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1 INTRODUCTION

ABSTRACT

The 2/1 resonant dynamics of a two-planet planar system is studied within the frame-
work of the three-body problem by computing families of periodic orbits and their
linear stability. The continuation of resonant periodic orbits from the restricted to the
general problem is studied in a systematic way. Starting from the Keplerian unper-
turbed system we obtain the resonant families of the circular restricted problem. Then
we find all the families of the resonant elliptic restricted three body problem, which
bifurcate from the circular model. All these families are continued to the general three
body problem, and in this way we can obtain a global picture of all the families of
periodic orbits of a two-planet resonant system. The parametric continuation, within
the framework of the general problem, takes place by varying the planetary mass ratio
p. We obtain bifurcations which are caused either due to collisions of the families in
the space of initial conditions or due to the vanishing of bifurcation points. Our study
refers to the whole range of planetary mass ratio values (p € (0,00)) and, therefore
we include the passage from external to internal resonances. Thus we can obtain all
possible stable configurations in a systematic way. Finally, we study whether the dy-
namics of the four known planetary systems, whose currently observed periods show
a 2/1 resonance, are associated with a stable periodic orbit.

Key words: celestial mechanics — planetary systems.

A good model to study the motion of three celestial bodies
considered as point masses is the famous three-body prob-
lem (TBP), whose study goes back to Poincaré. In the
present study we consider a planetary system with two plan-
ets, namely the case where only one of the three bodies is
the more massive one, and the other two bodies have much
smaller masses.

The simplest model is the circular restricted TBP. Al-
though much work has been carried out for periodic orbits of
this model, (see e.g. Bruno, 1994; Hénon, 1997), new inter-
esting results continue to appear in the literature (Maciejew-
ski and Rybicki 2004; Papadakis and Goudas, 2006; Bruno
and Varin 2006,2007). In this model we consider two bodies
with non zero mass, called primaries, which are called Sun
(S) and Jupiter (J) for convinience, moving in circular or-
bits around their common center of mass, and a third body
with negligible mass, for example an asteroid, moving under
the gravitational attraction of the two primaries. A more
realistic model is the elliptic restricted TBP, where the two
primaries move in elliptic orbits. However, the gravitational
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interaction between the small body and the two primaries
is not taken into account in the restricted models. When we
introduce this gravitational interaction, we have a more re-
alistic model, the general TBP. Within this framework we
can study a system consisting of a Sun and two small bodies
(planets).

In the study of a dynamical system, the topology of
its phase space plays a crucial role. The topology is deter-
mined by the position and the stability properties of the
periodic orbits, or equivalently, of the fixed points of the
Poincaré map on a surface of section. This makes clear the
importance of the knowledge of the families of periodic orbits
in a dynamical system. Particularly, in a planetary system,
many families of periodic orbits are associated with reso-
nances, which are mean motion resonances between the two
planets. Since in our study of planetary systems only one
body is the more massive one (the sun), a good method is
to start from the simplest model, which is the circular re-
stricted problem and find all the basic families of periodic
orbits. Then we extend the model to the elliptic restricted
model, and find all the families of resonant periodic orbits
that bifurcate from the circular to the elliptic model. Fi-
nally, we give mass to the massless body and continue all
these families to the model of the general problem. This is
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the method that we shall use in the present study in order
to describe the dynamics of a resonant planetary system.
The existence of periodic orbits of the planetary type in the
general TBP, as a continuation from the restricted prob-
lem, has been studied by Hadjidemetriou (1975, 1976) and
recently this method found a fruitful field of applicability
in the dynamics of resonant extrasolar systems (e.g. Rivera
and Lissauer,2001; Ji et al, 2003; Haghighipour et al., 2003;
Ferraz-Mello et al., 2003; Psychoyos and Hadjidemetriou,
2005; Voyatzis and Hadjidemetriou, 2005; Voyatzis, 2008;
Michtchenko et al, 2008). An alternative method for ap-
proximating resonant periodic motion is the computation
of stationary solutions (corotations) of the averaged model
(Beauge et al. 2003; Michtchenko at al. 2006).

Although the planetary TBP can show various modes
of stable motion for small or moderate eccentricities, the
stability domains that are associated with stable periodic
orbits are of great importance in planetary dynamics be-
cause i) they offer a phase protection mechanism and long
term stability even for large eccentricities and ii) stable pe-
riodic orbits may be traps for planetary systems after a mi-
gration process (Lee, 2004; Beauge et al, 2003, 2006). Since
the planetary TBP shows large chaotic domains in phase
space, planetary evolution depends significantly on the ini-
tial conditions. Therefore in order to reveal the dynamics of
a particular observed planetary system we require reliable
orbit determination and, inversely, the orbital fits of the ob-
servations should be valid only if they provide dynamically
stable evolution (see e.g. Beauge, 2008).

The central target of the present paper is the descrip-
tion of a systematic way for obtaining the resonant periodic
orbits of a planetary pair and its application to the 2/1 res-
onance. In the next section we discuss briefly known aspects
on the families of periodic orbits in the circular unperturbed
and in the restricted problem. These issues are fundamental
for continuing our study in the elliptic restricted and in the
general TBP problem. In section 3 we present the contin-
uation of resonant periodic orbits from the circular to the
elliptic model and then, in section 4, we consider the con-
tinuation in the general problem. In section 5 we study the
bifurcation of families of periodic orbits within the frame-
work of the general problem, as the mass ratio of the planets
varies. In section 6 we present the chart of the 2:1 stable res-
onant periodic orbits and we discuss the possible association
of the the dynamics of observed planetary systems with pe-
riodic orbits.

