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A model based on a single Brownian particle moving in a periodic effective field is used to understand the
non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused
by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems
with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass.
The model nicely describes generic features of all three topologically different systems, in particular around the
maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages.
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I. INTRODUCTION

The most striking feature of glass-forming liquids is a
rapid increase of their viscosity when temperature decreases.
Usually, the glass-transition temperature is defined as the
temperature at which the viscosity reaches 1012 Pa s for
simple liquids, or at which the intrinsic relaxation time of the
material exceeds the experimental time scale. Yet relaxation
in liquids and glasses is still an unresolved problem in soft-
matter physics �1�.

Extensive research has been carried out to study the dy-
namic heterogeneity of the glassy state. Many interpretations
exist for this concept of heterogeneous dynamics. A common
one is that heterogeneous dynamics is applicable when indi-
vidual relaxing units have site-specific relaxation times �2�.
The size of a relaxing unit is typically a few nm for glasses
such as orthoterphenyl �2�. A conventional way to quantify
this type of heterogeneity is the observation that the non-
Gaussian parameter �NGP� �3�

�2�t� =
��r�t�4�

�1 + 2/d���r�t�2�2 − 1 �1�

is nonzero. Here �r�t�=r�t0+ t�−r�t0� is the displacement of
a particle after a time interval t, d the spatial dimension and
�¯� denotes ensemble averaging. For a system of identical
particles described by the diffusion equation, the mean
square translational displacement �MSTD� of a particle in-
creases linearly in time, and the van Hove self-correlation
function ���R−�r�t��� �4� has a Gaussian shape. In this case
the NGP is zero. For an ensemble of identical particles in the
ballistic regime with a velocity given by the Maxwell-
Boltzmann distribution the self-part of the van Hove function
is also of a Gaussian shape and the NGP equals zero as well.

It is indeed observed that many simulations of monatomic
�3,5,6� and binary systems �7,8�, polydisperse liquids �9�,
metallic glasses �10�, salts �11�, small molecules �12�, glassy
networks �13�, and polymers �14� do show a nonzero value

of the NGP. This behavior is also observed in experiments on
colloidlike particles using confocal microscopy �15� and on
glassy polymer systems by means of neutron scattering �16�.
A particular result is that the NGP peaks at a time t*, corre-
sponding to the crossover between the so-called cage regime
and the diffusive regime of the MSTD. The cage escape is
associated with complex dynamic behavior, involving com-
plicated clusters in space and correlated jumps in time. Typi-
cal values of the maximum of the NGP range from 0.1 to 10
but higher or lower values have been observed as well.

Nevertheless, the relation between deviations from Gauss-
ian behavior and dynamic heterogeneity in the sense of dif-
ferent relaxation units is not obvious. First note that many
causes of non-Gaussian behavior exist, also in glasses. A few
possible sources are averaging over intrinsically different
types of particles, crossover from ballistic to diffusive mo-
tion �17�, or anharmonic motion within a cage �16�. The
focus of the present study is on non-Gaussian behavior
�NGB� occurring close to the glass transition, and related to
cage-escape dynamics. Various models are in use, to shed
some light on this type of NGB. One of the current models is
the well-known mode-coupling theory �MCT� for the glass
transition �18�. Yet it predicts a time dependence of �2�t�
which differs significantly from simulation results and, more-
over, may strongly underestimate �by about one order of
magnitude� the deviations from Gaussian behavior close to
the glass transition �8�. The local-mobility model �6� con-
nects the deviations from Gaussian behavior with a fluctuat-
ing diffusion coefficient. However, it has the disadvantage
that a priori, it is not clear to what extent the concept of
fluctuating mobilities is reasonable �9�. The trapping-
diffusion model of Odagaki et al. �19� captures the glassy
heterogeneity in a broad relaxation spectrum. It has some
communalities with the model of the present study. However,
as we will see, a major difference is that it is based on a
totally different relaxation spectrum and it predicts that the
average relaxation time diverges at the glass transition �as is
also the case with the ideal MCT�. This is usually not ob-
served both in experiments and in simulations �20�. Yet an-
other model �21� tries to describe non-Gaussian behavior by
assuming a wide distribution of jump lengths causing the
heterogeneous dynamics. The most probable jump distance is
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then interpreted as a localization length. Each of the last
three models assumes some distribution �either in time, jump
lengths or diffusion coefficients� to capture a heterogeneous
aspect and to explain the non-Gaussian behavior. Still no
consensus exists which process is dominating for the non-
Gaussian behavior around cage escape and how to quantify
this.

