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Molecular dynamics simulations were employed in models of peripherally charged dendrimers in
solutions of explicit solvent and monovalent counterions in order to explore aspects of the dynamic
behavior of counterions. The present study explores the effects of varying strength of electrostatic
interactions for models of two dendrimer generations, in explicit solvent solutions below the
dendrimer overlap concentration. Counterion diffusional motion as well as residence lifetimes of
pairs formed by charged dendrimer beads and condensed counterions is monitored in the different
electrostatic regimes. Spatiotemporal characteristics of self- and collective counterion motion are
explored by means of space-time Van Hove correlation functions. A characteristic scaling law is
found to describe the counterion diffusion coefficient as a function of Bjerrum length in the strong
electrostatic regime, independent of the size of the dendrimer molecules at the examined volume
fractions. The change noted in the diffusional motion of counterions in the range of strong
Coulombic interactions is also reflected to their relevant residence times. Development of dynamic
heterogeneities in counterion self-motion is observed during the gradual increase in the strength of
electrostatic interactions, characterized by the emergence of distinct counterion populations in terms
of their mobility. The time scale for the development of such a mobility contrast in the self-motion
of the counterions can be correlated with that describing their collective motion as well. The latter
increases with Bjerrum length but remains shorter compared to the time scale at which free
diffusional motion sets in. Findings from the present study provide further insight on the
mechanisms pertinent to ion migration in macroion dispersions and may serve as a basis for the
interpretation of ionic motion in a broader range of polyelectrolyte systems. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3088849]

I. INTRODUCTION

Understanding of the dynamic characteristics of the
ionic atmosphere in the vicinity of charged macromolecular
systems of industrial'? or biological signiﬁcance3’4 is a cru-
cial step for the interpretation of their physical behavior and
ultimately toward the control of their properties. Issues such
as spatials’6 and temporal7’8 correlations between counteri-
ons, their self- and collective motion,g’10 and the dynamics
associated with the counterion condensation process11 play a
key role in phenomena such as the self-assembly of macro-
molecular syste:ms,12’13 the formation of complexes between
biological Inolecules,l4’15 the counterion-mediated attraction
between like-charged macroions and their possible under- or

overcharging,lo’m’m_18 the stability of colloidal dispersions
and polymeric gels,lg’21 etc.
. 4,8,22-24 . 125
Recent experimental, theoretical, and

computational“’26 studies revealed that the characteristic
time scales involved in counterion dynamics in polyelectro-
lyte systems may span several orders of magnitude ranging
from subnanosecond times to time scales corresponding to
acoustic frequencies.27 These characteristic times describing
self- or collective counterion motions were found to be di-
rectly associated with the details of their spatial arrangement
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around the macroions.”’ Depending on the strength of the
electrostatic interactions, it has been found®? that distinct
“phases” of counterions can be formed, i.e., a “condensed”
and a “diffuse” phase consisting of the tightly and the loosely
bound counterions to the considered macroion, respectively.
These phases are considered transient rather than permanent
with a constant dynamic exchange of counterions between
them.®!13031 Dynamic modes arising from correlated motion
of counterions located at a close proximitylo’“’32 to the mac-
roion or even in the diffuse phaseM’B’34 may actually induce
conformational changes to the macroion, while collective
motion of the more mobile ions can be involved in the for-
mation of charge density waves'® which may trigger macro-
ion self-assembly.

To all the above dynamic processes, the internal struc-
ture of the charged macroion can be of particular importance.
Possibility of interpenetration or even entrapment of counte-
rions within the macroion’s interior,35 solvent, or ion deple-
tion phenomena which may influence the thermodynamics of
the system13’36’37 should be explicitly accounted for. Other
parameters relevant to the dynamic behavior of the counteri-
ons include their valency, the strength of electrostatic inter-
actions (associated, e.g., with the ionic strength of the solu-
tion, the dielectric permittivity of the solvent, or the
existence of an external electromagnetic field), and the con-
centration of the macroions.'***>

In this work we study the dynamic behavior of counte-
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FIG. 1. (Color online) A schematic of the topology of a third generation
dendrimer (G3). The concentric circles denote the boundaries of the genera-
tional shells. The terminal charged beads are shown in different colors.

rions in systems comprised by dendritic molecules of two
different sizes (generations) in explicit solvent solutions in
the dilute regime, subjected to a varying strength of electro-
static interactions. We have also invoked two different den-
drimer concentrations for models of each generation in order
to check for possible box size or total volume fraction ef-
fects. The strength of electrostatic interactions examined
covers a range from a weak Coulombic regime in which only
a liquidlike ordering of the dendrimer molecules and the
counterions is present to a strong electrostatic regime in
which counterion condensation takes place and the den-
drimer molecules self-organize in cubic phases.13 Experi-
mentally such conditions of varying strength of electrostatic
interactions can be realized, e.g., by modifying the Bjerrum
length of the solution via appropriate choice of the solvent’s
dielectric permittivity.3 o4

Due to their dense branching pattern and their well de-
fined dimensions (low polydispersity), dendrimer molecules
essentially bear characteristics of polymeric as well as of
colloidal nature.*” We therefore believe that the results from
the present study may serve as a basis for the description of
a broader category of materials including systems of globular
proteins, spherical brushes, and colloidal dispersions.

Il. MODEL DESCRIPTION AND SIMULATION DETAILS

Four systems of terminally charged dendrimers in an
atomistic (united atom) representation together with the cor-
responding number of neutralizing counterions and explicit
solvent beads were simulated by means of molecular dynam-
ics (MD) simulations in the constant-temperature constant-
volume (NVT) ensemble. The structure of the dendritic mol-
ecule considered starts from a trifunctional core and grows
radiallly outward with two bonds intervening between
branching points,43 as illustrated in Fig. 1

The maximum number of generational shells (see Fig. 1)
denotes the generation of the dendrimer. In this work sys-
tems of generations 3 (denoted as G3) and 4 (denoted as G4)
were studied. Each system was comprised by 30 dendrimer
molecules. The characteristics of the models examined (i.e.,
number of counterions and solvent beads) are listed in Table
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TABLE I. Details on the composition of the simulated systems. C represents
the dendrimer concentration and C* the corresponding dendrimer overlap
limit.

System code G3_1 G3_2 G4_1 G4_2
Generation 3 3 4 4

C/C* of dendrimer 0.10 0.07 0.09 0.06
Number of counterions 720 720 1440 1440
Number of solvent beads 1086 1629 2300 6534
Total volume fraction® 0.44 0.33 0.36 0.36

“In the calculations of total volume fraction, the volume of dendrimers,
counterions, and solvent beads is taken into account.