2 THE CIRCULAR RESTRICTED PROBLEM

Consider a body S (Sun) with mass mo and a second body
J (Jupiter) with mass m, which describe circular orbits
around their common center of mass. We define a rotating
frame of reference xOy, whose z-axis is the line SJ, the
origin is at their center of mass and the zy plane is the
orbital plane of the circular motion of the these two bodies.
The circular restricted problem describes the motion of a
massless body A in the rotating frame, which moves under
the gravitational attraction of S and J. In our computations
we consider the normalization of units mo+m1 =1, G =1
and n’ = 1, where G is the gravity constant and n’ the mean

motion of J, implying that the orbital radius of J is equal
to 1.

2.1 The unperturbed case (m; =0)

We assume that the body J has zero mass, mi = 0, constant
radius ¢’ = 1 and rotates with constant angular velocity
n’ = 1. Actually is used only to define the rotating frame
2Oy, whose origin is the body S. Evidently, the motion of
the body A is a Keplerian orbit, presented in the rotating
frame.

The Hamiltonian function H that describes the unper-
turbed motion of A, in polar coordinates, r, ¢ (in the rotat-
ing frame), is

The momenta are p, = 7 and pgy = r2(é 4+ n'). Note that
the angle ¢ is an ignorable coordinate and consequently,
in addition to the energy integral Hy = h =constant, we
also have the angular momentum integral py =constant. In
terms of the elements of the orbit, the Hamiltonian and the
angular momentum are expressed as

Gmo

Ho = YR n/Pdn Pe =

We shall consider two types of orbits of the body A:
circular orbits and elliptic orbits. All the circular orbits
are symmetric periodic in the rotating frame. The elliptic
orbits are periodic in the rotating frame only if they are
resonant, and may be symmetric or asymmetric. The initial
conditions of a symmetric periodic orbit are the initial
position xo and the initial velocity 3o, perpendicular to the
z-axis (the other two initial conditions are yo = 0, Zo = 0).
So, a family of symmetric periodic orbits is represented by
a smooth curve, called characteristic curve, in the space
zoYo. The energy h can be used instead of the velocity go.

Gmoa(l — e?).

Circular orbits

In the rotating frame there exist circular orbits of the
body A with an arbitrary radius r¢, which correspond to
the periodic solution r = 7o, pr = 0, qﬁ =n-—-n', pp =
nrg, where n = pg/r3 is the angular velocity of the circular
orbit (in the inertial frame). A circular orbit in 2Oy is a
Keplerian orbit in the inertial frame, with semi major axis
a = ro. Consequently, a family of circular periodic orbits
exists along which the radius r¢ or the frequency n varies.
The characteristic curve of the family is obtained from the
energy integral (Hamiltonian Ho) for e =0 :

—G;:O — n'v/Gmoa = h.

It is presented in Fig. la in the space x — h. In this case,
x denotes the intersection of the circular orbit with the Ox
axis (z > 0) and its value coincides with the radious or,
equivelantly, the semimajor axis a. The circular family is
divided into two parts at the point z = 1, where the orbit
of the small body A coincides with the orbit of J. For x < 1
we have the inner orbits and for £ > 1 we have the outer
orbits.

Along the family of circular orbits the semimajor axis
and consequently the resonance n/n’ varies.
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Figure 1. (a) The unperturbed case where Jupiter mass is zero
(m1 = 0). The family of circular periodic orbits and the the two
resonant families at the 2/1 and 1/2 resonance that bifurcate from
the circular family. (b) The bifurcation to the two 2/1 resonant
elliptic families (inner resonance), when the mass of Jupiter is
non zero. The same topology appears at the bifurcation point at
the 1/2 resonance (outer resonance).

Elliptic orbits An elliptic orbit of the small body A in the
inertial frame is periodic in the rotating frame only if it is
resonant, i.e. 2 = £ =rational. The corresponding semi ma-
jor axis a,,, of the resonant orbit must satisfy the relation
(Gmo)'/2a,

— Ty

The orbit is resonant periodic for any eccentricity e, so a
family of resonant elliptic periodic orbits exists, with the
eccentricity as a parameter along the family. This family
bifurcates from the circular family at the point where the
semi major axis corresponds to the resonance p/q. The res-
onance p/q is constant along the family. There is however
another parameter, defining the orientation of the elliptic
orbit, which is the angle w of the line of apsides with a fixed
direction (which we take to be the z-axis at ¢ = 0). In gen-
eral, an elliptic orbit is not symmetric with respect to the
rotating x-axis, contrary to the circular orbits, which are all
symmetric. Symmetry exists only when w =0 or w = 7.
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Let us consider the symmetric elliptic periodic orbits
at a fixed resonance. As in the circular case, an elliptic or-
bit intersects the Ox axis perpendicularly at a point > 0.
We distinguish two different cases when, at ¢t = 0, the body
crosses perpendicularly the z-axis: the body to be at perihe-
lion (w = 0) or to aphelion (w = 7). Consequently, we have
two different families of resonant symmetric elliptic periodic
orbits. These families are presented in the space © — h by
the energy integral

Cimo —n' vV Gmoagq(1 — e?) = h,

2054

where © = a,,4(1 — e) is the perihelion (e > 0) or the aphe-
lion (e < 0) distance.

