
Local Dynamics of Polyethylene and Its Oligomers: A Molecular
Dynamics Interpretation of the Incoherent Dynamic Structure Factor

G. Arialdi, K. Karatasos,‡ and J.-P. Ryckaert*

Laboratoire de Physique des Polymères, CP 223, Université Libre de Bruxelles, Bd du Triomphe,
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ABSTRACT: We present a detailed study of the local dynamics of short polyethylene (PE) chains using
molecular dynamics (MD) simulations and quasi-elastic neutron scattering (QENS) data. QENS
measurements were carried out on two samples having different chain lengths: C44H90 and PE2K (Mw )
2150 g/mol). The incoherent dynamic structure factors obtained from experiments at T ) 450 K and MD
simulations carried out at the same temperature are compared in the range 0.5 e Q e 2.0 Å-1. Agreement
between experimental data and simulations is quantitative. Attempts are made to characterize the
momentum transfer and the chain length dependence of the I(Q,t) and S(Q,ω) data on the basis of the
Kohlrausch-Williams-Watts (KWW) function and two exponentials relaxation functions in time. As MD
simulation data cover a broader frequency window and have a very low statistical noise, a more refined
analysis of the intermediate scattering functions in terms of a continuous linear combination of
exponentials weighted by a distribution of relaxation times has been performed. This analysis shows a
systematic evolution of the shape of the distribution of relaxation times going from a two-process situation
at low Q toward a single merged process at higher Q. This allows us to point out in a well-defined case
the limitations of both the KWW and two exponentials descriptions which approximate the distribution
of relaxation times either as one broad and asymmetric distribution or as a conjunction of two delta
distributions.

I. Introduction

The local dynamics of polyethylene (PE) has been
investigated over many years using both experiments
(e.g., rheology,1-3 NMR,4 etc.) and simulations.5-13 A
number of neutron scattering studies have been carried
out on this polymer,12-20 some of these dealing with
experiments below the melting temperature, Tm.14-17

One of the first quasi-elastic neutron scattering (QENS)
experiments on polyethylene melts was reported by
Rennie et al.,18 who investigated the diffusion of rela-
tively short protonated molecules (C36H74 and C40H82)
in a deuterated polyethylene matrix. These measure-
ments were confined to the low Q region and were
limited to a relatively narrow energy transfer range
(-1 to 10 µeV). While high molecular weight PE has
been studied by QENS,17,20 there is a lack of experi-
mental data on short PE chains, which can be directly
compared to the results that are becoming available
from simulations. To date, only one neutron study of
local dynamics in a long-chain alkane, n-C100H202, at 504
K has been reported in the literature.12 In that work a
detailed comparison between experimental QENS data

and molecular dynamics (MD) simulations is given, but
this is restricted to the Q dependence of the intermedi-
ate scattering function of n-C100H202 at a single tem-
perature.

This latter study12 established that, in the momentum
transfer Q range above 0.5 Å-1, the incoherent general-
ized susceptibility ωS(Q,ω) shows a single broad peak
in frequency, indicating that the local dynamics relax-
ation in PE at 504 K proceeds via a single process. The
latter was interpreted as a composite process resulting
from the combination of torsion oscillations and confor-
mational jumps leading, on the local scale, to relaxation
effects taking place on similar time scales. This is in
contrast with the situation of many polymer melts (e.g.,
polyisoprene,21 poly(vinyl chloride),22 polybutadiene,23

and polypropylene24) at temperatures not too far above
Tg where a fast process (occurring within a picosecond)
due for a large part to torsion oscillations of the
backbone and a slower diffusive process related to
conformational jumps are found to be very well-resolved
in time. In these polymers, the I(Q,t) relaxation has been
related to the well-known two-step decay characteristic
of glass-forming supercooled liquids. Attempts to inter-
pret the incoherent dynamic structure factor of PE in a
slightly lower temperature regime on the basis of two
separate processes can be found in the neutron scatter-
ing studies of Buchenau et al.19 and Kanaya et al.20

Our present study aims to assess to what extent, in
PE melts, it is possible to unravel two dynamic processes
in the local dynamics relaxation. We highlight methods
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that can be used to appreciate the Q and temperature
dependences which are a first step toward their detailed
characterization. More generally, this work extends the
direct comparison between quasi-elastic neutron scat-
tering and MD computer simulations to a lower tem-
perature regime (T ) 450 K) with respect to former
studies12 and discusses some aspects of the molar mass
dependence of PE local chain dynamics. This is the first
paper of a series where we describe a systematic
analysis of the local dynamics of PE in terms of
molecularly interpreted processes. In the present paper,
we discuss new QENS and MD results on samples with
chain lengths in the range C44-C154 at 450 K in a Q
range going from 0.5 up to 2.0 Å-1. The largest chain
length sample is widely known as “PE2K” for its
approximately 2000 Da molar mass.

Section II discusses technical details associated with
the time-of-flight experiments and samples. Section III
is devoted to a description of the atomistic model used
in simulations and the type of computer experiments
which were conducted. As our molecular dynamics
simulations are dealing with a single polydisperse PE
sample, we explain how the local dynamics relaxation
data on C44 and PE2K has been estimated from the data
and why the polydisperse nature of the sample was
found to be useful. Section IV is devoted to the direct
comparison for both chain lengths at various Q values,
between the experimental incoherent dynamic structure
factor and its prediction from simulations. To simplify
notations, the incoherent dynamic structure factor will
be denoted S(Q,ω) and the corresponding intermediate
scattering function I(Q,t), given the absence of ambigu-
ity with any coherent signal. We will however distin-
guish S(Q,ω) from its version convoluted with the
experimental resolution function, which will be written
as Sc(Q,ω). In section V, we first parametrize the
intermediate scattering function with a stretched ex-
ponential. This choice is guided by the versatility of this
function to represent a complex relaxation process which
is intrinsically, as discussed above, a composite one.
Initially, such a fit is attempted on the experimental
and simulation data, as restricted to the accessible
experimental frequency window, i.e., at most -1 to 10
meV. Exploiting then the larger frequency window
offered by 12 ns long MD simulations, we use the same
functional form to fit the complete relaxation curves.
With this two-parameter description which turns out
to represent data adequately in the experimentally
accessible window, the various aspects of our study
(chain size, Q dependence, resolution effects) can be
discussed in terms of a minimal set of parameters. In a
second step, we report an attempt to represent the same
experimental and simulated relaxation functions (for
PE2K) by a sum of two Lorentzians and we explore the
nature of the composite process and the possibility to
unravel its two components within the probed Q regime
and accessible frequency window. This last discussion
prepares for the section VI where a distribution of
relaxation times analysis is performed on the simulation
data, exploiting the accessible wide time window which
allows to follow the whole relaxation (up to the point it
vanishes). This approach offers a better understanding
on the Q dependence of the relaxation function as it
indicates the trend from a unimodal distribution of
relaxation times at high Q toward a bimodal structure
at larger length scales. Section VII summarizes and
concludes our findings. Further aspects on the temper-

ature dependence of the PE local dynamics are pre-
sented in another paper.25

II. Materials and QENS Experiments

Two polyethylene samples were used for the neutron scat-
tering measurements: (a) PE2K, with Mw ) 2150 g/mol (Mw/
Mn < 1.15) from Scientific Polymer Products, and (b) normal
tetratetracontane, C44H90, from Aldrich. A slab geometry was
used for all measurements; sample thickness was ca. 0.18 mm,
leading to a transmission of approximately 0.9. This high value
ensures that multiple scattering effects are kept to a minimum.

