L2L,, sothat :: is proportonal to Ly in this
regime. '

6. Comparisonwith the experimental data

The experimeral setupis chaacterizedby the following
paramegrs: laserwavelengh 4 = 532nm, the radius of
theinitial beamis L; = 0.5 mm, the radiusof pinholesL,
= 0.1 mm. The expeaimental procedire for the photon
correlation spectroscpy (PCS) measuementsand the
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precautions for corect polarization conditions were
descibedin ref.? Dilute latex spheredispersims dispay-
ing diffusiondynamtswith a polarized(VV) intensityup
to 5 Mhz exhibit no dynamt anisdropic scatteringover
the exanined g-range(scatering ange 12 — 150°). In
patticular, the model PDMS/PENMS blendswith very low
refractive index contrast (see Tab.1) have allowed VH
measuremerg very nearto T* andfor scatteringanglesas
low as 10°. At theseextremeconditions,the polarized
intensityreactesthelimit imposedby the extinction coef
ficient (~107) of the Glan-Ttompsonanalyzer.

Fig. 3 shows the relaxation functions 1,,(qg,t) and
lw(g,t) for PDMSPEMSA atT =40.7°C andd =12° (q
= 3.4x 107 nnTY) obtainedfrom the experimetal polar-
ized (VV) anddepolaized (VH) intensityautacorreldion
functionsG(q, t) =<1 (q, 1)1 (g, 0); IC(q, t)I = ((G(q, 1) —
1)/if¥)¥2, where f* is a known instrumenal (coherece)
factor. At this low scatteing angle theanisotrgic relaxa-
tion functionis muchfaster(about30 timeg thantheiso-
tropic interdiffusion processAlternatively, the slow pro-
cess, with dynamics very similar to the interdiffusion iso-
tropic process(Fig. 3), coud partialy result from VV
leakageatthelowed scatteringandes.

Firstly, we have chosento analyse the experimental
correlation functions by the inverse Laplace transfam
tectnique, C(q, t) = [L(Int)exp(-t/z)d In 7, to obtain
the distribution relaxationfunction L (Inz). The isotrogc
interdiffusion processs expecedly unimadal conforming
to a single exponetial function (eq.(15)) whereasthe
anisdropic Cy(q, t) cleaty dispays a bimodal L(In7)
(Fig. 3); the experimental C,(q, t) can be also repre-
sented by a dowle exponentl decay function. The
amgitude of the slow processinitially deceaseswith 6
from 12° to 20° andthenincreasesbove40° (seeFig. 6
below). While the origin of theinitial reductionwith scat-
tering angke might be obscued by a possilke contibution
from the strong polarized intensity (strong at low ('s,
eg.(5)), the fact that the slow VH contribuion increases
with furtherincreaseof theta(Fig. 6) irrespecively of the
laser wavelengh (633 nm, 532 nm) excludesany spur
ious effects; underthe sameconditions,l., is by a factor
of two weakerat 633 nm (eq.(3)). The variation of the
shape of the anisdropic C,y(q, t) with scatteing angke for
PDMSPEMS (A) (¢ = 27 nm at 313.8K) and(B) (¢ =
54 nm at 322.4K) is shown in Fig. 4 for thetal5, 30 and

Tab.1. Molecularcharacteistics of the polymerblends averagedegreeof polymerizationN, avera@ statigical segment, mono-
mervolumey, avera@ refractionindexn anddifferencein refractionindices An, critical tempeatureT* andparaméers A, B anda

(seeEq.(24))

Blend N alA VIA3 A B a n An T* in °C
PS/PI 26.5 6.4 144 39 0.0419 1.55 1.54 0.11 95
PS/PB 20 5.9 126 37.9 0.0111 1.1 1.55 0.075 66
PDMS/PEMS A 252 5.3 149 3.22 0.0029 1.40 1.40 0.025 36
PDMS/PEMS B 249 5.3 149 3.22 0.0029 1.40 1.40 0.025 45.5
PDMS/PEM5S C 275 5.3 149 3.22 0.0029 1.40 1.40 0.025 55
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Fig.3. Experimenthanisotopic (VH) andisotropic(VV) scatteringfunctionsfor

PDMSPEMSA at313.8K, 0 =12° andké =

0.44 (A = 532nm) alongwith the cor-

respondindistributionrelaxaion L (In 7) functions

70°. Up to about55°, the experimenal C,(q, t) canbe
describedy two distinct relaxation modes Fromthe two
processs, the slow [ relaxation rate clearly increases
with theta, whereaghe fast I'; rate exhibits a weake var-
iation with 6.

