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1 Introduction

There are two different ways to study the properties and the evolution of a dynamical system:
The Poincaré map on a surface of section and the method of averaging. The Poincaré map
is based mainly on numerical integrations, while the method of averaging is an analytical tool
(or, in some cases a semi-analytical tool), followed in many cases by numerical integrations.
Each method has its advantages and disadvantages. The Poincaré map describes exactly the
dynamical system, but is subject to the limitations of the numerical work, mainly the accuracy
of the numerical integrations for long time intervals. The method of averaging is based on a
perturbation theory, by making use of series expansions which are truncated to a certain order.
This introduces errors, and in some cases the dynamical model of the truncated, averaged,
model is different from the original model. This is due either to the fact that the order of
the truncation is low, or, most likely, to the fact that the perturbation series do not converge,
being asymptotic series. This latter case is the rule, since almost all dynamical systems are
non-integrable. However, the perturbation method is still valid in these cases, not in the whole
phase space, but only in regions where the system is not chaotic.

In many studies of the dynamics of a system, either the Poincaré map or the averaging method
are used. We believe that a combination of these two methods will give very useful results. As
we mentioned, the Poincaré map is an exact method, which means that the topology of the
phase space of the Poincaré map is identical with the topology of the phase space of the original,
non-averaged system. It is clear that the topology of the phase space of the Poincaré map is
determined by the fixed points (periodic orbits of the non-averaged system) and their stability
properties. In order for the averaged system to be realistic, its phase space must have the same
topology as the Poincaré map, which implies that it must have the same fixed points, with the
same stability properties, as the Poincaré map. This is a simple necessary criterion to check the
validity of the averaged model.

In what follows we shall present the method of the Poincaré map on a surface of section and the
method of averaging, for a nearly integrable dynamical system. Next, we shall apply these two
methods to a simple dynamical model, and we shall explain the similarities and the differences
between them. As we will see in the next sections, these two methods give similar results, not
only qualitatively, but also quantitatively, only when the perturbation is small and the system
behaves as integrable, i.e. its phase space is ordered. However, for a larger perturbation, where
the system develops chaotic motion, the method of averaging fails.

2 The Poincaré map for nearly integrable dynamical systems

Let us consider a Hamiltonian system

H = H0(q1, q2, p1, p2) + εH1(q1, q2, p1, p2), (1)
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Figure 1: (a) The motion of the unperturbed system (5) on the 2-torus. (b) The mapping on
the 2-torus at θ2 = 0.

where the Hamiltonian
H0(q1, q2, p1, p2) (2)

is integrable. We make a canonical change of variables, to action-angle variables of the integrable
Hamiltonian (Lichtenberg and Liebermann, 1983)

q, p→ θ, J (3)

and the new Hamiltonian takes the form

H = H0(J1, J2) + εH1(J1, J2, θ1, θ2). (4)

The unperturbed system

We start the study with the unperturbed problem, defined by the Hamiltonian

H = H0(J1, J2). (5)

The differential equations of motion are

θ̇1 =
∂H0

∂J1
= n1, J̇1 = −∂H0

∂θ1
,

θ̇2 =
∂H0

∂J2
= n2, J̇2 = −∂H0

∂θ2
,

(6)

and the solution is
J1 = J10, J2 = J20 , n1 = const., n2 = const. (7)

This means that the motion is on a 2-torus, with radii J1 and J2 and angles θ1 and θ2, as shown
in Figure 1a.

We define now the Poincaré map on the surface of section

H0(J1, J2) = h, θ2 = 0, mod(2π) (8)

as shown in Figure 1b.

The mapping equations are given by

J1 → J1,

θ1 → θ1 + 2π n1

n2
.