I. In all the examined models the dendrimer concentration
(C) remained below the overlap limit (C*). Variation in the
strength of electrostatic interactions was realized by modify-
ing the Bjerrum length (I)."> The simulation protocol fol-
lowed included successive steps of energy minimization and
NVT MD cycles utilizing the DREIDING (Ref. 44) force field
for equilibration of the constructed models.

Force field terms included bonded (bond stretching,
angle bending, and torsional angles’ rotation) and nonbonded
(van der Waals and Coulombic) interactions. The electro-
static interactions between charged beads were accounted for
by full Ewald summation, while no attractive part was con-
sidered in the van der Waals interaction between two charged
beads. The adopted simulation procedure and all the relevant
parameters are described in detail in our previous work."?
The unit of length is taken equal to o (the Lennard-Jones
parameter between two charged beads), while time is ex-
pressed in units of 7 (the characteristic time of our model)
which corresponds to approximately 1.4 X 10> MD steps.13

lll. THE ELECTROSTATIC REGIMES

As was described in our earlier study for systems G3_1
and G4_1 (see Ref. 13, Fig. 7), depending on the strength of
electrostatic interactions, three distinct regimes could be dis-
tinguished based on characteristic changes in the static be-
havior of the dendrimer molecules: (i) a weak electrostatic
region (quoted in Ref. 13 as regime I) in which the spatial
arrangement of dendrimer molecules remained insensitive to
Bjerrum length changes, (ii) an intermediate electrostatic re-
gime (quoted in Ref. 13 as regime II) over which a stronger
Coulombic coupling between the charged objects was real-
ized leading to a gradual counterion condensation and self-
ordering of the dendrimer molecules, and regime III at the
higher [ values examined (Iz/ o> 60), within which the den-
drimers remained in an ordered structure with practically the
entire population of counterions located in their close vicin-
ity. The same picture characterized by the aforementioned
electrostatic regimes describes the G3_2 and G4_2 systems
as well (figures describing their static behavior are not shown
here). In this work, we will mainly discuss the dynamic be-
havior of counterions over Bjerrum lengths up to I3/ 0=60,
so that the longer relevant time scales reside within our
simulation window.
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FIG. 2. (Color) Snapshots of system G4_1 at three different values of Bjer-
rum length (a) lz/o=1, (b) Iz/0=10, and (c) [/ 0=60. Solvent beads are
shown in blue and counterions in red.

Figure 2 shows snapshots of one of the examined sys-
tems (representative for all the models studied) at three Bjer-
rum lengths, where the different degrees of counterion con-
densation can be visually recognized. In Fig. 2(a)
counterions are practically homogeneously dispersed, in Fig.
2(b) populations of condensed and noncondensed counteri-
ons can be identified, while in Fig. 2(c) almost the entire
population of the counterions appears to be bound on den-
drimer molecules.
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FIG. 3. (Color online) Main panel: Diffusion coefficients of the counterions
as a function of /5 for all the studied models. The solid line indicates a slope
of —3. Inset: Mean squared displacement of the counterions at different
Bjerrum lengths for one of the examined models. The thick dotted lines
denote a slope of 1. The arrows mark the residence times of counterions as
will be discussed in Sec. VL

IV. TRANSLATIONAL MOTION

To explore the effects of the variation in the strength of
electrostatic interactions on the translational motion of coun-
terions, we have monitored their mean square displacement
(MSD) as a function of time. At all the systems, diffusion of
counterions has reached the hydrodynamic limit at lz/o
=60. Diffusion coefficients were calculated from the long-
time limit behavior of the MSD (see e.g., Fig. 3, inset) ac-
cording to

1. d
=—lim—

2
lim ™ (R(1) - RO)). (1)

where R(t) represents the position vector of a counterion at
time ¢. The angle brackets denote both time and ensemble
average. Figure 3 shows the dependence of the diffusion co-
efficients upon variation of Bjerrum length.

Although no significant differences are observed be-
tween the diffusion coefficients of systems of the same den-
drimer generation (i.e., between G3_1 and G3_2 and be-
tween G4_1 and G4_2), in smaller size models counterion
diffusion appears somewhat faster. At low Bjerrum lengths, a
rather weak variation in the diffusion coefficient character-
izes counterion motion. In contrast, when Coulombic inter-
actions grow larger, diffusional motion undergoes a dramatic
slowdown apparently following a strong power-law depen-
dence on Bjerrum length. In particular, it appears that an
exponent of —3 provides a fair description of all data in this
regime.

In order to better understand the observed behavior, it is
informative to examine the diffusional motion of the den-
drimer molecules themselves, since at high Iz values counte-
rions are to a large extent” condensed on the dendrimer
molecules and thus are expected to follow closely the den-
drimers’ translational motion.

Figure 4 depicts the dependence of the diffusion coeffi-
cient of the center of mass of the dendrimer molecules on
Bjerrum length. An example of the MSD describing the cen-
ter of mass motion for one of the systems is shown as an
inset. The main features observed in the counterion diffu-
sional behavior of Fig. 3 are also present in the dendrimers’
translational motion. The weak variation in the dendrimer
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FIG. 4. (Color online) Main panel: Diffusion coefficient of the center of
mass of the dendrimer molecules as a function of Bjerrum length. The solid
line indicates a slope of —3. Inset: MSD of the center of mass of dendrimers
for one of the studied systems. The thick dotted lines denote a slope of 1.

diffusion coefficient in the low Iz regime is followed by a
marked drop upon increase in the strength of electrostatic
interactions. Such a retardation of the center of mass motion
(note the formation of a plateau in the corresponding MSD
shown in the inset of Fig. 4 at the larger I value) is remi-
niscent of an analogous dynamic slowing down close to the
glass transition observed in a wide range of systems, such as
glass-forming liquids and polymers,45 colloids,*® and
dendrimers."’

More specifically, in colloidal systems and, in particular,
in the case of charge-stabilized colloidal suspensions, a dy-
namic anomaly in the diffusion coefficient as a function of
the strength of Coulombic interactions has theoretically been
predicted.48 According to this study, correlations among the
charged colloids and the counterions were found responsible
for a significant slow down of the translational motion of the
former, close to a characteristic volume fraction @, of the
solute (the subscript g refers to a glasslike behavior). This
characteristic volume fraction for highly charged colloidal
systems was found to strongly decrease upon increase in [.
In other words, an increase in [z would bring the system
much closer to a motionally “frozen” state imparting a
marked drop in the colloid diffusional motion, in qualitative
agreement to the dendrimers’ behavior (Fig. 4). Since at that
electrostatic regime most of the counterions are condensed
on the dendrimer molecules as stated earlier, it is reason-
able to conclude that the same behavior will also characterize
the diffusion of counterions (Fig. 3).

