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Abstract: We report results from Brownian dynamics computer simulations of systems 
comprised by two terminally charged hyperbranched molecules preferentially branched  
in the periphery, with an oppositely charged linear chain of varying length. Comparison  
of the findings from the present study to stoichiometric counterparts and to analogous 
dendrimer-based complexes, reveal that the presence of the second hyperbranched 
molecule incurs significant changes in the conformational characteristics of both 
components of the complex. Instead of step-like changes in the average size and shape of 
the hyperbranched component that were noted in the previously studied stoichiometric 
systems, a rather smooth change is observed upon increase of the length of the linear 
component. In addition, a markedly different behavior is also noticed in the conformational 
characteristics of the linear chain when compared to that in similar dendrimer-based 
systems. The above findings are consistent with the higher degree of deformability of the 
peripherally branched molecules which allow appropriate rearrangements in shape in order 
to accommodate the favorable Coulombic interactions between the two components of the 
complex. This behavior offers new insight towards the design of more efficient 
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hyperbranched-based systems which can take advantage of the multifunctionality and the 
structural properties of the highly branched polymer components. 

Keywords: hyperbranched; complexes; computer simulations 
 

1. Introduction 

Hyperbranched polymers have emerged in the last few years as a new promising category of  
non-viral vehicles for drug and gene delivery applications [1–3]. The advantages related to their use as 
complexation and delivery agents, such as their structural features, their multifunctionality and their 
favorable transport and thermodynamic properties, have surged the scientific as well as the industrial 
interest towards an effort for a better control of their physicochemical behavior [4–10]. To this end,  
a large number of theoretical and experimental studies have been devoted to the elucidation of  
the structure/properties relation of complexes comprised by hyperbranched molecules (HBP) and 
linear polyelectrolytes (LPE), with complexes including nucleic acids being the most characteristic 
examples [11–15].  

Among other parameters, these studies have demonstrated the strong dependence of the physical 
properties of such complexes on the structural features of the hyperbranched hosts and on factors 
associated with the relevant thermodynamic environment [16–20]. Due to the rather broad parameter 
space characterizing the actual systems, coarse-grained models have been widely utilized for the 
theoretical description and the computer modeling of such complexes [21–32]. These studies aimed at 
the elucidation of the generic behavior related to their conformational characteristics and to phenomena 
of key importance regarding their action as complexation agents and delivery vehicles, such as 
overcharging [27,31,33,34]. 

Results from stoichiometric complexes comprised by charged dendrimers and oppositely charged 
linear polyelectrolytes [31] showed that the basic effects related to the overcharging phenomenon are 
in qualitative agreement with the correlation theory developed by Nguyen and Shklovskii [21] for 
analogous complexes involving impenetrable macroions. The observed differences between computer 
simulations and the correlation theory were attributed to the deformable nature of the dendritic 
polymers. This attribute of the dendritic molecules resulted in a shift towards larger values of the 
predicted critical length (NC) of the linear component at which a first order transition associated with the 
tail-release mechanism sets in [31]. An amendment of the aforementioned theoretical description [21] 
considering similar complexes but allowing an isotropic deformability of the spherical component, was 
found to provide a fair description for the behavior of stoichiometric complexes involving a charged 
linear chain and an oppositely charged dendritic component, the latter being characterized by a rather 
dense branching pattern close to the dendritic core [27]. In the same study, it was also demonstrated 
that the anisotropic deformation of the hyperbranched component of the complexes with a preferential 
branching in the periphery, affected significantly the structural properties and the degree of overcharging 
of the formed complexes.  