(9)

From the differential equations (6) we easily see that the frequencies n1 and n2 are functions of
J1 and J2. Since however H0(J1, J2) = h, the ratio n1/n2 is a function of J1 and the energy h,
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which is a parameter of the mapping (9). Consequently, the mapping (9) is a twist map. Note
that the time for one revolution along the angle θ2 is

T =
2π

n2
. (10)

The Poincaré map (9) is a symplectic map and is generated by the generating function

F = J1,n+1θ1,n +G0(J1,n+1), (11)

through the relations

J1,n =
∂F

∂θ1,n
, θ1,n+1 =

∂F

∂J1,n+1
, (12)

where the function G0 is obtained from

∂G0

∂J1,n+1
= 2π

n1
n2

= 2π
∂H0/∂J1
∂H0/∂J2

. (13)

Using the relation H0(J1, J2) = h, we obtain

2π
∂H0/∂J1
∂H0/∂J2

= f(J1;h), (14)

where f(J1;h) is a function of J1 and h, and finally we find that the function G0 is given by

G0 =

∫

f(J1;h)dJ1. (15)

We can easily see that the mapping (9) has the energy h as a parameter.

The mapping (9) can be expressed in the Poincaré variables

X1 =
√

2J1 cos θ1, Y1 =
√

2J1 sin θ1, (16)

which are also canonical variables. The Poincaré map in the variables (16) is shown in Figure
2, in the space X1Y1. We see that the successive points of the mapping corresponding to the
initial conditions

J1 = J10, θ1 = θ10

are on the circle
√

2J1 = constant

and the angle between two successive points is

∆θ1 = 2π
n1
n2

= constant,

as shown in Figure 2. Note that the angle ∆θ1 depends on J1 (and the energy h), implying that
it is a twist map. The circle

√
2J1 =constant is mapped to itself, and for this reason it is called

an invariant curve (circle). If the ratio n1/n2 is not rational, the consecutive points of the map
are dense on the invariant circle. If however n1/n2 = p/q = rational, each point on the circle is
an invariant point, in general multiple (it comes to the initial point after several repetitions of
the map).

The perturbed problem

Let us consider now a perturbed twist map, obtained from the generating function (11) by
adding a perturbation term,

F = J1,n+1θ1,n +G0(J1,n+1) + εG1(θ1,n, J1,n+1), (17)
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Figure 2: The mapping (9) in the Poincaré variables X1 =
√
2J1 cos θ1, Y1 =

√
2J1 sin θ1. The

radius of the invariant circle is equal to
√
2J1.
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Figure 3: (a) A circular unperturbed irrational invariant circle survives the perturbation and
becomes a nearly circular invariant curve. (b) The infinite fixed points of a rational invariant
curve disappear and only a finite, even, number survive the perturbation, half stable and half
unstable.

where ε is a small parameter. The perturbed twist map, obtained by making use of the relations
(12), is given by

J1 → J1 − ε ∂G1

∂θ1,n

θ1 → θ1 + 2π n1

n2
+ ε ∂G1

∂J1,n+1















. (18)

This mapping is symplectic and represents the Poincaré map of the perturbed system (4), at
the surface of section θ2 = 0, for a suitable function G1, corresponding to the perturbation
εH1(J1, J2, θ1, θ2) in the Hamiltonian (4). Note that a basic property of the Poincaré map is its
symplectic property (Hadjidemetriou 1998).

We ask now the question what happens to the invariant circles of the unperturbed map (9) that
we mentioned above. There are two different cases: The ratio n1/n2 to be irrational, or to be
rational. If it is irrational, then for sufficiently small perturbation ε, the KAM theorem applies
(Arnold 1974, Lichtenberg and Liebermann 1983). This means that the circular invariant curves
survive the perturbation, as closed nearly circular invariant curves. This is shown graphically
in Figure 3a.

If however the ratio n1/n2 is rational, then the Poincaré-Birkhoff fixed-point theorem applies
(Arnold and Avez 1968, Lichtenberg and Liebermann 1983), which means that out of the infinite
set of fixed points on the unperturbed invariant circle, only a finite even number of fixed points
survives, half of them stable and half unstable. In most cases only two fixed points survive,
which are multiple, in general, one stable and the other unstable. Around a stable fixed point
we have closed invariant curves, while at the unstable fixed points we have a hyperbolic map.