The aim of the present study is to employ a simple model
for capturing the main physical mechanism underlying the
non-Gaussianity of glassy dynamics. The purpose of the
model is not to express the glassy dynamics in its full detail
�such as aging effects, backscattering, heterogeneity�, but
only the part which we think is the most relevant for the
description of non-Gaussian behavior. In particular it does
not assume any heterogeneity in the sense of site-specific
relaxation times. The analytical low-temperature results are
found to describe quantitatively important features of the
NGP acquired by molecular dynamics �MD� simulations of
three different kind of systems: a quasi-two-dimensional
colloidlike system, atactic polystyrene and a dentritic glass,
thereby suggesting that the model describes the main process
creating non-Gaussian behavior.

II. MODEL

A particle in a liquid is surrounded by neighbors which
hinder its motion, and caging occurs. For example, if the
interaction between particles is soft repulsive, the hindered
particle needs to overcome an effective energy increase to
get closer to the edge of the cage, as it approaches the neigh-
bors. Therefore it is trapped in a local energy minimum. The
flanking neighbor particles can lower the increase in energy
by moving away and creating more vacancy, or by some
other sort of collective rearrangement. After passing the
flanking neighbors this particle is again in a local energy
minimum if the particle previously at this position experi-
ences a similar type of movement �thereby causing stringlike
behavior �22��, or via another cooperative mechanism. So the
particle passed an effective energetic barrier. In this new
caged position the mechanism repeats itself.

This effect of caging and subsequent cage escape to a new
cage can be modeled by the motion of a single particle in an
effective field describing the interactions with the neighbor
particles in the following way. The particle in question expe-
riences frequent collisions with its neighbors. As the sur-
rounding particles have zero velocity on average, the colli-
sion is harder if the velocity of the particle is higher. We
describe these two effects by a friction force and a stochastic
force acting on the particle. The energy barrier to be passed

is modeled by an effective potential. This can be interpreted
as a mean-field-like potential. To keep the model simple we
restrict ourselves for the moment to the one-dimensional
�periodic� sine function. Later on it will be shown that the
resulting non-Gaussian parameter does not depend much on
the precise shape of this potential, nor on its dimension.

Note that the actual potential is highly fluctuating in space
and time, leading to strongly correlated processes at the short
time scale. One example of such correlation is that easy local
transitions are frequently reversed and repeated, leading to
strong back-scattering sequences in the process. Such corre-
lated processes can be resummed in a way as is done in the
multiple-scattering theory for transport in disordered media
�23,24�. In this picture the atomistic diffusion process can be
described quantitatively by a site-to-site hopping process
with a large spread in transition probabilities. The resulting
mobility, which has a similarity with the diffusion coefficient
via the Einstein relation, can then be expressed in terms of
effective site-to-site propagation probabilities. These prob-
abilities are then expanded in a multiple-scattering perturba-
tion series involving all other sites. To deal with the correla-
tions the perturbation series is reordered into a renormalized
self-avoiding-path expansion, in which closed-loop pro-
cesses �in particular direct back-scattering events� are fully
summed first. After making a closure in the expansion by
uncorrelating at a higher level of approximation �e.g., via a
T-matrix approximation�, one then arrives at a description of
the diffusion process on a coarse-grained effective level.
When considered at a coarse-grained time scale, the diffu-
sion coefficient contains the local correlated processes, while
the effective time constant has the meaning of a dwelling
time, i.e., the time after which the probability for a series of
repeated local events equals the probability for an escape
over a hard local barrier. These hops over a hard barrier have
a very small probability of �enhanced� reversal, so that for
times above the time scales associated with this process the
dynamics can to a good approximation indeed be treated as
uncorrelated. The present study is restricted to this coarse-
grained picture, with strong back-scattering events re-
summed. The surrounding cage potential of the particle in
question is then also averaged, which justifies the use of the
simple sinusoidal.