A step forward towards elucidating the specifics of the overcharging phenomena in linear 
LPE/dendrimer complexes was taken recently by considering non-stoichiometric complexes comprised 
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by a linear polyelectrolyte and two oppositely charged dendrimers [35]. In such complexes, a new LPE 
conformation is introduced, that of the “linker” between the two dendritic molecules [35]. As in the 
stoichiometric systems [27,31,33], the dendrimers were also found to be strongly overcharged upon 
increase of the length of the LPE, with the maximum degree of overcharging observed at a length of 
the LPE close to that corresponding to the single dendrimer/LPE systems. However, in contrast to the 
case of stoichiometric complexes, the degree of overcharging in the non-stoichiometric systems was 
not found to decrease significantly after the highest level of adsorption of the LPE was reached. 
Moreover, no first-order transition related to the tail-release mechanism was observed upon increase of 
the LPE, in sharp contrast to the behavior noted in the single dendrimer/LPE models. Instead, in the 
non-stoichiometric complexes increase of the LPE length resulted in the appearance of the “linker” 
conformation and the gradual separation of the two dendrimers, but this occurrence did not affect the 
length of the dendrimer-adsorbed LPE parts. An intriguing effect related to the “linker” conformation 
was the non-monotonic dependence of the “linker” size on the LPE length [35]. Detailed conformational 
analysis of the LPE chain showed that the “linker” state of the LPE coexisted with a “tail” configuration 
which could not be accounted for by an approximate theoretical approach developed by the authors [35]. 

In the present work, we extend our previous simulational study in non-stoichiometric complexes 
comprised by two terminally charged HBPs which are preferentially branched at the periphery [36] 
and an oppositely charged LPE, as a function of the LPE length. Our goal is to compare the behavior 
of such systems to that observed in analogous models comprised by stoichiometric analogues and by 
two dendrimers and one LPE [27,31,35], thus elucidating the effects of stoichiometry and topology in 
the conformational and the overcharging characteristics of these complexes. Understanding of the 
latter effects is expected to improve the perspectives towards a better control of the properties of such 
systems and consequently to facilitate a molecular-level engineering of their behavior.  

2. Simulation Details  

Following our previous works [16,27,31,35], Brownian dynamics simulations (Ermak-McCammon 
algorithm) [37] with the explicit inclusion of hydrodynamic interactions, through Rotne-Prager-Yamakawa 
tensor [38,39], were employed in order to simulate coarse-grained models of LPE/HBP complexes in 
implicit solution, characterized by rigid bond spacers of length equal to l (the SHAKE algorithm is 
employed for the implementation of rigid bonds [40]). A Lennard-Jones potential is used for the 
description of excluded volume interactions and the Debye-Hückel potential is employed for the 
description of electrostatic interactions. Although the presence of explicit counterions is known  
to affect the electrostatic screening conditions and relevant thermodynamic aspects associated with  
the complexation process [23,26,41], as in our previous studies [31,35,36] the models are constructed  
to represent only the dilute solution limit where the degree of the counterion condensation remains  
low and thus does not affect significantly the structural properties of the polymeric components. It is 
therefore considered that the conditions of the screening of the electrostatic interactions are such  
that the Debye-Hückel approximation remains valid [35,42]. To verify that the Coulombic screening 
conditions adopted do not affect the complexation behavior of the studied models, we also performed 
additional simulations including explicit counterions employing the Particle Mesh Ewald method for 
the calculation of the electrostatic forces [43,44]. The results obtained compare favorably to those 
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without the explicit presence of counterions (see later in the text), lending credence to the utilization of 
the Debye-Hückel approximation for the treatment of electrostatic interactions under the conditions 
realized in the current study.  

All the information describing the specifics of the simulational algorithm and the form of the 
interaction potentials are identical to those quoted in our past studies [28,31,36] where the interested 
reader can refer to for more details. We briefly repeat herein that the Lennard-Jones parameters were 
taken as εLJ = 0.3kT (k is the Boltzmann constant and T the temperature) and σ = 0.8l, with a cutoff 
distance of rcut = 2.5σ. For the electrostatic interactions, we considered the Bjerrum length λB to be 
equal to l without loss of generality (the value of λB in water at room temperature is equal to 7.14 Å, 
that is close to the length of a segment of a common flexible linear polymer), while the Debye radius 
was taken as rD = 8.96l For comparison purposes, the aforementioned parameters were taken to be 
identical to those utilized in the previous study concerning the non-stoichiometric LPE/dendrimer 
complexes. The details regarding the explicit-counterion simulations are as they described in [45]. All 
the dimensionless quantities used in the simulations (i.e., bond length, thermal energy, translational 
friction coefficient and time) are set to unity. The dimensionless integration step is set to Δt = 10−4.  