The circular family and the 2/1 and 1/2 resonant ellip-
tic families of symmetric periodic orbits of the unperturbed
problem are presented in Fig. la. In the normalization we
are using, the semi major axis along the 2/1 resonant family
is az/1 = 0.6297, called internal resonance and the semi-
major axis along the 1/2 resonance is a;/, = 1.5874, called
external resonance. These families bifurcate from the points
x = 0.6297 and = = 1.5874 of the circular family, respec-
tively. At the bifurcation points, the tangent to the above
resonant elliptic families is parallel to the z-axis.

FEach family of the internal and the external resonance,
is divided into two parts by the corresponding bifurcation
point. One part corresponds to position of the small body
at perihelion and the other at aphelion. In particular, for
the internal family, the part z < 0.6297 corresponds to per-
ihelion (family ﬁ(i)) and the part x > 0.6297 corresponds
to aphelion (family I(;)). For the external family, the part
x < 1.5874 corresponds to perihelion (family I(.)) and the
part & > 1.5874 corresponds to aphelion (family ﬁ(e)).

2.2 The perturbed case: Non zero mass of Jupiter

Let us now assume that the mass of Jupiter is non zero i.e.
mi1 = pu # 0 and mo = 1 — pu. The resonant elliptic families
at the 2/1 and 1/2 resonance are continued to p > 0, but
a gap appears at the bifurcation point of the unperturbed
families . The topology at the bifurcation point of the reso-
nant families and the gap that appears, is shown in Fig. 1b.
There are two families of elliptic orbits in each resonance,
one corresponding to the case where the small body is at
perihelion and the other to the case where the small body is
at aphelion. All these orbits are symmetric periodic orbits,
i.e. out of the infinite set of all symmetric and asymmetric
orbits of the unperturbed problem, only two orbits survive
for p > 0, both symmetric. One of them is stable and the
other unstable, as a consequence of the Poincaré-Birkhoff
fixed point theorem, but along the family the stability may
change.

In figure 2a we present the families of periodic orbits for
the 2/1 internal resonance, for u = 0.001. The gap at the bi-
furcation point that we showed in Fig. 1b is presented in this
figure by a small gap at the point e; ~ 0 (z =~ 0.6297). The
families are presented in a plane where the horizontal axis in-
dicates the z-coordinate of the massless body in the rotating
frame and the vertical axis corresponds to the osculating ec-
centricity of the nearly Keplerian orbit of the massless body.
As in the unperturbed case, there are two families, family
I;), where the small body is at aphelion and family I7;),
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Figure 2. Resonant families of elliptic periodic orbits of the cir-
cular restricted problem. a) the case of internal 2/1 resonance. b)
the case of external 1/2 resonance. Thin or bold curves indicate
unstable or stable orbits, respectively. The symbol ” x” indicates
a region of close encounters between Jupiter and the small body.
Note that we denote with e; the eccentricity of the small body in
the inner orbits and with eg the eccentricity of the small body in
the outer orbits.

where the small body is at perihelion. Family I(;) consists
of two parts: I(;,) and I(;,) separated by a collision (see Fig.
la). The first part consists of unstable orbits (thin curve)
while the second part consists of stable orbits (thick curve).
The orbits of the family I1;y are all stable.

In the case of the external 1/2 resonance, the corre-
sponding families are shown in Fig. 2b. These families arise
from the 1/2 elliptic family of Fig. la when the last one is
continued to p >0. As in the internal resonance 2/1, a small
gap appears at the point ea = 0, x = 1.5874. There are two
families, family /..y, where the small body is at perihelion
and family I1(.), where the small body is at aphelion. As
in the internal resonance 2/1, the family I consists of an
unstable part (I(.q)) and a stable part (I(cp)), which are sep-
arated by a collision (see Fig. 1a). The family Il starts
and ends with stable orbits, but along the family the stabil-
ity changes and an unstable part exists between the critical
points B and BZ. From each one of these critical points

there bifurcates a family of asymmetric periodic orbits. It
turns out that these two asymmetric families coincide to a
single asymmetric family A, which starts from the point B,
and ends to the point B%. We have found that this family
is stable for p < 5.21073. We remark that the asymmetric
family exists only for the external resonances of the form
1/q, called asymmetric resonances (Beauge, 1994; Voyatzis
et al., 2005).

3 THE ELLIPTIC RESTRICTED MODEL

Along the resonant elliptic families of the circular restricted
problem the period varies. In the unperturbed case (u =
0) the period is exactly equal to 27 along the family, for
the normalization we are using. When g > 0, the period
along the elliptic resonant families varies, but is close to the
value 2. If it happens that for a particular orbit of the
family the period is ezxactly equal to Top = 27, this point is
a bifurcation point for a family of single periodic orbits of
the elliptic restricted TBP, along which the eccentricity of
the second primary (Jupiter) varies (Hadjidemetriou, 1993;
Broucke, 1969).

Concerning the stability, we remark that the mon-
odromy matrix of the variational equations has two pairs
of eigenvalues (A1,\2) and (A3, A4). In the circular model
one pair, (A1,A2) is the unit pair, A1 = A2 = 1, because
of the existence of the energy integral. The other pair,
(A3, A4), may lie on the unit circle in the complex plane
(X34 = eT%®), corresponding to stability, or may be on the
real axis (A3 = 1/A4 € R) corresponding to instability. In
the elliptic model there is no energy integral, so we have
four different cases: (i) stable orbits when all eigenvalues are
on the unit circle (ii) simply unstable orbits when one pair
of eigenvalues is on the unit circle and one on the real axis
(iii) doubly unstable orbits when both pairs of eigenvalues
are on the real axis and (iv) complex instability, where all
eigenvalues are outside the unit circle, not on the real axis,
arranged in reciprocal pairs and complex conjugate pairs
A2 = Reﬂ‘i’, A34 = R le*i® (Broucke 1969). We can also
define the stability indices b1 = A1 + A2 and ba = A3 + As.
A periodic orbit is stable if

bi| <2, Vi=1,2.