Neutron scattering measurements were carried out at 450
K on PE2K and C44H90 using the time-of-flight spectrometer
NEAT26 at the BENSC facility in Berlin (Germany). The
scattering of a vanadium sample was also measured in order
to determine the Q-dependent instrumental resolution. The
incident neutron wavelength was λ ) 5.1 Å, giving an energy
resolution of ca. 95 µeV (determined as full width at half-
maximum). The incoherent dynamic structure factor was
measured as a function of scattering angle in the range
13.35°-136.65°. Because of the wide energy range which is
covered by the measurement, i.e. -1.0 to 10.0 meV, the Ŝ(θ,ω)
data corresponding to the scattered intensity as a function of
energy transfer at constant scattering angle, θ, cannot be
simply converted to the incoherent dynamic structure factor
S(Q,ω) at constant Q. For this purpose, an interpolation
procedure was used (INGRID code27) after correcting the data
in the usual way (subtraction of empty can, detector efficiency
normalization using vanadium, and absorption corrections).
The constant Q interpolation led to a series of Q values for
elastic scattering (Q ) [4π/λ] sin[θ/2]) in the range 0.37-2.26
Å-1. The same constant Q interpolation was also used to obtain
the incoherent dynamic structure factor at Q values that
matched MD calculations, i.e., 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,
and 2 Å-1 (∆Q ) 0.25 Å-1). After the constant Q interpolation,
the energy transfer, ∆E, range becomes Q-dependent. Maxi-
mum ∆E values vary between 1.40 and 10.0 meV for Q
increasing from 0.5 to 1.5 Å-1. These upper limits in energy
mean that information on S(Q,ω) and I(Q,t) is limited respec-
tively by a maximum angular frequency ωmax or by a minimum
time tmin ) 2π/ωmax, which are ωmax ) 2.13 × 1012 rad/s and
tmin ) 2.95 ps at Q ) 0.5 Å-1 and ωmax ) 1.52 × 1013 rad/s or
tmin ) 0.41 ps at Q ) 1.5 Å-1. Values of tmax, the longest time
for which we have information, are determined by the instru-
mental resolution and, for all Q values, are effectively of the
order of 20 ps. (More precisely, a Gaussian resolution function
identifies the resolution time with τres ) x8ln2(fwhm)-1 )
16.3 ps.) For the purpose of subsequent data analysis, a smooth
resolution function was used. This was obtained by fitting the
S(Q,ω) data of a vanadium sample using a Gaussian (as main
component) and a very small Lorentzian term to improve the
agreement at the “foot” of the measured resolution function.

III. Simulation: Experiments and Data
Treatment

a. Experiments and Strategy. Our MD simulations
were performed in a way that largely mimics a former
MD study of PE at 450 K by Harmandaris et al.8 to
which we refer for details. The PE united atom (UA)
model and the polydisperse sample adopted in both MD
studies are identical. All methyl and methylene groups
are represented by Lennard-Jones units, located at the
carbon nuclei, which model the nonbonded interac-
tions (both intermolecular and intramolecular). The
Ryckaert-Bellemans torsional potential28 is employed
for all dihedral angles. While C-C bond lengths are
taken as rigid, harmonic bending potentials are explic-
itly considered. Well-equilibrated configurations were
produced by a constant pressure/constant temperature
Monte Carlo (MC) procedure which, together with other
types of moves (reptations, end rotations, flips, and
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concerted rotations), allows for end-bridging moves29,30

which modify the connectivity of monomers within
chains. The end-bridging move conserves the total
number of carbon groups and the total number of chains
but allows progressively a full sampling of the adopted
chain length distribution. More precisely, the underlying
statistical ensemble is the semigrand ensemble
[NcnmonpTµ*] where both the total number of chains
(Nc ) 20) and the total number of methylene groups
(nmon ) 1560) are imposed. The number-average chain
length (expressed as N for the number of skeletal
carbons) is thus fixed to 〈N〉n ) nmon/Nc. Other imposed
external parameters are the temperature, the pressure,
and a reduced chemical potential spectrum µ*(N) which
leads to a particular distribution of chain lengths within
the sample.8,29 In our study, we adopted a uniform
distribution of chain lengths between C39 and C117
(giving an average Mn ) 1094 Da, that is C78). The MC
generated configurations were used to obtain initial
configurations for the dynamics. Instead of performing
a single very long MD trajectory, we performed 10 MD
trajectories of 12 ns (each of them run in constant
energy and constant volume conditions) from well-
equilibrated independent starting configurations char-
acterized by the same total number of carbon groups
but different chain length distributions, volumes, and
energies. These initial configurations were selected from
a long MC trajectory performed at p ) 1 atm, T ) 450
K, giving an average specific volume of 1.293 ( 0.007
cm3/g, in agreement with the Pant and Theodorou
value.29 With respect to the experimental value,31 this
specific volume appears to be 2-4% too low.

The same polydisperse system was studied at other
temperatures (T ) 504 K and T ) 350 K where PE
remains purely amorphous in the simulation) at p )
1 atm using the same scheme, and additionally, a
monodisperse PE2K system of 20 chains was simulated
by a standard microcanonical molecular dynamics at
T ) 504 K, p ) 1 atm. For the T ) 504 K experiments,
specific volumes were estimated from the preliminary
MC equilibrium run analogous to the one performed for
the polydisperse 450 K case: we found 1.344 ( 0.005
cm3/g for the polydisperse C78 case at 504 K and
1.341 ( 0.005 cm3/g for the monodisperse C154 case using
the same types of MC moves except the end-bridging
move. The average specific volume of PE at 350 K was
found to be 1.200 ( 0.006 cm3/g. Although the present
paper concentrates on the data analysis at 450 K, in
the following sections, we will also refer here and there
to the results from the other MD runs when it is
required by the context of our discussion.