V. SPACE-TIME CORRELATED MOTION

A way to explore both collective as well as self-motions
at different time scales is by probing the time dependence of
the so-called Van Hove correlation function® G(r,t) defined
as

Gl = }V<E S dr+r0) —r,-(z)]>, @)
i

where N is the total number of particles,  represents the
Dirac’s function, while r;(¢) is the position vector of the iy,
particle at time ¢. This function is proportional to the prob-
ability that a particle is at position r at time 7 given that a
particle was at the origin (r=0) at time t=0. Its Fourier trans-
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form can be probed by experimental techniques possessing
space-time resolution capabilities such as neutron
scattering,SO in order to extract dynamic structure informa-
tion. By separating the i=j and the i # j terms in Eq. (2), the
Van Hove correlation function can be expressed as a sum of
a self- and a distinct part G(r,1)=G,(r,1)+G4(r,t). The self-
part for homogeneous uniform substances can be expressed
as

Gy(r,) = ]%<§‘, Sr=Irin) - ri(0)|]>, (3)

where r symbolizes the distance between the positions of the
iy, particle at times 7 and 0. It probes self-motion as a func-
tion of time and is related via its Fourier transform to the
incoherent dynamic structure factor probed by scattering ex-
periments. In analogy, the distinct part is given by

Gulrn) = 1<2 S ot -0 - rj<o>|]> @
N7 Gz
and essentially probes collective dynamics at different length
scales (its Fourier transform is associated with the coherent
dynamic structure factor). In order to get a more detailed
account regarding the motional mechanisms associated with
counterion dynamics, we will present the self- and distinct
parts separately.

A. Self-motion

As has been documented in past studies of local motion
in glass-forming 1iquids,51 ionic and metallic glasses,sz’53 or
polymers,54’55 G(r,t) is a particularly sensitive probe in
characterizing particles’ motion in terms of their relative mo-
bility. If all the particles monitored follow a free-of-obstacles
homogeneous motion, the distances they travel at a specific
time interval are Gaussian distributed and the self-Van Hove
function varies as G,(r,7)xexp[-3r2/2(Ar*(¢))]. In cases,
however, where the homogeneous nature of their motion is
inhibited, deviations from the Gaussian behavior are
observed,” which under certain conditions may grow suffi-
ciently strong to result in the formation of particle popula-
tions with distinctly different mobilities. This instance is di-
rectly reflected to the self-part of the Van Hove function,
since particles possessing distinct mobilities travel different
distances at specific time periods.

As has been discussed in our previous work,13 increase
in the strength of electrostatic interactions results to a grow-
ing degree of counterion condensation, enhancing at the
same time the mobility contrast between the condensed and
the “loose” counterions around the charged dendrimers. It is
therefore expected that for a specific time period, the dis-
tances spanned from counterions belonging to these two
populations would depend on the Bjerrum length of the ex-
amined system. An example of the link between the level of
electrostatic interactions and the time scale at which a no-
ticeable dynamic contrast between counterions is developed,
is illustrated in Fig. 5, where 47r>G(r,t) for two of the
examined models is shown at constant time but varying Ip.
For both dendrimer size systems and for the particular time
scale considered, only close to a specific Iz value (Iz/o
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FIG. 5. (Color online) Self-Van Hove correlation functions for two of the
examined models at a constant time scale =777 but varying Bjerrum
lengths. G3_1 (a) and G4_1 (b). At that time scale, indications for the
development of a second peak appear at /z/ o=30.

=30) a separation in the traveled distances (i.e., development
of a second peak) becomes noticeable. At larger values of
Bjerrum length where most of the counterions become
strongly bound to the dendrimers,”” no clear indication of
distinct counterion populations in terms of the spanned dis-
tances (i.e., indication of an additional peak) can be observed
at the examined time scale.

This is also the case (i.e., the absence of a second peak)
for Bjerrum lengths in the weak Coulombic regime, not only
at the time scale specified in Fig. 5 but also at any time scale
checked within the simulated trajectory length.

Figure 6 shows the time evolution of the self Van Hove
function at a Bjerrum length value within the strong electro-
static regime.

As illustrated in the time evolution of the angular inte-
grated self-Van Hove functions, a ‘“shoulder” develops at
time scales of the order of few tenths of the time unit. This
shoulder grows in amplitude (more prominent in the G3
model) at larger time scales (of the order of 1007 and
longer). The widest detectable separation in length scales
spanned by the less and the more mobile counterions is be-
tween 20 and 30.

Apart from the strength of the Coulombic coupling and
the time scale examined, another parameter that should be
taken into account when transport properties of counterions
are to be examined is the concentration of the solute, i.e., that
of the oppositely charged polyelectrolyte molecules.?>%

Figure 7 shows the dependence of self-Van Hove spectra
on dendrimer concentration at constant Bjerrum length but
different time periods.

At short time scales and for constant dendrimer size,
G,(r,1) curves are practically indistinguishable between sys-
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FIG. 6. (Color online) Self-Van Hove correlation functions (after angular
integration) for two of the examined models at Iz/ =30 representing sys-
tems of generations 3 [G3_1, (a)] and 4 [G4_1, (b)]. The plotted curves
cover time scales from 0.87 to 769.27 (0.87, 7.87, 15.47, 30.87, 61.57, 76.97,
153.87, 230.87, 307.87, 461.57, 615.47, and 769.27 in sequence of appear-
ance). The arrows point out the first appearance of a shoulder in the corre-
lations functions.

tems at different concentrations. At longer time scales, how-
ever, the separation of the traveled distances between sys-
tems at different concentrations becomes appreciable (note
the relative shift of the curves as a function of time). The
distances covered by counterions are expected to be larger at
lower concentrations; this can be ascribed to the wider sepa-
rations between nonbound counterions and dendrimers, al-

4nr"G (r.t)

4nrG(r.Y)

b

—_
=

FIG. 7. (Color online) Comparison of G(r,t) functions of counterions at
constant [/ 0=60 for different time scales and for the systems at different
dendrimer concentrations. (a): G3 models. (b): G4 models.
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lowed by the availability of more space away from den-
drimer molecules and therefore of more sites within the
solution with relatively reduced Coulombic interactions.
During the calculation of G(r,f) no distinction is made be-
tween condensed and noncondensed counterions. However,
the behavior observed in Fig. 7 can better be justified if we
assume that it arises mainly from motion of noncondensed
counterions.