Basedon this data analysis the contibution of the
slow procesqsecad peakin L (Int) of Fig. 3) wasfound
to increaseabove about40° whereastheintensity I; of the
fastprocesgemairs virtually consant. This canbehardly
justified asVV leakage sincethe polarizedl,, intensityis
a deceasingfunction of q (and hene 6). Moreower, the
samebelhavior is alsoobservedat T = 48.3°C for which
Iy is abaut threetimes wealer thanat T = 40.7°C. We
thereforeclaim that two relaxaton proceses are present
in ly(q, t) from which the slow onedominatesabovef =
40°; in fact, it is this slow processthat was reportedin
ref? For § = 55° the relaxaton spectrumlooks like one
broad mode (rather than two modes)which becomes
more narrow as @ is further increased At ¢ = 150° the
decayis almost single exponential with bette than 2%
accuray (seeFig. 4f andthelower plot in Fig. 2).

Nextwe comparethe experimeral depolaizedintensi-
ties with the theaetical predictions (egs.(20), (B2),
(10)). It is conveniat to corsiderthe scdtering intensity
normalizedby the initial intensity lo, and the scdtering
volume, Ve, taking into account the relative distanceto
thecritical point AT/T* = (T* = T)/T*:

CIWAT/T? AN N2
g= AT e (A0 (VN 004 (24
1oV, "\ 2r 0 ) (24)

whereq is thepropationality coeficient betweent, used
in theay, and AT/T* measuredin experimeft 7 =

12

6=150 09 { ¢

06 1,
06 |
03 A 03 4

0.0

00

10:310210-1 100 107 102 103 104
t/t

10-510-4 103 10-210-1 100 101 102

t(s)

Fig.4. Experimental anisotropic relaxaion function (a)—(c)
for PDMS/PEMB A (k¢ = 0.44,T = 313.8K) andB (ké =0.87,T
= 322.4K) shownrespetvely as openand solid symbolsat
three scattering angles Theoetical predictions (d)—(f) are
shown as solid curves togethe with experimenal data for
blend A
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Fig.5. Comparisorbetweenthe experimental andtheoreti@al (a) absolutevaluesof the scatteringintens-
tiesand(b) renormalizedscateringintensities] definedby eq. (24)

aAT/T*, An = n; — ny is the differenceof the refractive
indicesof two conmponentsWe usethe standad approxi-
mation: y (T) = A/T — B togetherwith literature values for
the patametersA andB. Thedefinition of z impliesthata
=1 + BN/2. Numeiical valuesof the relevar parametrs
usedin calculationsarelistedin Tablel.

Compued (using the resluts obtainedin sedion 5 and
in Appendx B) andmeasureddepolarizedntensitiesat 6
= 90° for the threehomageneouslendsat differenttem-
peraturesiearphase sepaation areplottedin Fig. 5. One
can seea good agreementbetweenthe predictiors and
the experimemal resuts for relatively long chainPDMY
PEMS blends as well as for short chain PS/PI blend,
whereador the PS/PBblendthe calculatedl,, is about5
times wealer than the experimemal intensities. For the
latter blend (PSPB), the experimetal slope of the log-
log plot 1, (AT/T) is smaler than2. The deviatin of the
theoreticalpredicions for J from horizontal line means
that the non-singular term is signficant in the corre-
spondingregon. Note that for PS/Pland PS/PBblerds,
the non-sirgular term is noticealke (in comparisonwith
the singularone) only far enoughfrom the critical point
(for AT/T > 0.03, see left part of plots in Fig.5). For
PDMS/HEMS, the singular term dominatesfor all tem
peraturesunder consieration since the polymerizaion
degreeof PDMSPEMS is about10 timeshigherthanfor
the other two blends.

The behavig of 1,,(6) as a function of the scdtering
angledepaendson temperatue becawse of the tempenture
dependece of &. The theory (eq.(10)) predicts (6 ) =
constfor smallké. For largerké a maximumof I, at 6§ =
75° is predicted; the intensity decreaesat higherangles
(seeFig. 6). On the expeimental side, I,,(#) normalized

to that of the neattoluenealsoshows a maximum which
is more pronouncechoweverthanthe theoreticalpredic-
tion. Moreover, the experimenmal |, exhibits anadditional
increaseat very high angles.This latter feature is not pre-
dicted. Neverthelessthe prediced maxmum occus in
the vicinity of 75° irrespectively of k, andq asindicated
by the datatakenwith 2 = 633 nm. The |, for PDMY
PEMS (B) with largerk¢é is indead higherthanthe I, of
(A) with lower k&. It is noticealte that the theoretical
broad peak aroundf = 75° encanpasseghe two peak
experimentalpatternof 1,+(6).