The choice of a polydisperse PE sample to predict by
simulation the intermediate scattering function I(Q,t)
requires an explanation. To a first approximation and
for sufficiently long chains, the local dynamics relax-
ation is expected to be independent from the chain size,
and within this approximation, the use of a polydisperse
sample does not present major drawbacks. Actually, to
compare local dynamics experimental data on C44 and
PE2K to simulations, we have adopted a refined analy-
sis of our simulation data in which we distinguish
specific contributions from chain core and chain end
scatterers. This is detailed in the next subsection (IIIb).

It must be stressed that the major reason for our
strategy to deal with a polydisperse system was moti-
vated by our need for well-equilibrated simulated
samples, as produced by the MC methodology sum-

marized above. At 450 K, the main chain Rouse time of
a chain with 154 carbons like PE2K is of the order of
10 ns.8 At the start of our study, we felt that in order to
better characterize the PE local processes, it would be
useful to follow the PE local dynamics down to purely
amorphous undercooled thermodynamic states (rather
easy to produce in simulations, especially with polydis-
perse sample), reaching temperatures as low as T ) 350
K.25 Equilibration of PE melts at such low temperatures
would be very inefficient by standard MD relaxation
times, and therefore, we decided to simulate the unique
polydisperse system considered here at 1 atm pressure
over a large temperature window.

Further considerations on the validity of the micro-
scopic model used and on the effect of the polydispersity
on the structure and dynamics within the sample can
be made. First, it has been shown30 that the predicted
X-ray structure factor, probing intra- and intermolecular
contributions to the radial carbon-carbon pair distribu-
tion, is in very good agreement with the experimental
data. More importantly, in the present context where
the emphasis is on chain dynamics, an estimate of the
chain length dependence of the viscosity coefficient of
PE oligomers has shown the reliability of the micro-
scopic model.8 In this latter work, the viscosity of a
monodisperse melt of a paraffin characterized by a chain
length N at 450 K was estimated from simulation data
on a polydisperse sample at that temperature, using the
Rouse expression of the viscosity based on the chain
longest relaxation time, a quantity which can be explic-
itly determined either by the end-to-end vector relax-
ation rate or by the center-of-mass diffusion coefficient.
Also, using the present MD trajectories, we have
compared the 13C NMR spin-lattice relaxation time T1
to the simulation predictions, using the spectral densi-
ties associated with the second-order orientational au-
tocorrelation function of a C-H bond.4 We have found
an agreement similar to the one obtained in an earlier
comparison exploiting monodisperse simulations of UA
models.11 To mention two examples, the T1 value at a
representative 13C Larmor frequency of 75 MHz for
monodisperse C154 at 504 K is 3.3 s in our simulations
against 4.2 s predicted by the Qiu and Ediger data.4 At
450 K and for C44, the same comparison gives 2.2 s for
a chain modeled in our polydisperse simulations against
3.4 s experimentally.

We thus conclude that the adopted potential, being
simple, reasonably realistic, and moreover rather much
investigated (which facilitates the comparison with
earlier studies), is a good candidate to attempt a deep
analysis of the PE chains local dynamics with special
emphasis on links with experimental data. A minor
point to mention here is that an additional Fixman
potential term was not included in our MD calculations,
as done by Harmandaris et al.,8 to compensate for the
slight ensemble difference resulting from the implicit
consideration of the covalent bonds as infinitely stiff
springs in the MC approach while treating them as rigid
holonomic constraints in the dynamical approach.32 For
chain models such as the one adopted here which
combine bond constraints and restricted bending fluc-
tuations, the constraint effect is indeed known to be
marginal.33

b. Chain Length Influence. As suggested by the
above discussion, by simulating a polydisperse sample
with the adopted PE model, we have the opportunity to
extract on the basis of a single simulated system,
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quantitative information on the N dependence of single
chain specific properties within monodisperse systems,
at a given unique temperature/pressure state point. This
is what we now illustrate for the incoherent intermedi-
ate scattering function.

Taking into account the dominant incoherent cross
section of hydrogen nuclei, the incoherent intermediate
scattering of a fully hydrogenated PE oligomer isotropic
melt is given by

where rjH denotes the coordinates of a hydrogen nucleus
at time t and where the orientational part of the
ensemble average has been carried out. The brackets
quoted on the right-hand side of eq 1 imply both a time
average (over many initial times) and an average over
all hydrogen nuclei in the sample. Within the high Q
regime (Q g 0.5 Å-1), I(Q,t) probes the local dynamics
of a polymer melt. When PE chains are sufficiently long
to have a clear-cut time scale separation between the
local relaxation times and the global chain relaxation
time, all hydrogen nuclei are usually considered as
dynamically equivalent and chain size independent,
chain end effects being marginal. For a monodisperse
melt of PE oligomers, it must be kept in mind that the
hydrogen nuclei located at different positions along the
chain backbones may contribute differently to the global
average in eq 1 and that chain end effects may become
significant. In the following, we will thus denote as
IN(Q,t) the intermediate scattering function of a mono-
disperse PE oligomer melt CnH2n+2 (we keep N subscript
for chain length, so N ) n in the present context). We
finally note that for a polydisperse melt of PE oligomers
the function I(Q,t) defined by eq 1 implies an average
over an even larger distribution of hydrogen species,
each hydrogen atom being characterized by the length
of the chain to which it belongs and by its position
within this chain.

Experimentally, we have access to the intermediate
scattering function IN(Q,t) relative to a particular chain
length, namely C44H90 (N ) 44, monodisperse) or PE2K
(N ) 154 with a small degree of polydispersity). Let us
formally rewrite IN(Q,t) in terms of a linear combination
of average contributions of two subclasses of hydrogens,
denoted as Iends(Q,t;N) and Icore(Q,t;N), depending para-
metrically on N and on the thermodynamic state.
Iends(Q,t;N) represents the average relaxation function
of chain end atoms defined as the hydrogens atoms
pertaining to carbon atoms located in positions 1 up to
10 at each chain extremity,9,10,34 giving a total of 42
hydrogens per chain. The function Icore(Q,t;N) involves
the average relaxation over the remaining chain core
atoms defined as the (2N - 40) methylene hydrogens
attached to the (N - 20) interior carbons. For the
considered oligomer melt, the global intermediate scat-
tering function IN(Q,t) is thus simply rewritten as a
linear combination of the two functions Iends(Q,t;N) and
Icore(Q,t;N), namely

In our simulations, we first note that any intermedi-
ate scattering function must be evaluated from hydro-
gen positions rjH(t) reconstructed from the C nuclei

instantaneous positions, as the chain model consists of
CH2 united atoms. Methyl group hydrogens are never
included in the average as they cannot be localized
unambiguously in our simulations from the carbon
positions only. Their impact on IN(Q,t) is minor as it
amounts to an 1/N effect. As stated earlier, our MD
experiments at 450 K were performed on a mixture of
chains with a uniform distribution of chain lengths
between C39 and C117. Any calculation of I(Q,t) was
based on all 10 independent MD trajectories using
atomic displacements between times t0 and t0 + t while,
within each trajectory, averaging was performed over
all possible time origins t0 to minimize statistical errors.