B. Collective motion

The collective motion of counterions was explored by
examining the distinct Van Hove correlation function [Eq.
(4)], which essentially probes density fluctuations due to the
collective motion of the neighbors around each particle. At
the static case (¢=0), the distinct Van Hove function is pro-
portional to the radial distribution function g(r), G,(r,0)
=pg(r), where p represents the density. At large times and
long separations the position of each particle is unrelated to
the earlier position of another atom, so that G,(r,t) tends to
a constant value, i.e., the average density of the system. Fig-
ure 8 demonstrates this behavior for G,(r,t) of one of the
systems (G3_2) at different Bjerrum lengths (the behavior
observed is representative for the other systems as well).

At the weak electrostatic regime [Fig. 8(a)] the peaks of
G,(r,1) are smeared out after only a short period (1~ 7). As
the Bjerrum length increases, the amplitude of the maxima
decreases with a much lower rate, indicating a longer lasting
“memory” of the initial (i.e., at r=0) arrangement of counte-
rions. The gradual loss of this memory as times lapses origi-
nates from the collective motion of counterions. The time
period up to which the peaks remain discernible as features
of G,(r,t) can be taken as a measure of the characteristic
time scale for the decay of the correlated motion of the coun-
terions. To get an estimation of this time scale, we have
defined the function

_ Gd(r,t) - Gd(r,t*)
Gd(r,O) - Gd(r, l*) ’

C(1) ()
where * represents the time scale at which the peak corre-
sponding to the first neighbor shell has practically been
smeared out. Since at the weak electrostatic regime such a
function would have decayed rapidly, we will focus only on
larger Bjerrum length values.

Figure 9 shows C(¢) functions in semilogarithmic format
for all the models examined. A direct visual inspection re-
veals that the long-time behavior of the logarithm of this
function is to a good approximation linear in time, i.e., the
pertinent dynamic process can be described by an exponen-
tial C(7) e, where 7, can be identified as a characteristic
time for the decay of C(r). Moreover, C(t) appears to be
dependent on Bjerrum length; the larger the 7 the lower (in
absolute value) the slope, i.e., the longer the characteristic
time 7.. By fitting straight lines in the semilogarithmic plots
shown in Fig. 9 (the first point at the lower t/ 7 is excluded
from the fit), we have estimated the characteristic decay
times as plotted in Fig. 10

The characteristic time 7, appears to increase with con-
centration, Bjerrum length, and dendrimer size. The increase
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FIG. 8. (Color online) Distinct Van Hove correlation functions for system
G3_2 at different Bjerrum lengths. The behavior observed in the rest of the
examined systems is similar. Different curves in each plot correspond to
different times. The arrows indicate the direction of increase in the time
interval. The lowest time corresponds to the static case (z/7=0), while the
longer times follow the same sequence as in Fig. 6.

in 7, upon increase in concentration can be related to the
analogous slowing down of individual counterion motion as
was noted in the behavior of the self-part of the Van Hove
function (Fig. 7). The same reason (retardation of self-
motion) may also account for the observed dependence on
Bjerrum length, since the diffusional motion of counterions
was shown to slow down (Fig. 3) upon increase in /5. The
dependence on dendrimer size implies a coupling mechanism
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FIG. 9. (Color online) Semilogarithmic plots of C(¢) [Eq. (5)] for the G3 (a)
and the G4 (b) models.

between dendrimer motion and collective counterion modes
as these are probed by C(¢). This point will be revisited later
on, after some further aspects of counterion dynamics have
been discussed.

VIi. DYNAMICS OF BOUND COUNTERIONS

In the examination of the self- and collective motion of
counterions as described by the Van Hove functions, no dis-
tinction has been made between condensed and noncon-
densed populations. In order to relate the above discussed
time scales to specific dynamic mechanisms, it would be
informative to obtain a more detailed account on the behav-
ior of distinct counterion populations. To this end, we have
examined the residence time of the counterions bound to
oppositely charged dendrimer beads by calculating the “sur-
vival time” correlation function defined as®’
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FIG. 10. (Color online) Characteristic times corresponding to the long-time
behavior of C(r) from Fig. 9, at the strong electrostatic regime.
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FIG. 11. (Color online) Survival time correlation functions for counterion-
charged dendrimer bead pairs for the G3 (a) and the G4 (b) models at
different Bjerrum lengths.

2 ppif(0)
P(t) = S (i.j) ]_ '
(i,j)Pij(l =0)

Here p,;(1) takes the value of 1 if a pair between a counterion
and a terminal dendrimer bead (denoted with indices i and j)
that exists at =0 survives at time >0, and 0 otherwise. A
charged dendrimer bead and a counterion are considered to
form a pair at time ¢, if their distance at that time is shorter
than the separation corresponding to the first minimum of the
relevant pair distribution function. For all the examined sys-
tems this minimum was approximately r.,,=1.60 (see
Supplementary Material).”®

Figure 11 depicts the behavior of P(r) for all the studied
models at values of Bjerrum length covering different elec-
trostatic regimes. In all models, increase in the strength of
electrostatic interactions significantly affects the decay time
of the correlation functions as anticipated, since an increase
in Coulombic attraction naturally prolongs the period within
which the initially formed pairs remain at a close proximity.

A visual inspection of the graphs shows that at constant
dendrimer size, the curves corresponding to different concen-
trations differ only slightly. An average residence time 7, can
be estimated by integrating the survival correlation function,
i.e., 7,=[P(t)dt. The so-calculated average residence times
are presented in Fig. 12. Apparently, the dependence of resi-
dence times on the strength of electrostatic interactions fol-
lows a common pattern in all the examined models. Apart
from the effect of size and the minor shift in times due to
concentration, both size models exhibit similar changes as a
function of Bjerrum length.

Residence times seemingly follow a power-law depen-
dence, which changes exponent (i.e., slope) above a thresh-

(6)
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10° s 10 10?