If one of the indices b; does not satisfy the stability condi-
tion, the periodic orbit is simply unstable. If both indices
do not satisfy the stability condition the periodic orbit is
doubly unstable. Complex instability is not present in the
particular model.

In the case of 2/1 and 1/2 resonant families, the critical
points, i.e. periodic orbits with period exactly equal to 27,
are indicated on the families I1;y and Il in Fig. 2 by
the points Bp,i = 0,1,2,...6. Note that for the internal
resonance 2/1, there is only one bifurcation point, BY., on
the stable family II(;y. For the external resonance 1/2 there
are five bifurcation points. Three of them, B+, B2 and B3
belong to the symmetric family /() and two more points,
B%, BS belong to the asymmetric family A. There are no
bifurcation points on the families I(;) while on the family
Iy there is one bifurcation point, B% at high eccentricity
value.

(© 0000 RAS, MNRAS 000, 000-000
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Figure 3. Families of 2/1 resonant periodic orbits in the elliptic
restricted problem. The critical orbits B7., i = 0,1,2,4,5 of the
circular problem are indicated. Bold, thin and dotted face curves

indicate stable, unstable and doubly unstable orbits respectively.

Let us consider a critical periodic orbit B of the circu-
lar problem. The continuation of a family of periodic orbits
of the elliptic model, which bifurcates from a point Bk, is
obtained by increasing the eccentricity of Jupiter, starting
from the zero value and keeping its semimajor axis equal to
unity, ' = 1, so that n’ = 1. This is a family of resonant
periodic orbits, along which the eccentricity of Jupiter in-
creases. There are two possibilities (Hadjidemetriou, 1993):
at t = 0 the elliptic orbit of Jupiter corresponds (i) to per-
ihelion or (ii) to aphelion. So, there are two families of res-
onant periodic orbits of the elliptic model which bifurcate
from each point Bk In one family, denoted by E,, Jupiter is
at perihelion and in the other family, denoted by E,, Jupiter
is at aphelion. Additionally, as we will show in the following,
families of asymmetric periodic orbits also exist for the el-
liptic problem and can be generated in three different ways.
We will denote the asymmetric orbits by E4.

The resonant families of the elliptic model will be pre-
sented in the space of the eccentricities of Jupiter and the
small body. There are two bodies involved (Jupiter and the
small body) and in all the following we will call e;1 the eccen-
tricity of the inner of these bodies and es the eccentricity of
the outer body, irrespectively of whether the corresponding
body is Jupiter or the massless body. We use this notation
in order to have a direct comparison with the families of the
general TBP presented in the following sections.

Let us start from the family 11y of the circular model,
and present the family of the elliptic model that bifurcates
from the orbit B} (Fig. 2a), in the space e1-e2. Now e; de-
notes the eccentricity of the small body (inner body) and e2
denotes the eccentricity of Jupiter (outer body). The Family
II; of the 2/1 resonant family of the circular model is lo-
cated in Fig. 3 on the axis e; = 0 (circular orbit of Jupiter).
On this axis we present the point B and show the two fam-
ilies of the elliptic model that bifurcate from this point. As
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we mentioned before, there are two families, Fo, and Fop,
corresponding to perihelion and aphelion of Jupiter, respec-
tively. Both families start from the eccentricity e; = 0.75 of
the small body and the eccentricity ez of Jupiter starts from
zero and increases along the family.

We come now to the families of the elliptic model that
bifurcate from the 1/2 external resonant family 1. of the
circular model (Fig. 2b). In this case, e; is the eccentric-
ity of Jupiter (inner body) and ez is the eccentricity of the
small body (outer body). The family 11 is located in the
Fig. 3 on the axis e; = 0. Let us consider first the bifur-
cation from the symmetric families of the circular problem.
We study the two critical points B&: and B2 (the point B3
corresponds to very high eccentricities and we do not study
it here). From the point Br there bifurcate two resonant
families of symmetric periodic orbits of the elliptic model,
the family Fhp,, which starts having stable orbits, and the
family F1, where the orbits are doubly unstable. From the
critical point B2 there also bifurcate two families of resonant
symmetric periodic orbits of the elliptic model, the families
Esq and Eap; both are unstable. It turns out that the family
FE1, that bifurcates from the point B%" and the family Fo,
that bifurcates from the point B2 coincide and form a single
family that starts from Bt and ends to B2.

We come next to the asymmetric families of the ellip-
tic model. There exist two critical points on the asymmetric
family A in Fig.2, the points B7 and BS.. As in the previous
cases, from each one of these points we have a bifurcation of
a resonant family of the elliptic model, which is asymmet-
ric. From the point B we have the bifurcation of the family
E3 (stable) and the family E4» (unstable). This latter fam-
ily has a complicated form, its stability changes three times
and ends at the point BZ. So it seems that from this lat-
ter point there bifurcate, in addition to the two symmetric
families, one more asymmetric family. From the asymmetric
point BY there bifurcate two asymmetric families, EZ and
E&,. The family EZ is stable but family E<, cannot be nu-
merically continued due its strong instability and, thus, is
not presented in Fig.2.