We have estimated from these runs the chain length
influence on Iends(Q,t) and Icore(Q,t). To get sufficient
statistics, we have computed these two functions, on the
basis of the partition between end and core hydrogen
atoms explained above, for three separate classes of
chains within the sample: short chains with 39 e N e
49, medium ones with 73 e N e 83, and long chains
with 107 e N e 117. For two typical scattering vectors
Q ) 0.5 Å-1 and Q ) 1.5 Å-1, it is found that Iends(Q,t)
always relaxes faster than Icore(Q,t), the difference being
of the order of 5-7%. Comparing the separate predic-
tions for the three different classes of chain lengths, we
find no significant variation of Iends(Q,t) or Icore(Q,t) with
N, except for the lowest Q ) 0.5 Å-1 case where the
short chain Icore(Q,t) function shows a slightly faster
decay than medium and longer chains, the effect being
at the level of a 1% difference, just outside the statistical
noise.

Given this very weak sensitivity to chain length
(explored within the restricted range 39 < N <117) and
the assumption that the local dynamics relaxation of a
PE oligomer in a polydisperse melt is similar to the one
affecting the same chain embedded in a monodisperse
melt at the same p,T thermodynamic state, we com-
puted the simulated IN(Q,t) curves using eq 2 with
estimates of Iends(Q,t) and Icore(Q,t) based on a statistics
involving all chains of the sample. Figure 1 shows for
various Q values at 450 K the long time decay of the
intermediate scattering functions predicted for the two
relevant chain lengths, namely I44(Q,t) and I154(Q,t),
together with the function Icore(Q,t), used in the IN(Q,t)

I(Q,t) ) 〈sin(Q|rjH(t) - rjH(0)|)
Q|rjH(t) - rjH(0)| 〉 (1)

IN(Q,t) ) [42Iends(Q,t;N) + (2N - 40)Icore(Q,t;N)]/
(2N + 2) (2)

Figure 1. Comparison between the intermediate scattering
functions calculated from MD simulations at 450 K as ex-
plained in the text: (a) continuous line, I(Q,t) for C44H90; (b)
dashed line, I(Q,t) for C154H310; (c) dotted line, Icore(Q,t)
calculated after elimination of chain ends. The three data sets
correspond to different Q values, i.e. 0.5, 0.75, and 1.5 Å-1 (in
order of decreasing relaxation times).
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estimates, which can be seen as a long chain PE
prediction. This figure allows one to appreciate the
importance of chain end effects on the decay of IN(Q,t)
and their decrease as N increases. We indeed observe
that chain end effects are becoming negligible for C154
given the overwhelming number of core atoms, but this
is not the case for C44.

The full decay of Icore(Q,t) for Q ranging from 0.5 to
2 Å-1 is depicted in Figure 2. We note that, for the
lowest Q value (0.5 Å-1) discussed in this work, the
I(Q,t) function decays to a 1% level within 300 ps at
450 K. By comparison, the Rouse time of the different
chains in the simulated polydisperse sample turns out
to vary from τR ) 600 ps for C39 up to τR ) 5 ns for C117.8
This confirms the empirical observation discussed ear-
lier that, over a time scale of 300 ps, the dynamics of
hydrogen atoms which are located sufficiently far from
chain ends should be independent of chain length.

We remark that the number of skeletal carbons
chosen to define the chain end portion is irrelevant as
long as it encompasses all atoms for which there is, on
the local dynamics time scale, a significant enhanced
mobility due to its position close to the chain end. This
number is usually estimated to be 5 or 6.10,34 Our
strategy to reproduce IN(Q,t) from data on the polydis-
perse sample was tested directly at T ) 504 K, p )
1 atm, where we have both a 13.5 ns MD run of a
20-chain monodisperse C154H310 melt and a set of 10
independent 12 ns MD runs dealing with the polydis-
perse C39-C117 melt discussed so far in the context of
450 K data.

Figure 3 reports the I(Q,t) functions obtained for the
monodisperse and polydisperse systems at 504 K when
only core hydrogen atoms are included in the average
and we do observe that both functions agree within the
statistical errors. When we include chain end contribu-
tions, the excellent agreement persists (figure not
shown). This result suggests that, for polymer melts far
above the glass transition, the local dynamics of a chain
at fixed pressure and fixed temperature conditions is
relatively insensitive to the concentration of chain ends
within its environment. This property of the local
dynamics for chain mixtures is in agreement with the
observations of Harmandaris et al.8 that the Rouse time
τR of a particular chain length within an unentangled
polydisperse PE melt yields a fair estimate of the

rheological properties of the pure melts of chains with
same size, in similar temperature and pressure condi-
tions.

c. Calculation of the Dynamic Structure Factor
S(Q,ω) and Its Convolution with the Instrumental
Resolution Function. To compare time-of-flight neu-
tron scattering data (in the present case from a single
spectrometer like NEAT) and simulation predictions, we
have the option either to transform experimental data
from the frequency to the time domain and compare
intermediate scattering functions I(Q,t) or, alternatively,
transform I(Q,t) simulation data to the frequency do-
main to perform the comparison in terms of the dynamic
structure factor S(Q,ω). As shown in Figure 2, for the
Q range of interest and T ) 450 K, all I(Q,t) functions
obtained by simulation decay to zero within the obser-
vation time (about 10 ns). The 4-5 orders of magnitude
between the shortest characteristic time considered in
our model (a period of the librational motion) and the
longest time accessible, in combination with the very
low statistical noise and the fine time grid discretization
of the simulated I(Q,t) data, make it more advantageous
to numerically manipulate simulation data for compari-
son with the bare experimental data.

These numerical transformations are made robust by
exploiting a very general fit of the MD I(Q,t) curves in
terms of a continuous linear combination of decaying
exponentials

where the weight F(ln τ;Q) (normalized in the logarith-
mic scale) is known as the distribution of relaxation
times (DRT).9,35-37 Equation 3 shows that the F(ln τ;Q)
function is the inverse Laplace transform of the ob-
served time correlation function. More details on the
properties of F(ln τ;Q) and its generation by the CON-
TIN algorithm36,37 from an input I(Q,t) function are
provided in the Appendix.

Figure 2 shows the quality of the DRT fits for the core
atoms dynamics in the experimental Q range. We
postpone the analysis of the underlying F(ln τ;Q) func-
tions to section VI as, at this stage, our aim is to test
the level of agreement between experimental and simu-

Figure 2. Incoherent intermediate structure factor Icore(Q,t)
computed by MD simulations at 450 K for Q ) 0.5, 0.75, 1,
1.5, and 2 Å-1. Thin curves are the fits resulting from the DRT
analysis.