For the preparation of the systems a freely-jointed bead-rod model is chosen [46]. The 
hyperbranched molecules were constructed using the topology builder described in [47] where the 
structure emanates from a trifunctional core and is sequentially built by addition of bifunctional 
reactive monomers. Two terminally charged HBPs and one oppositely charged LPE form each one of 
the simulated systems. The HBP constituents studied herein, correspond to the so-called G4MAX HBP 
systems (see [28]), which correspond to trifunctional randomly branched HBPs with an intermediate 
degree of branching, DB equal to 0.5 [48] and a high value of Wiener index, W [47,49] representing an 
open-structured star-like macromolecular entity (referred to as MAX topology hereafter). 
Experimentally, there is always a degree of polydispersity in the synthesis of such hyperbranched 
systems, but with the recently developed topology-sensitive separation techniques [50,51] this 
topology-related polydispersity can be significantly narrowed. The structure of the aforementioned 
category of HBPs is characterized by rather long linear segments near the core and a higher degree of 
branching in the periphery (see Figure 1). As was demonstrated by our previous studies [27,28,36], 
substantial (and thus potentially experimentally observable) differences in the static and dynamic 
response between hyperbranched polymers of the same degree of branching (DB ~ 0.5) could mostly 
be observed at systems belonging to topological extremes characterized by a dense/homogeneous and a 
sparse/peripheral branching pattern. In these studies we have checked different variations of such 
peripherally branched and densely branched systems, as well as molecules of different sizes and we 
have found that the dynamic as well as the static/conformational properties of hyperbranched polymers 
belonging to these two categories, are determined not by the specific variations of the branching 
pattern within each family, but mainly by the distinctly different degree of deformability which arises 
from the generic differences between the two extreme branching patterns (i.e., sparse/peripheral and 
dense/homogenous branching). 
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Figure 4. HBP complex constituents’ shape anisotropy, in terms of their inertia ellipsoid 
semi-axes. The results of the present simulations are collated to those describing the HBPs 
participating in the analogous stoichiometric complexes [27]. The description of each 
semiaxes is shown in the schematic of the ellipsoid of inertia.  
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Figure 5. Comparison of the square radii of gyration for the HBP and the analogous 
dendrimer components of stoichiometric and non-stoichiometric complexes, as a function 
of the length of the LPE, from the present and from previous works (* [27], ^ [31] and  
⊥ [35]). 

 

The picture emerging from Figures 4 and 5 already indicates that the conformational properties of the 
open-structure G4MAX polymers are strongly dependent on the presence of the second hyperbranched 
polymer. The simpler rationalization of this finding is to correlate it to the conformational characteristics 
of the linear component of the complexes. This is corroborated by our past findings regarding the 
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conformational behavior of the linear components when comparing the systems comprised by one LPE 
and a one [31] or two [35] dendrimers. In the latter complexes, which are analogous to those examined 
in the present work, a non-monotonic behavior of the average size of LPE with its length was 
observed. To check whether this feature is present in the non-stoichiometric G4MAX systems, we 
compare in Figure 6 the square radii of gyration of the LPEs to that of the corresponding LPEs in the  
non-stoichiometric G3 complexes from our previous work [35]. 

Figure 6. Main panel: average square radius of gyration of the LPE component of the 
present systems ( ), compared to that from the analogous non-stoichiometric G3 systems 
( ) from [35]. Inset: dependence of the axes of the ellipsoid of inertia for the LPE 
participating in the G4MAX non-stoichiometric systems. The definition of the axes is 
identical to that of Figure 4. 
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Evidently, the average size of the LPEs in the present systems increases monotonously with its 
length, in contrast to the behavior observed in the G3 complexes. 

This increase of the radius of gyration of the LPE in the present systems appears to be originating 
mainly from an analogous monotonic elongation of the G4MAX component (inset of Figure 6) as the 
LPE length grows. 