In the above picture, the dynamics of a particle inside an
external field is captured in the Langevin equation �Fig. 1�

m
�2x�t�

�t2 + �
�x�t�

�t
= −

�U�x�
�x

+ �f�t� , �2�

with m the mass of the particle, � the friction constant, −
�U�x�

�x
the force acting on the particle due to the external potential

FIG. 1. �Color online� Schematic view of the
effective neighborhood model, in which the par-
ticle jumps from one cage to another.
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U�x�= 1
2Ub sin� 2�x

L
� and �f�t� a random force, of which the

first moment is zero and the second moment is �f�t�f�t���
=2D0��t− t��. Here D0= kT

� is the coarse-grained bare diffu-
sion constant of the particle, Ub the height of the energy
barrier, L the �effective� distance between cages and k Bolt-
zmann’s constant. Limiting to cases where the inertial term
can be neglected, the long-time diffusion coefficient of the
particle in the sine potential is given by D= L2

2d�

=D0
�I0

� Ub

2kT
��−2

�25�, where I0 is the modified Bessel function
of the first kind and � is the average time to travel a distance
L under the influence of the potential; so � is of the order of
the dwelling time as discussed above.

The non-Gaussian parameter for the dynamics of the par-
ticle under the influence of the external potential can be cal-
culated analytically for a sufficiently low temperature-to-
barrier ratio, kT

Ub
�1. In this limit the minimum of the

potential can be approximated by a parabola. For very small
times the particle is diffusing freely, ��r�t�2�=2dD0t. After
some time its dynamics is influenced by the potential and the
particle becomes trapped; the MSTD reaches a constant
value of ��r�t�2�=�2. Time scales up to the start of caging at
t= tc=�2 / �2dD0� will be discarded in this calculation. For
longer times the particle mostly vibrates in a potential mini-
mum n and due to thermal excitation it occasionally jumps to
neighboring minima; the jumping part of the particle motion
then obeys the master equation �26�

��n�t�
�t

=
D

L2 ��n−1�t� + �n+1�t� − 2�n�t�� , �3�

with �n�t� the probability that the particle is in a potential
well n at time t. It is now straightforward to generalize this
one-dimensional random-walk master equation to higher
�spatial� dimensions to afford a better comparison to simula-
tion results. Assuming that the MSTD inside a well is of
Gaussian nature leads to �see Appendix�

��r�t�2� = �2�1 + t/t*� = �2 + 2dDt �4�

and

��r�t�4� = �1 + 2/d���r�t�2�2 + 2dDtL2, �5�

with t*=�2 / �2dD� and �2 the MSTD within the cage �the
plateau value, due to the rattling motion inside the cage�.
Substituting Eqs. �4� and �5� in Eq. �1� yields the high-
effective-barrier result

�2�t� =
L2

�1 + 2/d��2

t/t*

�1 + t/t*�2 =
L2

�1 + 2/d��2

2dDt/�2

�1 + 2dDt/�2�2 ,

�6�

with d=1 for the random walk described by Eqs. �2� and �3�.
Equation �6� in this exact form is also valid for a broader
class of random walks, which includes a random walk in
random directions, and on regular triangular and cubic lat-
tices �this last case is considered by Odagaki et al. �19��; also
a distribution of jump lengths results in the same expression
�then L represents an effective jump length�.

As an additional outcome of the model the fraction of
particles which have jumped at least once after some time t

can be determined. In the high-effective-barrier limit this
fraction is given by 	 j�t�=1−exp�− 2dDt

L2 �. At t* this is ex-
pressible in terms of the maximum value of the NGP 	 j

*=1
−exp�− �2

L2 �=1−exp�−�4�1+2/d��2
*�−1�. For a typical value

of �2
*=2.0, we have 	 j 	0.072, which can be interpreted as

the fraction of mobile particles at t= t*.
We summarize our main claims as follows. First of all, a

simple one-particle model is suggested which allows an ana-
lytical solution for the NGP. In the low temperature-to-
barrier case the maximum of �2�t� is determined by the ratio
of the squared jump distance and the value of the MSTD in
the cage,

�2
* = �2�t*� =

L2

4�1 + 2/d��2 . �7�

Finally, the time at which the NGP peaks, t= t*, is when the
rattling part of the MSTD ��2 in Eq. �4�� equals the diffusive
part �2dDt* in Eq. �4��. For higher ratios of kT

Ub
, where the

plateau region of the MSTD is not that pronounced �see Fig.
2�, Eq. �6� is not applicable. In this case the model can be
solved numerically and it is still possible to define the cross-
over time between caged motion and final diffusion as the
point at which on a log-log plot for the MSTD vs time the
two tangent lines �to the cage regime and to the final diffu-
sive regime� intersect. Again this time is close to t* �Fig. 2�.