Figure 3. Intermediate scattering functions I(Q,t) for PE2K
simulations at 504 K, 1 atm for various Q’s. The curves refer
to core atoms within the polydisperse system (〈N〉n ) 78) while
the empty lozenges correspond to the core atoms in the
monodisperse C154H310 sample.

I(Q,t) ) ∫-∞

+∞
d ln τ F(ln τ;Q) exp(-t/τ) (3)
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lation data and the DRT representation is used here to
ease the numerical procedure. It follows from the
Fourier transform of eq 3 that the dynamic structure
factor S(Q,ω) can be calculated as a linear combination
of Lorentzian functions

where the DRT weighting is taken from the I(Q,t) fit.
The resulting functions are shown in Figure 4 for Q )
0.75 Å-1. It must be noted (see Figure 2) that the fits of
I(Q,t) are extremely accurate except at very short times
(t < 0.03 ps) where the discrepancy between data and
fits can be up to 1%. This effect is due to the fact that
one tries to describe the short time decay of an even
function having a continuous first derivative (implying
a zero slope at t ) 0) by a sum of decaying exponentials
with strictly negative slope. This numerical problem is
of no practical consequence as its influence on S(Q,ω)
arises at frequencies above ≈2π/0.03 ps or ≈140 meV,
much higher than the upper experimentally accessible
limit (ωmax is 10 meV at Q ) 1.5 Å-1).

The dynamic structure factor S(Q,ω) shown in Figure
4 corresponds to the signal observed on a idealized
spectrometer having a delta shape instrumental resolu-
tion R(ω). When, for our purposes, the (Q-dependent)
function R(ω) of the NEAT spectrometer is described
as a Gaussian plus a very small Lorentzian (see section
II), convolution with S(Q,ω) via the DRT’s is direct for
the Lorentzian part and requires a simple quadrature
for the Gaussian part. We obtained in this way the
convoluted function Sc(Q,ω), i.e., the experimentally
accessible dynamic structure factor reconstructed from
the simulated hydrogen dynamics, which is shown in
Figure 4 together with its unconvoluted version.

IV. Bare Data Comparison between Experiment
and Simulation

The experimental incoherent dynamic structure fac-
tors of C44H90 and PE2K are compared to the results of
MD simulations in terms of convoluted Sc(Q,ω) data in
Figure 5a-d for four Q values. To carry out a meaning-
ful comparison between simulated and experimental

Figure 4. PE2K simulated dynamical structure factor S(Q,ω)
and Sc(Q,ω), the latter being result of the convolution with
the experimental resolution function R(ω), for Q ) 0.75 Å-1.
The (normalized) resolution function is shown to appreciate
the quasi-elastic signal broadening.

S(Q,ω) ) ∫-∞

+∞
d ln τ F(ln τ;Q) τ

1 + (ωτ)2
(4)

Figure 5. Bare data comparison between experimental (open
symbols) and simulation (continuous curves) estimates of
Sc,norm(Q,ω) (see eq 6) for four Q values per chain length. (a, b)
refer to C44H90 and (c, d) refer to PE2K.
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Sc(Q,ω), following Zorn et al.,38 we have normalized both
functions in the same way as

where ωmax is the experimental high-frequency limit
(i.e., ∆Emax ) 1.4, 3.5, and 10 meV for Q ) 0.5, 0.75,
and 1.5 Å-1, respectively). This normalization allows us
to compare directly the experimental and simulated
dynamic structure factors under the constraint that
their integral in the experimental window is equal. It
eliminates at the same time the influence of the Debye-
Waller factor. We stress here once again that, due to
the width of instrumental resolution, comparison be-
tween experimental and simulated data is limited to the
frequency range above ωmin ≈ 0.04 meV.

Data shown in Figure 5 indicate that the agreement
level between experimental measurements and simu-
lated curves is similar for both C44 and C154. While there
is very good agreement in the quasi-elastic regime at
0.5 and 0.75 Å-1, this agreement is only moderate at
higher Q values where the simulated curves are broader
indicating faster dynamics. This may be because, in our
united atom model where the hydrogen masses are
merged with the carbon ones and located at the carbon
nuclei, the inertial factors involved in torsion librations
are slightly underestimated. At each given Q, both
experimental and simulation curves yield effective
relaxation times (Sc(Q,ω) at ω ) 0) which are higher
for the longer chains. As discussed in section III, the
differences should result primarily from the higher
mobility of the chain ends, whose concentration is non
negligible only for C44.

V. Stretched Exponential and Two-Exponential
Representations of the Relaxation Functions

a. General Considerations. Analysis of relaxation
processes is often carried out using the empirical Kohl-
rausch-Williams-Watts (KWW) function or stretched
exponential39

with 0 < â e 1. This function has been extensively used
to describe the QENS broadening observed in polymer
melts in both time and frequency domains,38,40-43 and
it is therefore of interest to evaluate here to which
extent this ad-hoc function describes the quasi-elastic
broadening of PE oligomers data in the experimentally
accessible Q and ω range. We note that Rennie et al.18

have analyzed PE data at 447 K in the Q range going
from 0.1 to 0.3 Å-1 using a single KWW function. In
that regime where the diffusion process largely domi-
nates the signal, they found (i) a (Q independent)
stretching parameter equal to â ) 0.5, which is indeed
close to the value we find for Q < 1.0 Å-1 (see Table 1),
and (ii) a power law exponent n ) 3 for the Q scaling of
τKWW. Given the rather different Q regime, we can only
say that this power law at low Q is consistent with the
fast Q dependence of τc we observe at higher Q values.

In addition to using a KWW function, the QENS data
of polymeric materials have often been analyzed in
terms of a sum of two Lorentzians. For polyethylene
melts, this approach has already been used by Buchenau

et al.,19 who found that the QENS data, in the temper-
ature range 415-535 K and Q range 0.2-2.2 Å-1, could
be fitted by a superposition of two Lorentzians. The two
underlying processes were found to have different
features. The narrow component was characterized by
a Q2-dependent broadening, indicative of a monomer/
segmental free diffusion process. On the converse, the
broader component could be fitted equally well by using
two different models: (a) restricted diffusion within a
sphere or (b) quasi-harmonic vibration. The second
model was found to be more realistic and the results
consistent with an additional study of drawn deuterated
semicrystalline polyethylene at low temperature. A
similar procedure was adopted by Kanaya et al.20 to
analyze the QENS data of PE close to 450 K. Using a
model consisting of two Lorentzians, these authors were
able to describe the PE local dynamics in terms of a fast
process on the picosecond time scale and a slower one,
called the E process, on a 10 ps time scale. The latter
was related to a jump diffusion process which omits the
connectivity of the chain.