Along the resonant families of the elliptic model it may
also happen to exist bifurcation points. Such a case is with
the family Ei,, where the critical point By appears. This
happens because the stability type changes at this point.
From this point we have a bifurcation of the family A‘f‘p of
asymmetric periodic orbits. Voyatzis and Kotoulas (2005)
showed that many families of the external resonances have
such critical points and conjectured the bifurcation of asym-
metric orbits.

4 FROM THE RESTRICTED TO THE
GENERAL PROBLEM

Let us consider three bodies with non zero masses, with
one of them much more massive than the other two. The
more massive body with mass myg is the Sun, S, and the two
small bodies, P; with mass m1 and P> with mass ma, will be
called planets. In the following, P; will be the inner planet
and P» the outer planet. If mi1 # 0 and m2 = 0 we have the
restricted model where P; is the corresponding Jupiter and
P> the small body, which moves initially in an outer orbit.
If the Keplerian orbit of the bodies S and P; is circular, we
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have the circular restricted problem and if it is elliptic, we
have the elliptic restricted model. If m; = 0 and m2 # 0
then P» plays the role of Jupiter and the massless body P;
evolves initially in an inner orbit.

In order to study the continuation of the periodic or-
bits from the restricted to the general problem we define
a rotating frame of reference Oy, whose z-axis is the line
S — P1, with the center of mass of these two bodies at the
origin O and the y-axis is in the orbital plane of the three
bodies. In this rotating frame the body P; is always on the
z-axis and P> moves in the £Oy plane. We have four degrees
of freedom and we use as coordinates the position z1 of P,
the coordinates x2, y2 of P> and the angle 6 between the z
axis and a fixed direction in the inertial frame.

The Lagrangian £ in the above coordinates is given in
Hadjidemetriou (1975). The variable 6 is ignorable and, con-
sequently, the angular momentum L = 9L/ 90 is constant.
We can use as normalizing conditions to fix the units of
mass, length and time the conditions

m=mo+mi1+me=1, G =1, L = constant.

Periodic orbits of period T exist in the rotating frame.
By fixing the initial condition £1(0) = 0, a periodic orbit is
represented by a point in the 5-dimensional space

o= {(1’1(0),.TQ(O),yQ(O),i’Q(O),QQ(O))}. (1)

When a periodic orbits is symmetric, i.e. it is invariant un-
der the fundamental symmetry ¥ : (¢, z,y) — (—t,z,—y)
(Voyatzis and Hadjidemetriou, 2005), we can always take as
initial conditions y2(0) = 0 and #2(0) = 0 and the dimension
of the space of initial conditions II is reduced to three. In
the planetary problem, the orbits of P; and P> are almost
Keplerian and we can present the families of periodic orbits
in the projection plane of planetary eccentricities e; — ea,
which correspond to the initial conditions.

The monodromy matrix of the variational equations has
now three pairs of eigenvalues (A1,A\2), (A3, A1) and (A5, Xe).
Due to the existence of the energy integral it is A\s = A\¢ = 1
and the stability of the periodic orbits is defined by the first
two pairs as in the elliptic restricted problem (see section
3).

4.1 The continuation from the restricted to the
general problem

In general, the periodic orbits of the restricted problem are
continued to the general problem. Particularly, it is proved
by Hadjidemetriou (1975) that a periodic orbit of period T'
of the circular restricted problem is continued to the general
problem with the same period, by increasing the mass (e.g.
m2) of the initially massless body. The continuation is not
possible only in the case where the period is a multiple of
27 (the period of the primaries). Such continuation forms
monoparametric families of periodic orbits with parameter
the mass of the small body (m2), provided that the masses
of the other two bodies are fixed. If we keep all masses fixed
(and non zero), we obtain a monoparametric family of pe-
riodic orbits of the general problem, of the planetary type,
along which the elements of the two planetary orbits vary.
This family is represented by a smooth curve in the space
IT of initial conditions. The periodic orbits of the elliptic re-

Figure 4. The schematic generation of families of periodic orbits
in the general problem from the restricted problem. Dashed curves
indicate the families of the restricted problem and the solid curves
indicates the families continued in the general problem (see text
for detailed description).

stricted problem are also continued to the general problem
(Hadjidemetriou and Christides, 1975).

The evolution of the characteristic curves of the fami-
lies, as mg increases, is studied by Bozis and Hadjidemetriou
(1976). In the present paper we study the continuation us-
ing a slightly different approach. Provided that the plan-
etary masses are small with respect to the mass of Sun,
i.e. m1 <€ mo and ma < mo, it is found that the families
of resonant periodic orbits in the space II depends on the
ratio p = ma/m1 of the planetary masses rather than by
their actual values (Beauge et al., 2003). Thus, we can use
p as a continuation parameter for a monoparametric fam-
ily of periodic orbits. If we add one more dimension to the
space of initial conditions II in order to assign the value of p,
we obtain an extended space II'. In this extended space we
can form characteristic surfaces of two-parametric families.
In the following we will present families of periodic orbits
considering sections of I’ defined by fixing p to a constant
value.