FIG. 12. (Color online) Residence times of counterion-charged bead pairs.
The lines are guides to the eye. Inset: Dependence of the separation between
counterions and charged dendrimer beads on Bjerrum length, as determined
from the first neighbor peak of the corresponding pair distribution functions.
Lines are guides to the eye.

old in /g, signifying a dynamic transition. An analogous be-
havior characterizes the average separation between the two
charged species as a function of Bjerrum length (inset of Fig.
12), indicating a close connection between the spatial ar-
rangement of counterions and the character of their dynamic
coupling with the charged dendrimer beads.

A close analogy of such a dynamic association between
counterions and charged macroions from the experimental
point of view can be found in the description of dielectric
and birefringence experiments in polyelectrolyte solutions.
In experiments conducted in solutions of linear
polyelectrolytes33 or linear micelles’ in the presence of
counterions, two principal mechanisms associated with coun-
terion dynamics were identified. One, termed as the high
frequency “HF” process,32 was ascribed to the motion of
weakly associated counterions perpendicular to the contour
of the oppositely charged linear macroions, and another,
slower dynamic mode (i.e., at a lower frequency window)
termed as “LE.” From the birefringence experiments33 it was
shown that the time scale of the LF process (although some-
what faster) was very close to that corresponding to the ro-
tational relaxation motion of the macroions, i.e., to a mecha-
nism related to global macroion dynamics.

Based on the above picture, we can surmise that the
dynamic transition observed in the counterion residence
times in our systems (Fig. 12) is due to the change in the
nature of the counterions’ motion with respect to dendrimer
molecules: at a low strength of electrostatic interactions the
counterions located close to the dendrimers are only weakly
bound to them, performing a motion analogous to the HF
process observed in dielectric experiments as described
above. At higher /p values, however, where the larger per-
centage of counterions becomes tightly bound to the den-
drimers, their motion can become strongly coupled to the
slower global dendrimer dynamics (e.g., dendrimer reorien-
tation and/or translation), in analogy to the mechanism which
gives rise to the LF process in birefringence experiments.
Such a strong coupling between global dendrimer motion
(translational and/or rotational) and counterions suffices to
rationalize the dendrimer size dependence of the residence
times at the strong electrostatic regime. On the other hand, in
the weak Coulombic regime a molecular-size dependence of
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the residence times of counterions performing a HF-like mo-
tion could be introduced mainly via a coupling to the rota-
tional motion of the dendrimer which can be considerably
faster than the overall diffusion in dilute solutions.*®

To check the consistency of the above arguments at least
in the strong electrostatic regime, we can compare the time
scale of the residence times with that corresponding to the
onset of free diffusion of counterions. As the LF-like motion
is the slower dynamic process involving counterions and
since it refers to the majority of them at the high /5 range, it
should essentially determine the time scale for their long-
time diffusive behavior as well. Indeed, as shown in the inset
of Fig. 3 for one of the examined models (the behavior of the
other models is similar), the long-time diffusional motion of
counterions sets in (i.e., a slope of 1 is attained) at a time
scale only slightly longer compared to that associated with
the respective average residence times (the arrows indicate
the residence times corresponding to the specific model pre-
sented in Fig. 3).

VIl. DISCUSSION

A direct comparison between the time scales character-
izing the average residence period of the condensed counte-
rions (Fig. 12) and that corresponding to the collective mo-
tion described by the distinct Van Hove function (Fig. 10)
reveals that the latter are almost one order of magnitude
shorter compared to the former. Since the time scale of col-
lective counterion motion is realized at a considerably
shorter time scale, motion of condensed counterions might in
principle contribute to the relaxation of C(¢). However, at the
strong electrostatic regime the condensed counterions be-
come increasingly more localized in the vicinity of den-
drimer molecules as it can be inferred by the increase in the
height of the principal peak in the relevant pair correlation
function (see Supplementary Material) and the decrease in
the pair separation shown in Fig. 12, inset. Since they remain
at that close proximity to charged dendrimer beads for much
longer a period compared to the time scale for the relaxation
of C(t), we can consider that the contribution of the strongly
bound population to counterion density fluctuations probed
by G,(r,t) is practically negligible. It can therefore be in-
ferred that dynamics monitored by C(7) arises mainly due to
the motion of the less constricted counterions. As indicated
by the appearance of additional peaks in the pair distribution
function (see Supplementary Material) counterions form
next-neighbor diffuse shells around the dendrimers and
around the strongly bound population. The separation be-
tween the first and the second peak in the pair distribution
function at large [ values, representing the condensed and
the next diffuse counterion layer respectively, is approxi-
mately 1.20 (see Supplementary Material). This separation is
consistent with the location of the first peak in the
counterion-counterion pair distribution function in the strong
electrostatic regime (see Fig. 12 in Ref. 13) and with the
location of the peak monitored by G,(r,r) (see Fig. 8). In
other words, it appears reasonable to relate the dynamics
probed by C(r,7) in the strong electrostatic regime to the
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collective motion of counterions belonging in principle to the
second neighbor shell around the dendrimer molecules.

The above described picture allows us to elaborate more
on the characteristics of the self-motion of counterions as
described by the self-part of the Van Hove correlation func-
tion. As was illustrated in Fig. 6, for an [ value in the strong
electrostatic regime the time scale associated with the first
appearance of a shoulder or a second peak in G,(r,?) is much
shorter compared to the residence time at the same Bjerrum
length (compare to the times corresponding to I/ o=30 for
models G3_1 and G4_1 as shown in Fig. 12), but only mar-
ginally shorter compared to the respective time scale for the
collective counterion motion as probed by C(z) (see the times
for the same [ value in Fig. 10). On these grounds, a direct
link can be established between the time scale for the
buildup of a sufficiently high self-motion contrast among the
tightly and loosely bound counterions and the time scale as-
sociated with the collective motion of the latter.

A mechanism which may contribute to the development
of such a dynamic contrast between counterions located
close to the dendrimer periphery is the so-called “hopping”
mechanism which has been identified in biological systems59
in polymer electrolyte solutions®™®" and in disordered ionic
materials.® This process involves a hopping motion over few
jonic diameters®® and has been suggested to play a key role
in ionic transport and thus in the systems’
conductivity.3 5396063 Since the population balance between
strongly and weakly bound counterions is, in fact, dynamic
in nature,”?" it is straightforward to assume that this mecha-
nism works toward promoting the exchange between the two
populations. A typical method for the identification of such a
process is through the detection of a dynamic contrast be-
tween the examined particles; such a contrast can be inferred
from the development of different peaks in their self-Van
Hove function,”*”* as is the case in our systems (Figs. 5 and
6). The dynamic exchange process between the counterions
belonging to the condensed and to the loose shell around the
dendrimer in the strong electrostatic regime might be respon-
sible for the dendrimer size dependence of the C(r) relax-
ation times noted in Fig. 10. This can be understood through
a coupling between this process and the rotational motion of
the dendrimer, which, in dilute solutions, is faster than the
dendrimer diffusion and bares molecular-size dependence.43

VIIl. SUMMARY/CONCLUSIONS

In this work we have explored characteristics of counte-
rions’ motion in a dilute solution of peripherally charged
dendrimer molecules (in a UA representation) with the pres-
ence of explicit solvent beads, under the influence of differ-
ent strengths of electrostatic interactions. Models of two dif-
ferent dendrimer sizes (i.e., of the third and the fourth
generation) and two different concentrations (in the dilute
regime) of the solute were examined.