b. Fitting PE Data at 450 K. The Sc,norm(Q,ω) data
obtained from eq 5 and shown in Figure 5 were fitted
using the model function Smod(Q,ω),

where Sc,SE(Q,ω) is the FT of the stretched exponen-
tial, convoluted with the resolution function, and
Fc,SE(Q,ωmax) represents its integral over the range
[-ωmax,+ωmax]. Excellent fits were achieved for both C44
and PE2K and for both experimental and MD data. This

Sc,norm(Q,ω) )
Sc(Q,ω)

∫-ωmax

+ωmaxdω Sc(Q,ω)
(5)

ISE(Q,t) ) exp[-( t
τKWW

)â] (6)

Table 1. Stretched Exponential Parameters for I(Q,t)
Estimated on the Basis of Experimental Data or on the

Basis of Simulation Dataa

N
Q

(Å-1) exp/sim â
τKWW
(ps)

τc
(ps) ø

C44 0.5 exp 0.56 9.99 16.6 9 × 10-3

sim (conv) 0.54 11.8 20.9 2 × 10-3

sim (nonconv) 0.50 11.2 22.4 1 × 10-2

0.75 exp 0.56 2.93 4.82 4 × 10-3

sim (conv) 0.52 2.83 5.26 4 × 10-3

sim (nonconv) 0.49 2.60 5.39 6 × 10-3

1.5 exp 0.75 0.68 0.81 2 × 10-3

sim (conv) 0.67 0.48 0.64 2 × 10-3

sim (nonconv) 0.65 0.46 0.62 1 × 10-3

2.0 exp 0.66 0.28 0.37 2 × 10-3

sim (conv) 0.70 0.25 0.31 7 × 10-4

sim (nonconv) 0.69 0.24 0.31 7 × 10-4

PE2K 0.5 exp 0.47 13.7 30.5 1 × 10-2

sim (conv) 0.52 14.6 27.4 1 × 10-3

sim (nonconv) 0.50 14.2 28.5 1 × 10-2

0.75 exp 0.48 3.35 7.15 3 × 10-3

sim (conv) 0.53 3.41 6.09 4 × 10-3

sim (nonconv) 0.50 3.18 6.25 6 × 10-3

1.5 exp 0.63 0.62 0.89 3 × 10-3

sim (conv) 0.65 0.55 0.74 2 × 10-3

sim (nonconv) 0.64 0.52 0.73 1 × 10-3

2.0 exp 0.62 0.30 0.43 2 × 10-3

sim (conv) 0.67 0.27 0.36 8 × 10-4

sim (nonconv) 0.66 0.26 0.35 7 × 10-4

a For the latter, we mention best fit parameters of normalized
curves using either the convoluted data Sc,norm(Q,ω) (as defined
in eq 5) or the corresponding nonconvoluted Snorm(Q,ω) MD data
(see text). τc represents the effective relaxation time, namely the
area under the KWW curve. The last column characterizes the
quality of the Sc,norm(Q,ω) (or Snorm(Q,ω)) fit through the corre-
sponding ø value.

Smod(Q,ω) )
Sc,SE(Q,ω)

Fc,SE(Q,ωmax )
(7)
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is illustrated in Figure 6a,b for experimental data for
the two extreme probed Q values and in Figure 6c for
simulation data at Q ) 0.5 Å-1. All best fit parameters
â and τKWW for Sc,norm(Q,ω) data at 450 K are listed in
Table 1, together with the corresponding ø parameter
of the fits which represents the square root of the mean-
squared deviation. Interestingly, at all Q values, the fit
quality was not improved if a faster dynamic process

occurring outside the experimental range was added to
the stretched exponential model in eq 7.

As shown in Table 1, for both chain sizes, the
stretched exponent increases with increasing Q. This
Q dependence of the â parameter suggests the existence
of different elementary dynamic contributions with
Q-dependent amplitudes resulting in a progressive
change of the shape of the distribution of relaxation
times. We will come back to this point in section VI
where a more elaborate analysis of the MD data is
developed.

We list also in the table the effective relaxation time
τc ) τKWWΓ(1/â)/â corresponding to the area under the
stretched exponential decay. At the lowest Q value, the
effective relaxation time for the C44 oligomer is almost
half the value obtained for PE2K. This difference
decreases with increasing Q. This result could be
interpreted as the signature of a chain end effect
through an enhancement of the monomeric diffusion in
space, a process which is better seen in the lower Q
range.

To be able to compare our MD and experimental data
with results published in the literature, we have fitted
the convoluted Sc,norm(Q,ω) curves where the stretched
exponential model function in eq 7 is replaced by a sum
of two Lorentzians with three parameters, namely the
widths Γ1 and Γ2 and the amplitude A1 of the slowest
process.

In Figure 7, we plot the fit parameters obtained from
both experimental and simulated PE2K data (a similar
trend was observed for C44). Data show that there is
reasonably good agreement between experimental and
simulation fit parameters at all Q’s. In particular, the
fast process is characterized by a relaxation time τ2(Q)
(inverse of Γ2) in the picosecond range which decreases
with Q increasing, in agreement with previous experi-
ments.19 The slowest process relaxation time has a more
pronounced Q dependence which does not seem to follow
a power law. The amplitude of the slow process de-
creases as Q increases except when Q reaches 2 Å-1

in the experimental case only. We think that this
anomaly is related to the fact that the two-exponential
relaxation model loses meaning for Q above 1.5 Å-1 as
both relaxation times get too close and τ2 becomes
smaller than tmin, that is the shortest time probed by
the spectrometer.

Figure 6. KWW (continuous lines) and two-Lorentzian
(dashed lines) fits of Sc,norm(Q,ω) for PE2K (open symbols). (a,
b) refer to experiment for Q ) 0.5 and 2.0 Å-1, respectively,
and (c) refer to simulation for Q ) 0.5 Å-1. Best fit parameters
are gathered in Table 1 (KWW) and in Figure 7 (two Lorent-
zians).

Figure 7. Plot of the relaxation times τ1 ) Γ1
-1 and τ2 ) Γ2

-1

relative to the two-Lorentzian fits of the Sc,norm(Q,ω) data for
PE2K at 450 K, both for experiments (open symbols) and
simulations (filled symbols). The inset shows the amplitude
of the slow process A1(Q) vs Q.
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Regarding the corresponding fit quality with respect
to what was found for the stretched exponential model,
we observe for the experimental data a rather similar
agreement level for both models, as is illustrated in
Figure 6a,b. Figure 6c shows that at low Q the stretched
exponential model appears even superior for reproduc-
ing the simulation data. This is confirmed by comparing
the ø values found for stretched exponential fits (see
Table 1) to the ones associated with the two-Lorentzian
model which are around 7 × 10-3 for Q ) 0.5 and 0.75
Å-1 and around 1 × 10-3 for Q ) 1.5 and 2.0 Å-1, for
both the simulated and experimental data.