4



This is shown graphically in Figure 3b, where an example of a quadruple fixed point is presented.
We remark that a rational invariant curve is usually related to resonances.

Relation between the Poincaré map and the motion on the torus.

From the above one can see that for a sufficiently small perturbation ε the torus of the un-
perturbed system, shown in Figure 1a, is transformed to a perturbed torus, which means that
the motion is still bounded. The fixed points of the perturbed map (18) correspond to periodic
motion. On the other hand, the motion on the Poincaré map which lies on an irrational invariant
curve, corresponds to quasi periodic motion on the perturbed torus.

3 The method of averaging

We shall present the method of averaging in the case of a nearly integrable dynamical system,
described by the Hamiltonian

H = H0(q1, q2, p1, p2) + εH1(q1, q2, p1, p2), (19)

where H = H0(q1, q2, p1, p2) is the integrable part. We perform a canonical change of variables,
to action-angle variables of the integral Hamiltonian,

q, p→ θ, J (20)

and the new Hamiltonian takes the form

H = H0(J1, J2) + εH1(J1, J2, θ1, θ2). (21)

As we mentioned in the previous section, the motion of the integrable system takes place on a
2-torus, with constant radii J1, J2 and constant frequencies n1, n2, as shown in Figure 1a.

In order to apply the method of averaging, we must have a ‘fast’ and a ‘slow’ angle. This
can be achieved close to a resonance, where the ratio of the frequencies is a rational number,
n1/n2 =rational. As we shall show in the following, by an example, we can perform a new
canonical change of variables, to resonance variables, where one angle is a ‘fast’ angle and the
other a ‘slow’ ‘angle’.

Let us consider, as an example to present the method of averaging, a Hamiltonian system with
two degrees of freedom, in the variables θ1, θ2, J1, J2, defined by the Hamiltonian

H = H0(J1, J2) + εH11(J1, J2) cos(2θ1 − θ2)+

εHrs(J1, J2) cos(rθ1 − sθ2),

(22)

where ε is a small parameter. The frequencies of the system are

n1 = n10 + ε
∂H11

∂J1
cos(2θ1 − θ2) + ε

∂Hrs

∂J1
cos(rθ1 − sθ2), n10 =

∂H0

∂J1
, (23)

and

n2 = n20 + ε
∂H11

∂J2
cos(2θ1 − θ2) + ε

∂Hrs

∂J2
cos(rθ1 − sθ2), n20 =

∂H0

∂J2
, (24)

where n10, n20 are the unperturbed frequencies.

We consider initial conditions close to the region corresponding to the resonance n10/n20 = s/r.
The relation

∂H0/∂J1
∂H0/∂J2

=
s

r
(25)
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defines a curve in the space J1 J2, which gives the initial conditions of the exact s/r resonance,
for any value of the angles θ1, θ2.

Resonance angles at the s/r resonance

We perform now a canonical change of variables , to resonance variables,

J, θ → Ĵ , θ̂, (26)

by making use of the generating function

F = (θ1 −
s

r
θ2)Ĵ1 + θ2Ĵ2, (27)

through the transformation equations (12). The relation between the old and the new variables
is

Ĵ1 = J1, Ĵ2 =
s
rJ1 + J2

θ̂1 = θ1 − s
rθ2, θ̂2 = θ2











, (28)

and we see that the angle θ̂1 is a ‘slow’ angle close to the s/r resonance,

θ̇1/θ̇2 ≈ s/r → ˙̂
θ ≈ 0.