Different dynamic probes were utilized in order to study
dynamic aspects of counterion motion at different length and
time scales. In the long-time limit, and in the range of elec-
trostatic interactions where the degree of counterion conden-
sation was significant (i.e., at lz/o values =10 when the

J. Chem. Phys. 130, 114903 (2009)

percentage of the condensed counterions was 60% or
higher13), the diffusive motion of counterions was essentially
coupled to that of the dendrimer molecules. The diffusion
coefficients of both, the counterion and the dendrimer spe-
cies, were found to follow a common power-law dependence
on Bjerrum length with an exponent close to —3. This mo-
tional coupling between condensed counterions and den-
drimers in the strong Coulombic regime was consistent with
the manifestation of a dynamic transition in the survival
(residence) times of the pairs formed between counterions
and dendrimer charged beads, much in analogy to the ob-
served coupling between counterions and long length scale
dynamic modes in other macromolecular electrolyte
syste:ms.l()’30’64’65 In the weak electrostatic regime where the
majority of counterions are only loosely associated with the
charged dendrimer beads, the relevant residence time scale is
much shorter; in this regime these counterions can be visu-
alized to perform an oscillatory motion along the direction of
loose virtual bonds connecting them with the charged den-
drimer beads, in a fashion similar to the motion characterized
as the “high frequency” process in dielectric relaxation ex-
periments performed in polyelectrolyte solutions.*” This pro-
cess appears to be coupled to global dendrimer motion as
well, most probably through the dendrimer rotational
relaxation.

In the strong electrostatic regime, we can also monitor
the dynamic behavior of those counterions not tightly bound
to the charged dendrimer beads. Dynamics of these counte-
rions, although referring to a rather low percentage of the
total population, may be important in applications where ion
transport is desired to be carefully controlled.**® As has
been demonstrated in our analysis of Van Hove functions in
the latter regime, the time scale at which populations with
noticeably different mobilities appear, as well as the time
scale for relaxation of local counterion density fluctuations,
is much shorter compared to the residence times of the
strongly bound counterions. This information, combined
with the structural details concerning the arrangement of
counterions (either around the charged dendrimer beads or
around other counterions), indicated that the dynamic fea-
tures observed in the distinct and the self-part of the Van
Hove functions were mainly related to the population of
counterions loosely bound to the dendrimers and to the ex-
change mechanism between them and the condensed popu-
lation, respectively. The time scale for the decay of the col-
lective modes characterizing the loosely bound population
was found to be moderately longer compared to that for the
development of a mobility contrast between individual coun-
terions. This collective motion was also found to be den-
drimer size dependent, which indicates a coupling with glo-
bal dendrimer dynamics. The time scale for the collective
motion was found to range between 107 and 1007 depending
on the strength of electrostatic interactions.

If we would like to map the simulation time to real units,
assigning the unit length 0=3.3 A as was shown in our
previous work'? and taking e=0.3kzT as has been considered
for the energy simulation units,” 7 would correspond to ap-
proximately 1.4 ps at room temperature. From light scatter-
ing experiments in highly charged (salt-free) polyelectrolyte
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solutions,67 it was found that the diffusion coefficient ex-
tracted from a dynamic process associated with the coupled
counterion-polyion motion and in a wide concentration range
was between 107> and 107% cm?/s for monovalent counteri-
ons. For divalent counterions, inelastic x-ray measurements”
yielded a diffusion coefficient for bound counterions close to
5X10™* cm?/s. Mapping the units of length and time to real
units as discussed above, we calculate that between lg/o
=10 and l3/ =60 the diffusion coefficient of the counterions
(Fig. 3) varies between 10~ and 107® cm?/s which captures
the order of magnitude observed in the relevant experiments.
Moreover, in electron paramagnetic resonance measurements
including systems with low ionic strength (i.e., with virtually
unscreened Coulombic interactions) and at different
concentrations®””' showed that the lifetime of contact be-
tween counterions and polyelectrolyte chains as well as that
associated with the exchange between territorially bound and
“free” counterions corresponds to a subnanosecond time
scale. This is consistent with the time scales found either for
the appearance of a second peak in the self-Van Hove func-
tion (ranging from 107 to 1007 for the examined models,
Figs. 6 and 7) or for the average residence times of counte-
rions as illustrated in Fig. 12.

In conclusion, we believe that the results described in the
present work elucidate essential characteristics of the dynam-
ics of counterions and provide a more detailed account for
the study of ion migration phenomena in dilute polyelectro-
lyte solutions and under the influence of different strengths
of electrostatic interactions.

ACKNOWLEDGMENTS

Funding from the Greek General Secretariat for Re-
search and Technology and the European Community under
the framework of the PENED 2003 program (Grant No.
03EA716) is gratefully acknowledged.

'M. Mandel, in Encyclopedia of Polymers Science and Engineering, ed-
ited by H. F. Mark (Wiley, New York, 1985).

’J.R.C. Vandermaarel, L. C. A. Groot, J. G. Hollander, W. Jesse, M. E.
Kuil, J. C. Leyte, L. H. Leytezuiderweg, M. Mandel, J. P. Cotton, G.
Jannink, A. Lapp, and B. Farago, Macromolecules 26, 7295 (1993).

’s. Sen, L. A. Gearheart, E. Rivers, H. Liu, R. S. Coleman, C. J. Murphy,
and M. A. Berg, J. Phys. Chem. B 110, 13248 (2006).

‘T E. Angelini, R. Golestanian, R. H. Coridan, J. C. Butler, A. Beraud, M.
Krisch, H. Sinn, K. S. Schweizer, and G. C. L. Wong, Proc. Natl. Acad.
Sci. U.S.A. 103, 7962 (2006).