On this basis, we conclude that a two-Lorentzian
model (three free parameters per Q value) is not better
than a stretched exponential (two free parameters) in
describing the QENS data for polyethylene. Therefore,
the time-of-flight data do not give any indication on the
existence of two distinct dynamic processes, nor in the
time, nor in the frequency domain. This is not the case
for most polymers where the local dynamics relaxation
is clearly split into a fast process in the picosecond range
and a much slower process.21-24

While the Q dependence of the stretched exponent
and the reasonable fits in terms of two Lorentzians
suggest that the local dynamics of PE, in the time-of-
flight frequency range, could be rationalized in terms
of two distinct processes, there appears to be no clear
evidence for this neither in the QENS nor in MD Sc(Q,ω)
data. This is in contrast with most amorphous polymers
for which the presence of two distinct processes is very
clear.21-24 In the next section, we will exploit the
distribution of relaxation times obtained at 450 K from
the simulated relaxation functions at different Q’s to
appreciate, without the bias of a particular model
function, to which extent they reveal either a single
broad process or two separate processes.

VI. A DRT Analysis of the Simulated Local
Dynamics Relaxation Functions for Long
Chains

So far, we have treated experimental and simulation
data on an equal footing and applied empirical functions
to analyze the corresponding S(Q,ω) curves. This has
made it possible to compare our MD and experimental
data and provide links with published reports.

In the probed Q range, all simulated curves decay
monotonically to zero within the accessible simulation
time window (see Figure 2), which is considerably larger
than the 0.4-20 ps time window which has been
exploited so far on the basis of the convoluted signal
Sc,norm(Q,ω) defined in eq 5. To exploit the whole
information available from MD and go beyond data
interpretation in terms of empirical functions with few
parameters, we have performed a detailed analysis of
the bare Icore(Q,t) function (which is practically equiva-
lent to the I(Q,t) data of PE2K) at 450 K.

As mentioned earlier, the knowledge of the full decay
of correlation functions makes it numerically feasible
to extract F(ln τ), the normalized distribution of relax-
ation times (DRT)44,9,35 defined in eq 3, by a CONTIN36,37

analysis. The DRT functions obtained by this procedure
are shown in Figure 8 for all investigated Q values, and
the corresponding fits are shown in Figure 2. Numerical
details on the CONTIN procedure, as applied in the
present context, are gathered in the Appendix.

It is shown in Figure 8 that the shape of the DRT
functions changes with Q. At high Q values, the curves

are symmetric and can be represented by a log-
Gaussian distribution of τ. As Q decreases, the distribu-
tion broadens and becomes increasingly asymmetric,
although it does not attain the level of asymmetry
expected for â ) 0.5, a representative value of the
stretched exponent found for PE2K or C44 relaxation at
Q e 0.75 Å-1 (see Table 1). This is evident in Figure 8
where the DRT corresponding to a KWW function with
â ) 0.5 is plotted for comparison. Finally and quite
interestingly, at the lowest Q investigated, i.e., 0.5 Å-1,
two processes can be clearly resolved.

Actually, stretched exponential functions are indica-
tive of nonexponential processes with a distribution of
relaxation times whose asymmetry increases as â
decreases from 1 to 0. In section V, on the basis of the
convoluted signal Sc(Q,ω), we have noted that the
stretched exponent increases from ca. â ) 0.5 at Q )
0.5 Å-1 toward values approaching unity as Q increases.
This systematic evolution of the stretching exponent
with Q is coherent with the evolution in the shape of
the distribution of relaxation times. Thus, the KWW
function is able to capture some of the general features
of the DRT analysis, namely the evolution of the
distributions toward narrower and increasingly more
symmetric functions with increasing Q (see Figure 8).
However, we note that the distributions corresponding
to Q g 1 Å-1 are much closer to a log-normal distribu-
tion than to any stretched exponential, the latter being
always too unsymmetrical.

In section V, we have discussed the stretched expo-
nential fitting, independently for each Q, of the convo-
luted function Sc(Q,ω) generated by MD (see Table 1
and Figure 6c). We can repeat the procedure over a
much larger frequency range, using eqs 5-7 with the
unconvoluted simulated signal directly obtained using
eq 4. The test of the stretched exponential model
function over a much larger frequency window leads,
as we observe in Table 1, to minor changes in the
optimal parameters and in the fit overall quality except
at Q ) 0.5 Å-1 where parameters do change significantly
and where the fit quality turns out to be worse with
typical deviations being increased by 1 order of magni-

Figure 8. Distribution of relaxation times F(ln τ; Q) relative
to the incoherent intermediate structure factor Icore(Q,t) at 450
K computed by MD simulations for Q ) 0.5, 0.75, 1.5, and 2
Å-1 (see also Figure 2). For comparison, the DRT of a KWW
function with â ) 0.5 and arbitrary relaxation time is plotted
(thin lines) on the right-hand side. The arrows indicate the
two relaxation times found when fitting the dynamic structure
factor at Q ) 0.5 Å-1 with the two-Lorentzian model (see text).
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tude. So, in conclusion, despite its numerical applicabil-
ity in the experimental frequency range, the single
stretched exponential model treats effectively a mixture
of two processes in an ad-hoc way, and the link with
physical parameters characterizing the two processes
is impossible.

Obviously, the distributions shown in Figure 8 do not
resemble the two delta functions distribution that would
be expected on the basis of a two-Lorentzian model
which was also studied in section V. We observe that
the two relaxation times and the amplitude at Q )
0.5 Å-1 and 450 K (τ1 ) 29.2 ps, τ2 ) 2.4 ps, A1 ) 0.67;
see also Figure 7) do correspond (see vertical arrows at
times τ1 and τ2 in Figure 8) to the main peak position
and the shoulder of the DRT. To evaluate amplitudes
and mean relaxation times, it is necessary to decompose
numerically the DRT into the sum of two distributions,
each corresponding to a single process. No simple
quantitative partitioning of the DRT into two elemen-
tary distributions is provided by the CONTIN procedure
because the latter separates peaks at minima positions
(see Appendix) while the possible coexistence of two
distinct relaxation processes is only suggested by a
shoulder at the lowest Q value. One can tentatively
perform an ad-hoc decomposition by assuming that the
distribution is the superposition of two symmetric
distributions in ln τ. On this basis, we get an amplitude
of 0.72 ( 0.07 for the slow process, which is coherent
with the amplitude of 0.67 found for the slowest process
in the double-exponential model (see inset in Figure 7).
For Q > 0.5 Å-1 we observe that the two relaxation
times provided by the two Lorentzians fit reported in
Figure 7 are such that the difference between ln τ1 and
ln τ2 merely represents the width of the unimodal
F(ln τ) distribution (see Figure 8).