Let us comparenow the observel relaxationratesand
non-exporentiality parameg¢rs f or dynamc scatteing
processeswith the theaetical predictions. The time
dependencieshave beenfitted by the ‘‘stretchal” expo-
nertial, 1(t) = 1 (0)exp(—(I"t)") for all angkes higher than
40°. At lower anglesf < 40° two relaxationprocesses
were expgimentally observedFig. 3, 4). Over thed =40
= 150°, the predictedf for k¢ = 0.4 (Fig. 2b) agrees
well with the valuesobtaned from the experimental VH
satteringfunctions. The non-expoentiality paramegr f
is closeto 1 for large anglesandis araund 0.9 for smal
angdes exceptfor one point § = 15° both in theory and
experiment (Fig. 2(b)). Note that the accurcy of fitting
by two strethed exponets for such small andes (0 <
15°) is poor.

As shown in Fig. 7, I', is higherthan ', = 4Dk§sin20
both in the theoryandin the expaiment. The experimen
tal fast ratesexpresed as reduced quantites 7'/(4Dk3)
compare well with the theoreticalreducedrates, which
vary from about0.6 to 1, respetively, at low and high
andes for k¢ = 1. In fact PDMSPEMS A and B mimic
thetheaetical behavior for low andhigh k&, respetively;
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Fig.6. Theexperimentaluppe) andtheoretical(lower) angu-
lar depemlencies of the depolaized intensties. Theoretical
curvesareshownfor four differentk,¢ values.The experimental
intensities are for two PDMSPEMS blends: for A at T =
313.8K and 2 = 532 nm (k¢ = 0.44) and 633 nm (k& = 0.39)
shownasopensquars andtriangles respectively;at T = 321K,
4 =532nm (k& = 0.21) assolid squars. The datafor the blend
B are shownby opencyclesat T = 322.4K, 1 =532 nm (k¢ =
0.87)

with increasim k&, I/(4Dk3) deceasesat low angles.
The experimemal relaxation ratealsotends to 1 for large
angles,but for small angles it is more closeto 7'\ This
featurecanbe explainedin part by the fact that most 7',
shownin Fig. 7 hadbeenobtaned from the experimettal
correlation function after extraction of fast VH mode
which gairs intensityatlow angles.

Finally, a more direct comparisonbetweentheoretical
and expeaimental scattering functions for PDMSPEMS
A is shown in Fig.4. Note two relaxation proceses
observedfor # = 20°. The fast processdisappears at
higher scatteringangks, so that the dataand the theory
arein agreenentfor higherangles,the agreemenbeing
very goad for 6 = 150°.

7. Conclusion

In conclusiam, we presenteda thearetical interpretition of
the demlarized light scatteing of polymer blends in
terms of the double scatteing process The theory
accountsfor mary obsened features of the depolaized
scatteing. In patticular, note a good agreemenbetween
the predictedandthe measuwedtemperaure dependeaies
of the depolaized intensity for PDMS/PEMS blends

187

Experiment, Blend (A)

slow fast
ke=0.33, red | | O
ke=0.44, green A A
Theory

—4—ke=d —X—ke=t ——W

L LA B
0 20 40 60 80 100 120 140 160 180

Experiment, Blend (8}
slow fast
k=087 A
ke=027 ¢
Experiment, Blend (C). slow
ke=0.22, red —H—
ke=0.18, red —@—

0.0 +—FF—"1—r—1——1
0 20 40 60 80

100 120 140 160 180

0

Fig.7. Compaison between theoretical and experimental
relaxationratesfor the anisotropicscatteringrom PDMS/PENS

mixtures asa function of the scatteringangle.Solid (thick) line
denotesthe variation of the interdiffusion rate 4DK? sir?(6/2),

whereaghethinnersolid lineswith (+) and( x ) are thetheoreti-
cal predictionsfor I'./(4Dk2) for two differentko,¢ values.The

empty symbols denote the experimental reducel fast rate
whereaghe solid symbolsarefor the experimentateducedslow
rate in threePDMS/PEMS blends:A at T =313.8K, 2 =532nm

(triande) and /4 = 633 nm (squares)B at T = 322.4K and 1 =

532nm (cycles);andC at T = 338K at 4 = 488nm (ref. ®)

which was obtainedwith no adjustabé paramegrs:it is

the absolutentensities(rather thanreducedones)thatare

compared.