In Fig. 4 it is shown schematically the continuation of
the families F' and F of the circular and the elliptic restricted
problem, respectively, with e.g. p = 0. The point A of the
family F of periodic orbits of the circular model corresponds
to an orbit with period T" = 2kw, where k is an integer. At
this point the families E, and E, bifurcate to the elliptic
restricted problem. By giving mass to the small body, any
orbit of F' with T # 2kw, e.g. the orbit B, is continued to
the general problem with parameter the mass ratio p and
the monoparametric family g% is formed. A family g7 exist
for any initial orbit of F'| except for the orbit A. If we start
now from a point on the family ¢” and keep p fixed, we
obtain a monoparametric family c. The same continuation
holds for the periodic orbits of the families E, and E, of
the elliptic restricted problem and for a fixed p # 0 we get
the characteristic curve ¢’. The individual parts of ¢ and
¢’ join smoothly to each other forming the families G, for
the general problem and for any fixed mass ratio p < 1.
The periodic orbit A is a singularity for the continuation
resulting in the formation of a gap between the left and
right characteristic curves cc’.

4.2 Families of 2/1 and 1/2 orbits continued from
the restricted problem to the general problem

Concerning the continuation of the resonant families, which
are presented in sections 2.2 and 3, to the general problem,
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Figure 5. Families of periodic orbits of the general problem (solid
curves) for p = 0.01 in cases (a)-(c) (external resonance) and p =
100 in case (d) (internal resonance). The families of the circular
restricted problem lie along the axis e; = 0 and ez = 0 for the
external and internal resonance, respectively. The families of the
elliptic restricted problem are indicated by the dashed curves.
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singularities are expected at the bifurcation points Br (see
Fig. 3) for both internal (2/1) and external (1/2) resonances,
where is T' = 2kn. In the following, we study four different
cases of continuation presented in Fig. 5. We remind that
the families of the circular restricted problem are continued
as curves close to the vertical and the horizontal axes in the
plane e; — ez, for the external (e; = 0) and the internal
resonances (ez = 0), respectively. In our computations we
vary p by changing the value of one of the planetary masses
and such that max(m1,mz2) = 107°.

In the panel (a) of Fig. 5 we show the continuation close
to the bifurcation point Bi-, which belongs to the symmetric
family 11y of the circular problem and is the starting point
for the families E1), and E1, of the elliptic problem. By giv-
ing mass to the small body (i.e. p # 0) the part (OB#) of the
family 11y and the family 1, are continued and they join
smoothly forming the symmetric family S;. The change of
stability that is shown in family Iy at the point Bl is also
obtained in the family S;. Namely, the bifurcation point B
(periodic orbit of critical stability) continues as a bifurca-
tion point B¢ in the general problem too. The asymmetric
family A of the circular restricted problem, which bifurcates
from B, is continued smoothly to the general problem as
an asymmetric family which bifurcates from the B{. Simi-
larly to the formation of Si, the unstable part of the family
11y above the point B and the family E1,, which is dou-
bly unstable, are continued and form the family S2. Note
that the different stability types of the two families results
to a periodic orbit of critical stability in the family Sa.

In family F1, there is a change in stability at a point
Bg, where the asymmetric family Eﬁ, bifurcates for the el-
liptic problem. As p takes a positive value, Bg continues
as a critical point in the general problem and the asym-
metric family As bifurcates from it (Fig. 5b). Actually, As
can be considered as the continuation of the family Eﬁ,. No
singularities are obtained in this case. Such a type of con-
tinuation explains the existence of the asymmetric planetary
corotations found by Michtchenko et al. (2006) at the 3/2
resonance, which in the elliptic restricted problem shows an
asymmetric family similar to Eﬁ,. We note that asymmet-
ric periodic orbits were known only for resonances p/q with
q=1.

As it is mentioned above, the asymmetric family A con-
tinues smoothly to the general problem (as family A;) start-
ing from its bifurcation point B} (see Fig. 5a) . However, the
family A contains the critical point B} (see Fig. 2), which
admits a singularity for the continuation to the general prob-
lem. In the panel (c) of Fig. 5, the gap formed in the above
singularity is shown. The asymmetric family Ef}, which bi-
furcates from BT, continues and completes the asymmetric
family A; of the general problem. Additionally, the part of
family A located between the bifurcation points B4 and B3,
the family E5 and the family EZ continue in the general
problem, join smoothly and form the asymmetric family As.
Again we obtain a change of stability along A2 due to the
different types of stability on the families of the restricted
problem (family A is stable while family Ejb is unstable).

In the case of the internal resonance, the continuation
to the general problem shows the same characteristics as in
the external resonances. We remark that in this case only
symmetric periodic orbits appear. In Fig. 5d we show the
formation of the symmetric family S of the general problem,
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after the continuation of the families I/;) and Eo, of the
restricted problem. We note that since p = oo in this case,
the continuation maybe assumed as varying 1/p.

5 CONTINUATION WITHIN THE
FRAMEWORK OF THE GENERAL
PROBLEM

In the previous section we considered the continuation of
families of periodic orbits when we pass from the restricted
to the general problem. The situation, which was described,
is referred to small values of the mass of one of the planets,
namely p < 1 or p > 1. Now we consider the case of the
external resonance and its families generated for p > 0. As
the parameter p increases, the families evolve and new bi-
furcations and structure changes are possible. We follow the
evolution of the 1/2 resonant families, which are presented
in the previous section, and we show in the following how
the new structures are formed by increasing p. We remind
that as p — oo we approach the internal resonance of the
restricted problem.