A question arises: how can we explain the fact that
at 450 K, the PE local dynamics relaxation proceeds via
a mixed process involving torsional oscillations and
conformational jumps while both types of motion lead
generally in other polymers to a clear-cut time scale
separation?21-24 One possible explanation is that the
temperature range where linear PE is in a melt state
corresponds to temperatures that are unusually high
with respect to the glass transition of roughly 150 K in
PE45 (estimated in the homogeneous amorphous phase
without interferences with confinement effects due to
partial crystallization). An alternative explanation is
that torsional motions and jumps are highly cooperative
and fast in molten PE because, in the absence of side
groups, these motions are not necessarily coupled to flow
relaxation,4 and this may contribute to produce a single
peak distribution of relaxation times.

To check unambiguously the existence of two pro-
cesses and to fully characterize them, we need to extend
the analysis toward lower Q values or lower tempera-
tures. Reference 25 reports a simulation study of the
PE model system used in the present paper at a much
lower temperature of 350 K (undercooled liquid). The
analysis (see Figure 2 of ref 25) shows a double peak in
the DRT function for the whole Q regime going from
0.5 to 2 Å-1 explored in the present paper, suggesting a
stronger temperature dependence of the slower process.
While the position of the peak associated with the
fastest process is slightly Q-dependent, its amplitude
increases from roughly 15% at Q ) 0.5 Å-1 to about 90%
at Q ) 2 Å-1. On the contrary, the slowest process

appears to be strongly Q-dependent. The fastest process
(occurring on a time scale of 0.5-1 ps) has been shown
to be a very localized process related to the vibration-
torsion oscillations of the polymer backbone. The slowest
one must be a diffusive process resulting from a suc-
cession of conformational changes over the rotational
barriers. This picture has already been suggested earlier
in experimental works19,20 and tested in simulations of
PE at 504 K, using artificially high rotational barriers.12

VII. Conclusions

In this paper, we provide new experimental data on
the incoherent dynamic structure factor of two PE
oligomers, C44 and PE2K (or C154), at 450 K. The QENS
experimental data and in particular the trend observed
with increasing chain length are reproduced by MD. The
experimental and MD incoherent dynamic structure
factors were analyzed using different models in order
to provide a direct link between our results and pub-
lished data.

It has been already suggested that, for PE, two
dynamic processes are active in the QENS frequency
range. The problems associated with isolating and
characterizing these two processes have been discussed
in detail in this work. The DRT analysis of the core
dynamics of PE at 450 K shows, in the Q range probing
local dynamics, that the two processes occur on similar
time scales at this temperature.

Our simulations on a large time window (10 ns)
indicate that at 350 K there is an unambiguous evidence
of two distinct processes.25 PE is a semicrystalline
polymer with relatively high melting temperature (Tm
≈ 400 K); this precludes experiments at 350 K, but
nevertheless we are presently performing experiments
on PE oligomers with lower Tm in order to probe the
local dynamics at the lowest accessible temperature for
the melt.

Because of the high temperatures examined in ex-
periments and the limited frequency ranges, data can
be satisfactorily fitted using both the Fourier transform
of the stretched exponential function or two Lorentzians.
Ideally, a full DRT analysis of the experimental data
on melts at T ≈ 400 K should be conducted as this leads
to model-free results (other than assuming that the
analyzed processes are not inherently nonexponential
and that the inverse Laplace transform of the correla-
tion function exists). This requires precise data on a
wide frequency window which can be only obtained by
combining information from instruments with different
energy resolutions. Overlapping S(Q,ω) data from TOF
and backscattering spectrometers covering a sufficiently
large energy window is also the target of our present
experimental efforts.

Finally we wish to highlight the power of combined
simulation/experimental data treatments. In the present
paper, we have suggested that normalized Sc,norm(Q,ω)
functions in the experimental accessible energy window
are ideal to bridge experimental data to MD simula-
tions, provided the latter are accurate enough to perform
safely the numerical operations (FT and convolution
with the experimental resolution function of low noise
input I(Q,t) functions). Comparison efforts along these
lines are also done in connection with NMR data on PE.4
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Appendix

A monotonically decreasing correlation function C(t)
between t ) 0 and t ) ∞ can be written in terms of a
continuous linear combination of decaying exponentials

where the weight F(ln τ) (normalized in the logarithmic
scale) is known as the distribution of relaxation times
(DRT).9,35-37 Equation A1 shows that the F(ln τ) function
is the inverse Laplace transform of the observed time
correlation function.

In the present context, C(t) is the intermediate
scattering function I(Q,t). Since I(Q,t)0) ) 1, the
F(ln τ; Q) functions corresponding to the DRT are
automatically normalized to 1. It is useful to realize that
the F(ln τ; Q) function can be used to express the
average (global) relaxation time 〈τ〉 as

hence its denomination as the “distribution of relaxation
times function”.

In our context, the input information for the CONTIN
numerical procedure36,37 consists of the relaxation func-
tion itself (in this case the I(Q,t) data), of the lower and
the upper limit in which the distribution of relaxation
times is expected to be found, of the required number
of points in τ (equidistant in the logarithmic scale), and
finally of a rather flexible option for which the author’s
suggestion of 10-12 points per decade was followed.36,37

Limiting values can be specified so that the distribution
vanishes before reaching them. The program furnishes
a set of solutions (in our case about 10) for the DRT.
Each solution is characterized by (i) a “regularization
parameter” R which gives a measure of the smoothness
of the DRT and (ii) a measure of the fit quality specified
by a mean-squared deviation. The analysis for correla-
tion functions characterizing polymer local dynamics
usually results only to few solutions (typically one or
two for correlation functions with a time resolution
similar to the one adopted here) which simultaneously
possess the minimum number of peaks (the number of
peaks is one or two, exceptionally three35,46) and can
provide a satisfactory fit of the simulation data. In case
that more than one solution satisfies these criteria, we
have always adopted the “physical” solution on the basis
of the parsimony principle, which dictates that the less
detailed spectrum which gives a reasonable fit to the
data must be selected.

Within the DRT approach, if F(ln τ) presents several
peaks, then the amplitude Ai and characteristic time
〈τi〉 of each peak are

with

and

These definitions imply the normalization ∑iAi ) 1 and
a link between the average times of individual processes
and the global relaxation time, namely 〈τ〉 ) ∑iAi〈τi〉.
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Macromolecules 1992, 25, 6248.

(16) Holzer, B.; Strobl, G.; Stühn, B.; Andersen, N. H. Colloid
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