However several observéions have not been explained

by thetheory:

1. The measued intensity for PS/PB blerd is much
higherthanthe predictedone. Note that the prediced
intensitly is quite sensitive to the positionof thecritical
pointwhich might not beknown accuately enough

2. A noticeabé fast modeis obsened for PDMSPEMS
blends at low scatteringangks.It is tempting to attri-
bute this fast mode to the initial (short time) VH
relaxaton, which is prediced to relax with the
reducedrate ', /(4DK3) = 1 (seesection 4), andthe
slow mode to the long-time relaxation tail with
I /(4DK3) = 1 — cosi. However the theoreticalratio
of intensitiesof thesemodes|i.s/lsow iS much lower
thanthatobtainedexperimetally.
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It might be alsotempting to attributethe fast modeto
the non-singularcontribuion to dynamic doublescat-
tering which is also chaacterizedby fast decay An
analsis shows,howe\er, that the non-singular inten-
sity is too low in comparisonwith that observed An
interestingfeatureof the fast modeis that its relaxa-
tion rate is increasig as the saattering angle
deceasesthisis anunusualbehavior

3. The obsened VH intensily shaply increass at very
high andes while the theory predics a (snooth)
deceaseof |, in this regime.We areleaving elucida-
tion of the abovepointsfor future efforts.

Appendix A: Derivation of a general
expressionfor double scattering

In this appendk we preset the derivation of eq.(9) for
the depolarizedscatteringintensity for arhitrary structure
factor and form factor of the sample. We start from
ed.(8) andsubsitute the amplitude of the singlescatteed
waveE® from equation(7):

e

koRo g
En(R) = - E, / (ex01)(ce) () (g — ko)

Ro

dq dq
Sen)’ (2n)

ei(qr1+q’r—kr+k0|r—r1|)

H(r)H(ry)drd’r

Ir —r,l
Thenwe changevariabkesasr; = r, =r; —r andintro-
duce the Fourier image of the3 form factor H(q) =
Cigyr L
[HE e dr, H() = H(a)e ™ "

Evh(R) = *ké ¢

koRo
- E: / (ex1)(ce) () (g — ko)

BT ke () H(q,)

ra
d*q

) dSql d3q/
(2n)’

(2n)° (2n)°

oo,

dcrdr
(2n)’ ’

Then we can take the integrd over r, which gives
(g2 - (q + g’ —k —qy)) andthenintegrateoverqy:

()"

En(R) = — E, / (e1)(ce,) (') (g — ko)

g(ra(k—q+a1) +hor2)

; H(a)H(@+ ' —k—a,)

d*q

. &g
(2n)°

3
d'a dr,

(2n)° (2m)°

Let usintroducea function f(q) = (exa)(eq) |-
and makeuseof the fact that the function H(q) is loca
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lized in the regon g< -~ <k, sothatq, < k andq =
k-qg"-

EnR) =~ (2) S B [ @@ e ko (ko +a)

. g & dFa

H(a)H(Q+9 -k —q,) 20F (2 (20
|thi(ﬂ)453/f(k—q'+q )k —Q +0Q,)
4n C ! !

“(&(q') &(q — ko) &(—Q') @&(ko — Q)
“H(a)H(Q)H(@+d -k —g)H(Q+ Q' -k - Q,)

. dq
(2n)’

d3q/
(2n)’

&*Q
(2n)°

FQ
(2n)’

¢Q
(2m)’

oo
(2m)’

At this stagewe usethe Wick’s theoremvalid for Gaus-
sianfluctuationg?:

(ae(a,) &(,) @&(ds) &(d,)) = <&(d,) &(0,))
“(&(0,) &(q,)> + <ee(d,) e(ds)Xee(d,) &(0,)>

+<&(q,) &(d,)){e(d,) &(ds))

Using the definition of the structure factor
(99 (A1) 09 (02)> = (2m)°S(q2)d (01 + G2) We get

(ee) (1 ko) (~Q) (ko — Q)) =
A\ 'sq ko) (21)°(0(q — Q)d
() Snsia - ko 0P - Q)a - Q)