K. Andresen, R. Das, H. Y. Park, H. Smith, L. W. Kwok, J. S. Lamb, E.
J. Kirkland, D. Herschlag, K. D. Finkelstein, and L. Pollack, Phys. Rev.
Lett. 93, 248103 (2004).

R, Das, T. T. Mills, L. W. Kwok, G. S. Maskel, I. S. Millett, S. Doniach,
K. D. Finkelstein, D. Herschlag, and L. Pollack, Phys. Rev. Lett. 90,
188103 (2003).

"E J. M. Schipper, J. G. Hollander, and J. C. Leyte, J. Phys.: Condens.
Matter 10, 9207 (1998).

D. Hinderberger, H. W. Spiess, and G. Jeschke, J. Phys. Chem. B 108,
3698 (2004).

°7. Appell, G. Porte, and E. Buhler, J. Phys. Chem. B 109, 13186 (2005).

T E. Angelini, H. Liang, W. Wriggers, and G. C. L. Wong, Proc. Natl.
Acad. Sci. U.S.A. 100, 8634 (2003).

"'T.S. Lo, B. Khusid, and J. Koplik, Phys. Rev. Lett. 100, 128301 (2008).

12, Pappalardo, V. Villari, S. Slovak, Y. Cohen, G. Gattuso, A. Notti, A.
Pappalardo, 1. Pisagatti, and M. R. Parisi, Chem.-Eur. J. 13, 8164 (2007).

3K, Karatasos, Macromolecules 41, 1025 (2008).

A, Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon, S. U. Egelhaaf,

J. Chem. Phys. 130, 114903 (2009)

and P. Schurtenberger, Nature (London) 432, 492 (2004).
'SP, K. Maiti and B. Bagchi, Nano Lett. 6, 2478 (2006).
lox Qiu, K. Andresen, L. W. Kwok, J. S. Lamb, H. W. Park, and L.
Pollack, Phys. Rev. Lett. 99, 038104 (2007).
N. Ise, T. Konishi, and B. V. R. Tata, Langmuir 15, 4176 (1999).
ML Deserno, F. Jimenez-Angeles, C. Hohn, and M. Lozada-Cassou, J.
Phys. Chem. B 105, 10983 (2001).
M. Quesada-Perez, J. Callejas-Fernandez, and R. Hidalgo-Alvarez, Adv.
Colloid Interface Sci. 95, 295 (2002).
DL R Rojas-Ochoa, R. Castaneda-Priego, V. Lobaskin, A. Stradner, F.
Scheffold, and P. Schurtenberger, Phys. Rev. Lett. 100, 178304 (2008).
2Ip, Gottwald, C. N. Likos, G. Kahl, and H. Lowen, Phys. Rev. Lett. 92,
068301 (2004).
2y, M. Prabhu, E. J. Amis, D. P. Bossev, and N. Rosov, J. Chem. Phys.
121, 4424 (2004).
By, Morfin, F. Horkay, P. J. Basser, F. Bley, A.-M. Hecht, C. Rochas, and
E. Geissler, Biophys. J. 87, 2897 (2004).
#A. Popov and D. A. Hoagland, J. Polym. Sci., Part B: Polym. Phys. 42,
3616 (2004).
BW. K. Kim and W. Sung, Phys. Rev. E 78, 021904 (2008).
%°R. Chang and A. Yethiraj, J. Chem. Phys. 116, 5284 (2002).
Y'T.E. Angelini, L. K. Sanders, H. J. Liang, W. Wriggers, J. X. Tang, and
G. C. L. Wong, J. Phys.: Condens. Matter 17, S1123 (2005).
F. Bordi, C. Cametti, and R. H. Colby, J. Phys.: Condens. Matter 16,
R1423 (2004).
2y, Katsumoto, S. Omori, D. Yamamoto, A. Yasuda, and K. Asami, Phys.
Rev. E 75, 011911 (2007).
Ip, Hinderberger, H. W. Spiess, and G. Jeschke, Macromol. Symp. 211,
71 (2004).
Mp, Hinderberger, G. Jeschke, and H. W. Spiess, Macromolecules 35,
9698 (2002).
32J. Oizumi, Y. Kimura, K. Ito, and R. Hayakawa, Colloids Surf., A 145,
101 (1998).
BN, Ookubo, I. Teraoka, and R. Hayakawa, Ferroelectrics 86, 19 (1988).
3*H. Washizu and K. Kikuchi, J. Phys. Chem. B 110, 2855 (2006).
e Reznik, Q. Darugar, A. Wheat, T. Fulghum, R. C. Advincula, and C. F.
Landes, J. Phys. Chem. B 112, 10890 (2008).
A A Gurtovenko, S. V. Lyulin, M. Karttunen, and I. Vattulainen, J.
Chem. Phys. 124, 094904 (2006).
37Y. Rabin and M. Tanaka, Phys. Rev. Lett. 94, 148103 (2005).
BE I M. Schipper, K. Kassapidou, and J. C. Leyte, J. Phys.: Condens.
Matter 8, 9301 (1996).
¥, Devadoss, P. Bharathi, and J. S. Moore, Angew. Chem., Int. Ed. Engl.
36, 1633 (1997).
HOp, Topp, B. J. Bauer, D. A. Tomalia, and E. J. Amis, Macromolecules
32, 7232 (1999).
A Bonincontro, C. Cametti, B. Nardiello, S. Marchetti, and G. Onori,
Biophys. Chem. 121, 7 (2006).
“2H. M. Harreis, C. N. Likos, and M. Ballauff, J. Chem. Phys. 118, 1979
(2003).
K. Karatasos, D. B. Adolf, and G. R. Davies, J. Chem. Phys. 115, 5310
(2001).
s L. Mayo, B. D. Olafson, and W. A. Goddard III, J. Phys. Chem. 94,
8897 (1990).
K. Binder, J. Baschnagel, and W. Paul, Prog. Polym. Sci. 28, 115 (2003).
K. A. Dawson, Curr. Opin. Colloid Interface Sci. 7, 218 (2002).
47K Karatasos, Macromolecules 39, 4619 (2006).
*M. Tokuyama, Phys. Rev. E 58, R2729 (1998).
#J.-P. Hansen and I R. McDonald, Theory of Simple Liquids, 3rd ed.
(Elsevier, Amsterdam, 2006).
Oy E. Fischer, A. C. Barnes, and P. S. Salmon, Rep. Prog. Phys. 69, 233
(2006).
Shw. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys.
Rev. Lett. 79, 2827 (1997).
2F, Faupel, F. Werner, M.-P. Macht, H. Mehrer, V. Naundorf, K. Raetzke,
H. Schober, D. Sharma, and H. Teichler, Rev. Mod. Phys. 75, 237
(2003).
33J. Habasaki, K. L. Ngai, and Y. Hiwatari, Phys. Rev. E 66, 021205
(2002).
**E. G. Kim and W. L. Mattice, J. Chem. Phys. 117, 2389 (2002).
K. Karatasos and A. V. Lyulin, J. Chem. Phys. 125, 184907 (2006).
37, Pinero, L. B. Bhuiyan, J. Rescic, and V. Vlachy, J. Chem. Phys. 127,
104904 (2007).
D, Swiatla-Wojcik, Chem. Phys. 342, 260 (2007).