Figure 6a shows the asymmetric families A> and Az for
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Figure 7. The “collision—bifurcation” of the families A; and As2
at p = p2 and the formation of the new families A4 and A123. a)
p=0.3<p2b) p=0.37~p2 and ¢) p = 0.4 > pa.

p = 0.2. Up to this value not any structural change of the
families occur. In both families the stability changes and,
consequently, we distinguish in each family two parts, parts
a and b for A> and ¢ and d for As. For the critical value
p = p1 ~ 0.275 the two families collide at a point in the space
of initial conditions IT (Fig. 6b). This point corresponds to
the orbit of critical stability and is the intersection point of
the parts a—d. For p > p1 (see Fig. 6¢) the part a of family
Ao and the part d of family Az join together and form the
family Ags. Similarly, the parts ¢ and b of the families As
and Aa, respectively, form the family Asz. Note that the
new families are separate and their intersection in the plane
e1 — ez is due to the projection.

The evolution of the family A1, as p increases, take place
smoothly without structural changes up to p = p2 =~ 0.37.
In figure 7a, which corresponds to p = 0.3, it is shown that
the family A; has come close to the family As2, which is
generated after the bifurcation at p = p1. At p = p2 the
two families collide and, similarly to the previous case, for
p > p2 we obtain two new families, the family A4 and the
family Ai23 (Fig. 7c). In this case only the family Asz has
an orbit of critical stability, which separates the family in
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a stable (a) and in an unstable part (b). The family A is
whole stable and there is no clear border between its parts
c and d. After the bifurcation, an orbit of critical stability
is shown only in the new family A4, while the family Aio3
is whole stable and starts and ends at bifurcation points of
the symmetric family S1. Note that these bifurcation points
originate to the bifurcation points BS and Bg of the circular
and the elliptic, respectively, restricted problem.

Now we restrict our study to the evolution of the family
Aiq2s for p > pa. As it is shown in Fig. 8a, as p increases,
the ending points of the family move on along the family
S1 in opposite direction and the family shrinks and, finally
disappears at p = p3 ~ 1.034. In Fig. 8b we present the
above transition by considering the stability indices b1, by for
the orbits along the family Si. The horizontal axis indicates
the eccentricity of the periodic orbits along the family S; and
the value of the corresponding stability index b2 is presented
on the vertical axis. For all orbits it holds |b1| < 2 and, thus,
the condition |bz| < 2 is sufficient and necessary for linear
stability. In Fig. 8b we obtain that unstable orbits exist for
p < p3 in a part of the family S; defined by the e; interval
where by < —2. As p increases, the curve of by values is
raised continually and for p > p3 is located above the value

© 0000 RAS, MNRAS 000, 000-000
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0.9:2
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Figure 9. Stable segments of families of periodic orbits for var-
ious values of the planetary mass ratio p = mg/mi. Dashed and
solid curves indicate symmetric and asymmetric families, respec-
tively. The family S1 and Ai23 for p = 1 is indicated by a bold
style as a border between the internal and external resonances.

ba = —2. Therefore, the unstable part of S1 disappears and,
consequently, the family Ai23 disappears too.

Actually for p > ps3, the planet P; becomes the small
body and we pass to the case of the internal resonance. The
remaining family S evolves smoothly, as p increases, and
should be assumed as a family S} of the internal resonance,
which approaches the families I1(;) and Eo, of the restricted
problem as p — oo (see sections 2.2,3 and Fig. 5d).

The above described bifurcation scheme explains com-
pletely the origin and the structure of corotations found by
Beauge et al. (2006). Following the other asymmetric fami-
lies, which are coming from the restricted problem, we obtain
new “collision—bifurcations” as p increases and new struc-
tures of characteristic curves are formed. We have found
e.g. that the families A4 and Aas collide for p ~ 0.45 and
generate the miscellaneous family found by Voyatzis and
Hadjidemetriou (2005) and called “As” there in.

6 STABLE PERIODIC CONFIGURATIONS
AND RESONANT PLANETARY SYSTEMS

From a dynamical point of view a stable periodic orbit in-
dicates an exact resonance in phase space and in its neigh-
borhood the motion is quasiperiodic and takes place on in-
variant tori. In this domain, the resonant angles of the as-
sociated mean motion resonance n1/n2 = (p+ q)/q, defined
as 01 = (p+¢)A2 —pA1 — w1 and 02 = (p+ @) A2 — pA1 — w2,
generally librate. Consequently, the apsidal difference Aw =
wo — w1 also librates. Far from the periodic orbit a passage
from libration to circulation is possible, for at least one the
resonant angles, but the system can still remain stable. A
study of the stability in the 2:1 resonance is presented in
Michtchenko et al. (2008) and Marzari et al (2006). The dy-
namics of the 3:1 resonant domain is studied in Voyatzis
(2008).

Considering the continuation scheme described in the
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Figure 10. Trajectory projection on the eccentricity plane of
the four potential 2/1 resonant planetary systems. The families
of resonant periodic orbits, which correspond to the particular
planetary mass ratio value p, are also shown.

previous section we have obtained a set of families that in-
clude parts of stable periodic orbits. In summary, the char-
acteristic curves of the stable parts of the families are pre-
sented in Fig.9. We obtain that the symmetric families S;
(or (S7) are located in a domain where e; > e2 and corre-
spond to (0,0) apsidal corotations (i.e. the resonant angles
01,02 and the apsidal difference Aw librate around 0°). It
is clear that for the external resonance (p < 1) the charac-
teristic curves show a larger complexity in comparison with
the internal resonance. Also the asymmetric families domi-
nate in the external resonance. This is due to the fact that
the circular restricted problem shows more rich dynamics
with respect to the existence of periodic orbits and bifur-
cation points for the elliptic problem. Additionally, within
the framework of the general problem, we have obtained
collision-bifurcations only for p < 1.