III. COMPARISON WITH SIMULATION RESULTS

We compare the predictions of the model to results from
simulations of three distinctly different glassy systems. The
quasi-two-dimensional colloidlike monatomic system simu-
lated by Zangi and Rice �5� shows NGB. Here particles of
diameter 
 are confined to a slab with a width W=1.2
 and
interact with each other via a purely repulsive potential.
Simulation results of Ref. �5� for the in-plane MSTD and
NGP are fitted with the model for various number densities �

FIG. 2. �Color online� Predictions of the model for the NGP
�upper panel� and the MSTD �lower panel� for various kT

Ub
ratios.

The arrows point towards decreasing ratios. Results are obtained by
numerically integrating Eq. �2� �25,27�. The time t* at which �2�t�
peaks �indicated by bullets� agrees well with the crossover from the
cage regime to the final diffusion �intersection of black solid lines�.
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in two ways. First we use Eq. �6� and treat t*=�2 / �2dD� and
the ratio L2 /�2 as two adjustable parameters. In this case the
full shape of the NGP is reproduced remarkably well �see the
full colored lines vs black dotted lines in Fig. 3�, especially
for high densities �i.e., high effective barriers�. Note that the
analytical expression for the NGP, Eq. �6�, implies that its
full-width at half-maximum �FWHM� on a log scale is not
adjustable but has the constant value of w=log10�thigh/ tlow�
=log10�17+12
2�	1.53. Nevertheless it adequately de-
scribes the simulation results, w=1.43 and 1.48 at �
=0.900
−2 and 0.910
−2, respectively.

Alternatively, we can find the values of the model param-
eters for the NGP in an independent way, namely from the
MSTD together with an estimate of the cage to cage dis-
tance. Fitting the simulated MSTD for the densities for
which there exists a definite plateau ���r�t�2�� t0� with Eq.
�4� renders the plateau value �2 and a prediction for t*. To
determine the maximum value of the NGP, �2

*, the effective
jump-length L is needed as well. Presuming that it corre-
sponds to the distance between the nearest neighbors, L is
calculated by assuming that the particles are placed on a
triangular lattice, so that L−2=


3
2 �.

Two distinct aspects are observed, when comparing this
alternative fit to the simulation results �compare solid vs
large-dotted colored lines, Fig. 3�. First, it can be seen that
the cage-diffusion crossover time in the MSTD is equal to
the time at which the NGP peaks, t*, in accordance with the
prediction of the model. Second, this parameter-free fit un-
derestimates the maximum of the NGP by at most a factor of
2.

A higher peak value of the NGP can be interpreted as
being due to a larger effective jump length than the nearest-
neighbor distance. This suggests that also next-nearest-
neighbor jumps as well as jumps of higher order could be
important. It can be shown that when one takes into account

these multiple jump lengths, only the effective jump length L
of Eq. �6� changes, while the functional form of �2�t� re-
mains invariant. Nevertheless, it seems that for the highest
density this multiple-jump-length effect vanishes and the ac-
cordance with the model is better when assuming a single
jump length.

In order to study polymer-specific effects of the non-
Gaussian dynamics we have performed molecular-dynamics
simulations of a melt of atactic polystyrene �PS�, one of the
most common polymer glass formers. Simulation details are
in Ref. �28�. The glass-transition temperature Tg for the PS
melt of eight chains of 80 monomers each is around 370 K.
The MSTD and the NGP, after averaging over all united
atoms, are shown in Fig. 4.