Downloaded 22 Mar 2009 to 155.207.206.217. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1021/ma00078a027
http://dx.doi.org/10.1021/jp056327+
http://dx.doi.org/10.1073/pnas.0601435103
http://dx.doi.org/10.1073/pnas.0601435103
http://dx.doi.org/10.1103/PhysRevLett.93.248103
http://dx.doi.org/10.1103/PhysRevLett.93.248103
http://dx.doi.org/10.1103/PhysRevLett.90.188103
http://dx.doi.org/10.1088/0953-8984/10/41/004
http://dx.doi.org/10.1088/0953-8984/10/41/004
http://dx.doi.org/10.1021/jp036043u
http://dx.doi.org/10.1021/jp051016k
http://dx.doi.org/10.1073/pnas.1533355100
http://dx.doi.org/10.1073/pnas.1533355100
http://dx.doi.org/10.1103/PhysRevLett.100.128301
http://dx.doi.org/10.1002/chem.200601785
http://dx.doi.org/10.1021/ma7019489
http://dx.doi.org/10.1038/nature03109
http://dx.doi.org/10.1021/nl061609m
http://dx.doi.org/10.1103/PhysRevLett.99.038104
http://dx.doi.org/10.1021/la981088l
http://dx.doi.org/10.1021/jp010861+
http://dx.doi.org/10.1021/jp010861+
http://dx.doi.org/10.1016/S0001-8686(01)00065-3
http://dx.doi.org/10.1016/S0001-8686(01)00065-3
http://dx.doi.org/10.1103/PhysRevLett.100.178304
http://dx.doi.org/10.1103/PhysRevLett.92.068301
http://dx.doi.org/10.1063/1.1776556
http://dx.doi.org/10.1529/biophysj.104.045542
http://dx.doi.org/10.1002/polb.20200
http://dx.doi.org/10.1103/PhysRevE.78.021904
http://dx.doi.org/10.1063/1.1453396
http://dx.doi.org/10.1088/0953-8984/17/14/001
http://dx.doi.org/10.1088/0953-8984/16/49/R01
http://dx.doi.org/10.1103/PhysRevE.75.011911
http://dx.doi.org/10.1103/PhysRevE.75.011911
http://dx.doi.org/10.1002/masy.200450705
http://dx.doi.org/10.1021/ma021105k
http://dx.doi.org/10.1016/S0927-7757(98)00675-X
http://dx.doi.org/10.1021/jp054269m
http://dx.doi.org/10.1063/1.2166396
http://dx.doi.org/10.1063/1.2166396
http://dx.doi.org/10.1103/PhysRevLett.94.148103
http://dx.doi.org/10.1088/0953-8984/8/47/020
http://dx.doi.org/10.1088/0953-8984/8/47/020
http://dx.doi.org/10.1021/ma9901240
http://dx.doi.org/10.1063/1.1530577
http://dx.doi.org/10.1063/1.1394207
http://dx.doi.org/10.1021/j100389a010
http://dx.doi.org/10.1016/S0079-6700(02)00030-8
http://dx.doi.org/10.1016/S1359-0294(02)00052-3
http://dx.doi.org/10.1021/ma060545z
http://dx.doi.org/10.1103/PhysRevE.58.R2729
http://dx.doi.org/10.1088/0034-4885/69/1/R05
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/RevModPhys.75.237
http://dx.doi.org/10.1103/PhysRevE.66.021205
http://dx.doi.org/10.1063/1.1489897
http://dx.doi.org/10.1063/1.2386155
http://dx.doi.org/10.1063/1.2768963

114903-11 Dynamics of counterions

¥See EPAPS Document No. E-JCPSA6-130-023910 for pair distribution
function between charged dendrimer beads and counterions in one of the
studied models. The vertical line denotes the cutoff distance. The pair
distribution functions of all the other examined models are in complete
analogy, therefore the same cutoff value has been adopted for the rest of
the systems as well. For more information on EPAPS, see http:/
www.aip.org/pubservs/epaps.html.

%S, T. Cui, Phys. Rev. Lett. 98, 138101 (2007).

%N. Ramesh and J. L. Duda, J. Membr. Sci. 191, 13 (2001).

M. C. Lonergan, A. Nitzan, M. A. Ratner, and D. F. Shriver, J. Chem.

J. Chem. Phys. 130, 114903 (2009)

Phys. 103, 3253 (1995).

©2K. Funke and R. D. Banhatti, Solid State Sci. 10, 790 (2008).

Y Kytin, T. Dittrich, J. Bisquert, E. A. Lebedev, and F. Koch, Phys. Rev.
B 68, 195308 (2003).

®R. E. A. Dillon and D. F. Shriver, Chem. Mater. 13, 1369 (2001).

5V, M. Prabhu, Curr. Opin. Colloid Interface Sci. 10, 2 (2005).

OR.N. Barnett, C. L. Cleveland, A. Joy, U. Landman, and G. B. Schuster,
Science 294, 567 (2001).

7Y, B. Zhang, J. F. Douglas, B. D. Ermi, and E. J. Amis, J. Chem. Phys.
114, 3299 (2001).

Downloaded 22 Mar 2009 to 155.207.206.217. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1103/PhysRevLett.98.138101
http://dx.doi.org/10.1016/S0376-7388(01)00439-2
http://dx.doi.org/10.1063/1.470257
http://dx.doi.org/10.1063/1.470257
http://dx.doi.org/10.1103/PhysRevB.68.195308
http://dx.doi.org/10.1103/PhysRevB.68.195308
http://dx.doi.org/10.1016/j.cocis.2005.04.002
http://dx.doi.org/10.1126/science.1062864
http://dx.doi.org/10.1063/1.1336148