Figure 7 shows two snapshots of the NCH = 90 and NCH = 100 G4MAX complexes studied in  
the present work, where HBPs assuming such elongated shapes are shown. In the case of the  
non-stoichiometric G3 complexes, the behavior shown in Figure 6 was attributed to the nonmonotonic 
dependence of the size of the linkers (i.e., parts of the LPEs belonging to the “linker” conformation) on 
the LPE length. It is therefore straightforward to assume that the differentiation between the G4MAX 
and the G3 complexes, regarding the dependence of the size of the LPE on its length, may arise from 
differences in the conformations assumed by the linear components in the two cases. 
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Figure 8. Comparison of the average number of the LPE monomers belonging to  
different conformations, between the non-stoichiometric G3 (from [35]) and the G4MAX 
complexes. 

 

Such a weak dependence of the number of the “linker” monomers on the LPE length in the 
G4MAX complexes, is consistent with a similar weak dependence of the average separation between 
the two HBPs as shown in Figure 9.  

Figure 9. Average distance between the centers of mass of the two hyperbranched 
polymers in the G4MAX non-stoichiometric complexes. 
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In view of the similarities regarding the “tails” and “loops” and the differences in the “linker” 
conformations of the LPE in the two kinds of complexes, it is interesting to examine whether the 
number of adsorbed beads of the LPE on the branched molecules depends on the topology and  
the stoichiometry of the complexes. The relevant results are presented in Figure 10. The estimation  
of the adsorbed monomers was performed following the “local” criterion as in our previous  
works [27,31,35]. 

Figure 10. Dependence of the number of the adsorbed LPE beads onto the branched 
polymers, on the linear chain length. Results of the non-stoichiometric G4MAX complexes 
of the present study, are compared to those from previous works (* [27], ^ [31] and  
⊥ [35]). G3 DEND refers to complexes comprised by 3rd generation dendrimers while 
G4MAX for systems comprised by G4MAX hyperbranched molecules. Values 
corresponding of the stoichiometric complexes are doubled, for comparison purposes. 
Results from the explicit-ion simulations performed for the G3 non-stoichiometric systems 
are shown as well ( ). 

 

As was noted previously for the G3 systems [35], no dependence of the number of the adsorbed 
beads on the stoichiometry is present for the G4MAX systems, as well. It appears, therefore, that for 
systems bearing two HBPs (either with a sparse or with a dense branching pattern) the degree of 
adsorption of the linear chain on the LPE is not affected by the conformational changes of the linear 
chain imparted by the presence of the second branched molecule. 

4. Conclusions 

In this work we have examined the effects of the HBP topology in non-stoichiometric complexes 
consisting of two terminally charged G4MAX hyperbranched polymers and an oppositely charged linear 
chain, by comparing relevant conformational properties to those characterizing similar stoichiometric 
systems or analogous models comprised by dendrimer components with the same number of charged 
monomers. It was found that the higher degree of deformability of the peripherally branched HBPs 
(see Figure 1), drastically affected the conformational properties of both components of the complex, 
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with respect to those of the stoichiometric counterparts or those in complexes formed by the densely 
branched dendrimer molecules. The step-wise changes to properties, like the shape and the average 
size which characterized the HBP component of the G4MAX stoichiometric models, have been 
smeared out (Figures 4 and 5), while LPE conformational changes that have been observed in  
non-stoichiometric G3 complexes, were not present (Figure 6). The latter effect could be accounted for 
by the absence of the corresponding non-monotonic dependence of the “linker” conformation of the 
LPE on its length in the examined G4MAX complexes (Figure 8). This observation is consistent with a 
weak dependence of the average separation between the two G4MAX HBPs on the LPE length 
(Figure 9). Such a behavior can be rationalized by the higher degree of deformation of the hyperbranched 
components so that the number of the energetically favorable contacts between the charged LPE and 
HBP monomers remains at the same levels as in their stoichiometric analogues (Figure 10). 

The above findings, which differentiate the behavior of the examined systems with respect to  
their stoichiometric counterparts and their dendrimer-based analogues, are expected to arise mainly  
by entropic factors which should be taken into account in future amendments of the correlation  
theory [21,27,35,52]. 

We believe that the results from the present study offer new insight regarding the structural features 
of hyperbranched/linear polyelectrolyte complexes and can be of particular importance in the efforts 
towards a molecular-level design of hyperbranched-based nanovectors with optimized properties.  
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