Some generic features of the one-particle model can also
be seen for this polymer system. The peak time of the NGP,
t* is also situated at the crossover from the cage regime to
Rouse-like diffusion. However, because of the different
bonded interactions of the backbone and the phenyl-ring at-
oms, the jump distances, the cage sizes and the mobilities of
these atoms are different as well. We therefore compare only
the values of the MSTD and NGP for atoms in the backbone
�including the first atom of the phenyl ring and excluding
chain ends�. We assume that the jump distance is now due to
an internal torsion potential in the polymer chain; this poten-
tial favors specific positions of the atoms, corresponding to
trans or gauche conformations. We also assume that these
conformations are separated by a distance L between them of
about 2.5 Å. At T=375 K the plateau value of the MSTD is
�2	0.64 Å2. Using Eq. �7� with these values of �2 and L
gives then �2

*=1.5, which is remarkably close to the simu-
lated value �2

*=1.3.
The molecular-dynamics simulations also show that the

shape of the NGP is similar to but much wider than the
prediction of the one-particle model. The FWHM in case of
a time-independent diffusion coefficient is shown in Fig. 4 as

FIG. 3. �Color online� Predictions of the model and simulation
results for the colloidlike system �5� for various densities �, for the
NGP and MSTD parallel to the slab. The arrows point towards
increasing densities. Here t0 is the unit of time �5�. Black lines
�small dots� are fits of the model �MSTD, Eq. �4�; NGP, Eq. �6�� to
the simulation results �solid colored lines�. The colored lines �large
dots� for the NGP are predictions of the model by an independent
set of parameters, see main text.

FIG. 4. �Color online� NPG and MSTD of atactic polystyrene
�shown is the monomer unit� for various temperatures. The arrows
point towards decreasing temperatures. The MSTD crossover time
from caging to Rouse diffusion ���r�t�2�� t0.5 �27�� is close to the
time at which �2�t� peaks. The horizontal bar indicates the FWHM
of the NGP for a time-independent diffusion coefficient �see text�.
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a bar. This difference can be partly explained by the anoma-
lous �nonlinear in time� Rouse diffusion of the segments in a
polymer chain, ��r�t�2�� t1/2. Note that for a time-
independent diffusion coefficient, a result of the model is that
the NGP increases linearly in time for tc� t� t*, i.e., �2�t�
� t1 �Eq. �6��. A broader peak can be interpreted in terms of
a lower effective scaling exponent of the NGP for tc� t� t*.
Using the Rouse exponent 1 /2 �so D� t−1/2� in Eq. �6� in-
deed results in a broader peak. Still, this anomalous diffusion
cannot fully explain the broad shape of �2�t� occurring with
polystyrene �Fig. 4�. It is possible that due to disorder in the
polymer structure close to the glass transition the packing is
not ideal, and a varying environment is present. As a result
low-energy pathways are preferential and single-file diffu-
sion is enhanced. It is known that this type of diffusion is
anomalous as well, ��r�t�2�� t1/2 �29�. The combination of
Rouse-like and single-file diffusion �giving an effective ex-
ponent of 1 /4 for t� t*� could be the cause for this wider
peak. Another possible cause is that the various united atoms
are not identical, due to the different bonded interactions.
This results in different dynamics and thereby promotes a
wider relaxation distribution.

Finally, we have performed molecular-dynamics simula-
tions of a perfectly branched dendritic melt �see Ref. �30� for
details�. The atom connectivity of this system has an even
more complex structure than in the previous case. In the
present study we only show results for the fourth-generation
dendrimer melt, for which the glass transition occurs around
Tg=500 K, although results for other generations are similar.
The MSTD and the NGP of the outer-generation atoms are
given in Fig. 5. As with the PS glass, the same main features
of the model are observed for this system. Following the
same analysis as for the polymer glass, the prediction of the
model for T=500 K �assuming a trans-gauche distance of
2.5 Å as the most dominant jump-length L and using the
plateau value of the MSTD, �2=1.25 Å2� is �2

*=0.75, com-
pared to the simulation result of �2

*=0.92. This similarity
appears to indicate that the model indeed captures the domi-
nant mechanism responsible for non-Gaussian behavior.
Similar to the PS melt, the simulated NGP is broader than the
calculated one. We assume that a similar reasoning as for the

polystyrene system �Rouse-alike and single-file dynamics�
may be applied here as well to account for the extra
broadening.