+6(q" = Q +ko)o(—Q"+ g — ko))

where 2- is a proportonality coeficient betweena(q)
andde (q). Notethatthethird termwill containafterinte-
gration the term H(k — ko) which is non-regligible only
for [k — kol < ko, i. €. it canbe neglected providedthatthe
satteringangk is notextremelysmall Thus

o= () B [ S@sta—kalfk— '+,

“an \c
*H(q,)H(Q)H(Q+d -k —qg)H(@+ g —k —Q,)
(" (k—=a+Qy) +f(k+ko—q+Qy))

. dq
(2n)’

d3q/
(2m)®

d*Q
(2m)®

oo
(2n)°

Thenwe do a number of subsitutions and obtain the
final resut, takinginto accouwnt thatthe algumert of H(q)
is alwayssmalerthank, andthat
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3

a _
/H(Q)H(Q+ql)(2n)3
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(2n)

/ Hz(l’l)”lqldzl’l ==

sinceH?(r) = H(r) by definition.

H(a,)

1)gd—q"=q-k+aq:
C 1" "
I = 41: o EO/S(q +k —a)S(q—ko)f(q—q"+ay,)
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d*q
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d3qu
(2m)°
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Whencewe condudethatq; < ko, Q1 < ko, 0’ < ko.

2)q—g.=q +qg:—q". Herewe cannegkectqg; andqg”

inS
c
= () [ Sk a)Sia, ~ kalf (@M (@)
H(Q.)H(q" — a,)H(q" — Qu)(f*(d, — a; + Qi)
+f(k+ko— 0, —q" + 01+ Q1))
. dg, gt Q. g
(2n)* (2 (2m)° (2n)°

3) This stepmustbe dore sepaately for two termscon-
taining f*:

a)Q:~ Q2=Q:—qu
W) [ sk a)sa - ko
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v 4n

)f(a)H(gy)

H(Q.+a)H(@" —a)(f*(q

d3ql/
(2n)’
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#Q,
(2n)?
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Usmg eq.(A1) we get [H(q" - q)H(q" — Q2 — qy)

.o,
(2n)®

= H(Q2); [H(@)H(Q2 + ) dql = H(Q) and
obtam
1 = (5) 8 [ stk - ansia, ~ kot(@)
« d qn d3Q2
f’ — Q2 2 3
(9, — Q2)H*(Q>) 207 (2n)
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b)Q:—~ Q:=Q:+0:1—q™

= (2B [ Sk asia, - kot (@)H(@)
H(Q, —a; +q")H(q" — aq)f"(k + ko — 0, + Q2)
~ g, g PQ  da
Q00 2 20 ey

Using ed.(A1) [ H(@" - a)H(Q. — a: + ¢") -£%- =
H(Q2); /H(a)H (g Q) ("3'4)13 = H(Q,). Thuswe get

total intensityl,, = 112 + 1

o= () B [ k- 8@ - ka)f @H(Q)
. Q, d’g
(F(d—-Qx) +f(k+ko—q+Qyp)) 2n?  (2n)°

Substititing g for g — Q. we finally obtaineq.(9).

Appendix B: Generalizationfor the casen +1

In sectims 2-5 we assumedthat the mean refractive
index of the blendis closeto unity n = 1. Here we gene-
alize thereslts, equatiors (20), (23), for any n. This will
allow usto compae the absolte valuesof theintensities.

In the geneal casestartingfrom Maxwdl’ s equdions
we getthe following equdion descibing a single scatter
ing evert¥

e &E

rot rot E = graddiv E — AE = ——
9 ¢z at?

wheree = n? is the polymerdielectric consaint, E = E@ +
E’ is the sumof theinitial andthe scatteed waves.After
sone simplifications we obtain an equdion for the singe
scatteredwave

2/
iz TE AE = 4n gradidivaaE((’) (B1)
¢z ot? n?

The solutionof this equaton hasthe sane form asthe
first termin equation(7) with additionalprefactorn and
k = n(w/c). The prefacbr leadsto an addtional factor of
n®in the dowble scatteed intensity(since we apply equa
tion (B1) twice, andthenraisethe amgitude to the sec-
ond powel) andthe secondpoint leadsto the factor n® in
singular term for the double scatteing intensity (since it
is propational to k¥ andto the factor n* in non-sirgular
tem. Hencethe two pointscanceleachotherin singular
cortribution andthe non-sirgular contribution stayswith
the addtional factor n.

We also haveto usea more accuate relation between

0@ . 0@ _ _n
WandA.V— >
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malization givesriseto the addtional factorn* in the VH
intensity
Thus we obtain the following renormalkzation of
eq.(20):
15 = 015, (B2)
while the non-sirgularterm remairs the samedueto can-
cellationof the two factors.
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