From the chart of Fig. 9 the (m,7)- corotations, which
first were indicated by Beauge et al (2006), are missing. We
can show that such stable corotations correspond to families
of symmetric periodic orbits, which are continued from the
family I(cp) of the circular problem and the family of the
elliptic problem that bifurcates from the point B (see Fig.
5).

According to the present observations, planetary pairs
whose orbital periods indicate 2/1 mean motion resonance
exist round the stars GJ876, HD128311, HD82943 and
HD73526. For these systems we examined their evolution
in order to study if their dynamics is related with a par-
ticular resonant periodic orbit. For all systems we used the
initial conditions estimated by Butler et al (2006). We con-
sider again the plane e; —e2 and project the system evolution
in this plane. The results for the four planetary systems are
shown in Fig. 10.

For the first three systems the evolution seems regular
(quasiperiodic) and the trajectory is centered at point in the
e1 — ez plane that belongs on the family of periodic orbits.
Thus the systems evolve around a particular periodic orbit
and this fact indicates strongly the resonant configuration of

the planetary pairs. Particularly, the system GJ876 is cen-
tered at the stable periodic orbit with e; = 0.22 and ez = 0.2
and the resonant angles 61,602 and Aw, as well, librate with
amplitudes 12°, 38° and 35°, respectively. Similarly, the sys-
tem HD128311 is centered at the stable periodic orbit with
e1 = 0.32 and e2 = 0.08 and the resonant angles 61,62 and
Aw librate with amplitudes 43°, 83° and 103°, respectively.
The system HD82943 seems to be centered close to the crit-
ical periodic orbit (ex = 0.37 and e2 = 0.12) of the family
S1, which separates the stable and the unstable parts of Sp
and bifurcates the asymmetric family Ai23. Now the angle
0:1 librates with amplitude 75° but the angle 62> (and, con-
sequently, Aw) circulates. The initial conditions given for
the system HD73526 lead to close encounters and strongly
chaotic motion, which disrupts the system in few hundred
years.

7 DISCUSSION AND CONCLUSIONS

The method of continuation of periodic orbits has been ap-
plied in the present work in order to study the generation
and the structure of families of periodic orbits in the general
TBP, starting from the restricted problem. We considered
the planar TBP of planetary type, referred to a rotating
frame and studied resonant planetary motion. In particular,
we studied the 2/1 resonant periodic orbits, but the method
we used can be applied to all other resonances. We consid-
ered planar motion only.

We started our study from the unperturbed Keplerian
problem. Then we passed to the circular restricted TBP and
computed the basic families of 2/1 resonant periodic orbits,
both for the inner orbits (inside Jupiter) and the outer orbits
(outside Jupiter). The basic families are symmetric with re-
spect to the rotating x-axis, but asymmetric families also ex-
ist in cases of resonances of the form 1/q. On these families,
we found the periodic orbits with period equal to 27 which,
in the normalization we are using, are the bifurcation points
to resonant 2/1 (or 1/2) families of periodic orbits of the
elliptic restricted model. Two such families bifurcate from
each of these critical points. In particular, we have the fol-
lowing cases: a) a symmetric (or asymmetric) periodic orbit
of period 27 of the circular restricted problem is continued
to the elliptic restricted problem as symmetric (or asymmet-
ric) b) a symmetric periodic orbit of period 27 of the circular
restricted problem can be continued to the elliptic problem
as an asymmetric one - this exceptional case is verified only
up to the accuracy of the numerical computations and ¢) a
symmetric periodic orbit of the elliptic restricted problem,
which is of critical stability, can be continued to the elliptic
problem as an asymmetric one. The last case indicates the
existence of asymmetric periodic orbits in the elliptic prob-
lem and in particular to resonances which are not necessarily
of the form 1/q.

The continuation of the families of periodic orbits of
the restricted problem to the general problem follows the
scenario described in the paper of Bozis and Hadjidemetriou
(1976). Particularly, the families of the general problem orig-
inate from two families of the restricted problem, one of the
circular problem and one of the elliptic problem. There is
no essential difference in the continuation between symmet-
ric and asymmetric periodic orbits. The asymmetric orbits,
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which bifurcate from symmetric orbits of the elliptic prob-
lem, are continued smoothly in the general problem. The
stability of periodic orbits is preserved after the continua-
tion from the restricted to the general problem.

After the continuation of the periodic orbits of the re-
stricted problem to the general problem, by giving a very
small mass to the massless body, we studied how these fam-
ilies evolve when we increase the mass of the small body.
Particularly we studied such an evolution by considering as
a parameter the planetary mass ratio p = ma/m1, keep-
ing m; < 1,5 = 1,2. Starting from p = 0 (external reso-
nances of the restricted problem) and increasing its value,
we found that the characteristic curves of two different fam-
ilies can collide in the space of initial conditions. At these
points a bifurcation takes place (collision—bifurcation) caus-
ing a topological change in the structure of the colliding
families and the formation of new families. As p — oo we
approximate the families of the internal resonances of the
restricted problem without further bifurcations.

Following the method of continuation we obtained a
large set of stable families of periodic orbits that consist ex-
act resonances and centers of apsidal corotation resonances.
The neighborhood of these orbits in phase space is occupied
by invariant tori which guarantee the long term stability of
the system providing also librations for the resonant angles.
The planetary pairs in the systems GJ876, HD128311 and
HD82943 seem to be associated with such 2/1 resonant do-
mains in phase space, according to the current observations
and fittings given by Butler et al (2006). The evolution of
the system HD73526 cannot be associated with a stable pe-
riodic orbit and it appears strongly chaotic.
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