IV. SUMMARY AND CONCLUSIONS

In short, we have shown that some universal aspects of
the non-Gaussian dynamics �observed for many systems
�5–16�� around the cage-diffusion transition can well be ex-
plained by a simple model, which does not assume a priori
any heterogeneity of glassy dynamics �in the sense as men-
tioned in the introduction�. For this model the maximum of
the NGP occurs at the crossover between the caged plateau
and the final diffusion and the maximal height of the NGP is
given by Eq. �7�. These statements are confirmed even within
fair quantitative detail by simulation results for glass-
forming systems with widely different topology—a quasi-
two-dimensional colloidlike low-molecular-weight glass
former, linear polystyrene glass, and a glass of perfectly
branched dendrimers. It is important to emphasize that this
model considers the motion at a coarse-grained time scale. It
only assumes the existence of cages in which the cage to
cage motion results in non-Gaussian behavior. No further
details of any explicit collective or heterogeneous glassy dy-
namics are required to understand the non-Gaussian behavior
in this sense.

In contrast to the low-molecular weight liquids, additional
intrachain �torsional� interactions in polymer melts make
multiple jumps very unlikely, and the predictions of the
model regarding the maximum of the NGP are found to be
closer to the simulated results. On the other hand, the poly-
mer connectivity introduces more complicated anomalous
diffusion effects, which effectively broadens the simulated
NGP peak.
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APPENDIX: RANDOM WALK

We will show in this Appendix how one can determine the
expressions for the mean-square translational displacement
and the mean quartic translational displacement for a certain
class of random walks �i.e., Eqs. �4� and �5��. First we will
look at a discrete random walk, in which the particle makes
a jump after each step i in some direction xi with a certain
probability distribution for the step vector ��xi�. Later on the
time dependency is introduced.

We only consider random walks for which ��L�=��−L�,
i.e., a walk of Pólya type �Ref. �31�, Sec. I.3.3�. Then the
MSTD for a n-step random walk is ��r�n�2�=nL2, with
�r�n�=�i=1

n xi, L2= �xi ·xi�= �xi
2� �Ref. �31�, Sec. I.2.1� and

�¯� denoting averaging over all possible step vectors.

FIG. 5. �Color online� Same as Fig. 4, but for the dendrimer
melt, of which the architecture is shown.
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The discrete mean quartic translational displacement
�MQTD� is then

��r�n�4� = �
i

�
j

�
k

�
l

��xi · x j��xk · xl�� . �A1�

One can easily see that the only terms in the right-hand side
of Eq. �A1� which do not cancel to zero when averaging over
all possible steps L are when i= j=k= l �n terms�, i= j�k
= l, i=k� j= l and i= l� j=k �all n�n−1� terms�. Therefore
the discrete MQTD is

��r�n�4� = n�xi
4� + n�n − 1�L4 + 2n�n − 1���xi · x j�2� .

The time-dependent MSTD �and MQTD� is then acquired by
observing that the chance for n jumps at time t is described

by the Poisson distribution �n�t�=exp�−t /��
�t/��n

n! . Here � is
the average time it takes to make a jump. It is assumed that
nonjumped particles already have a constant value of the
MSTD �2 within the cage. Then the time-dependent MSTD

is

��r�t�2� = �2 + exp�− t/���
n=0



�t/��n

n!
��r�n�2� = �2 + L2t/� .

We will further limit ourselves to random walks in which all
steps are of equal length, 
xi
=L �so �xi

4�=L4�; and obeys
��xi ·x j�2�=L4 /d. Random walks adhering to these two con-
ditions are, for example, a d-dimensional random flight, a
two-dimensional triangular, a three-dimensional body-
centered-cubic, and a three-dimensional face-centered-cubic
lattice. These relations can be checked for each type of ran-
dom walk by straightforward calculations �i.e., averaging
over all possible step vectors�. Repeating the calculation for
the time-dependent MQTD and assuming that the displace-
ment within the cage obeys Gaussian statistics �i.e., �4= �1
+2/d���2�2� results in

��r�t�4� = �1 + 2/d���r�t�2�2 + L4t/� ,

which completes the determination of the two moments.
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