The new Hamiltonian, in the resonance variables, is

Ĥ = Ĥ0(Ĵ1, Ĵ2) + εĤ11(Ĵ1, Ĵ2) cos(2θ̂1 +
2s−r
r θ̂2)+

εĤrs(Ĵ1, Ĵ2) cos(rθ̂1),

(29)

where
Ĥ0(Ĵ1, Ĵ2) = H0(Ĵ1,−

s

r
Ĵ1 + Ĵ2), (30)

and similar relations for Ĥ11(Ĵ1, Ĵ2) and Ĥrs(Ĵ1, Ĵ2). The unperturbed frequencies in the new
variables are

n̂1 = ∂Ĥ0

/

∂Ĵ1 = n1 − (s/r)n2,

n̂2 = ∂Ĥ0

/

∂Ĵ2 = n2.

(31)

Note that since we are close to the s/r resonance, we have n1/n2 ≈ s/r and consequently the
angle θ̂1 is a ‘slow’ angle, because

n̂1 = n1 − (s/r)n2 ≈ 0, n̂1 = dθ̂1/dt,

while θ̂2 is a ‘fast’ angle, since n̂2 = n2. In this way, going to resonance variables, we created a
‘fast’ and a ‘slow’ angle. The system has, evidently, two degrees of freedom.

The averaged Hamiltonian at the s/r resonance

We continue now by a new canonical change of variables,

Ĵ , θ̂ → J̄ , θ̄

in order to make the ‘fast’ angle ignorable. This can be achieved by the generating function

F = J̄1θ̂1 + J̄2θ̂2 + εS(J̄1, J̄2, θ̂1, θ̂2), (32)
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where the term J̄1θ̂1 + J̄2θ̂2 corresponds to the identity transformation and the function
S(J̄1, J̄2, θ̂1, θ̂2) is to be determined. The new canonical transformation is

Ĵi = J̄i + ε
∂S

∂θ̂i
, θ̂i = θ̄i − ε

∂S

∂J̄i
, (i = 1, 2) (33)

which is close to the identity transformation.

The Hamiltonian in the variables J̄ , θ̄ is

H̄ = Ĥ0(J̄1, J̄2) + ε∂H0

∂J̄1

∂S
∂θ̂1

+ ε
〈

Ĥ1

〉

θ2
+

ε
[

∂H0

∂J̄2

∂S
∂θ̂2

+
{

Ĥ1

}]

+O(ε2).

(34)

In this expression the term
〈

Ĥ1

〉

θ2
= Ĥrs cos(rθ̄1) (35)

is the mean value of Ĥ1 with respect to θ2, obtained from

Ĥ1 = εĤ11(Ĵ1, Ĵ2) cos(θ̂1 − s−r
r θ̂2)+

εĤrs(Ĵ1, Ĵ2) cos(rθ̂1),

and
{

Ĥ1

}

= Ĥ11 cos(θ̄1 +
2s− r

r
θ̄2).

We shall keep first order terms in ε only in this Hamiltonian. We note that

ε
∂H0

∂J̄1

∂S

∂θ̂1

is of higher order, since
∂H0

∂J̄1
= n̂1 ' 0.

So, if we ignore this term, the Hamiltonian (34) takes the form

H̄ = Ĥ0(J̄1, J̄2) + ε
〈

Ĥ1

〉

θ2
+ ε

[

∂H0

∂J̄2

∂S

∂θ̂2
+
{

Ĥ1

}

]

+O(ε2). (36)

We select now the function S(J̄1, J̄2, θ̂1, θ̂2) in such a way that

[

∂H0

∂J̄2

∂S

∂θ̂2
+
{

Ĥ1

}

]

= 0. (37)

Note that this is the only term in (36) that contains the angle θ̄2. From the equation (37) we
obtain the function S as

S = − 1

n2
Ĥ11(J̄1, J̄2)

r

2s− r
sin(θ̄1 +

2s− r

r
θ̄2). (38)

Then the Hamiltonian (36) takes the form, using the expression (35), to first order terms in ε,

H̄ = Ĥ0(J̄1, J̄2) + εĤrs(Ĵ1, Ĵ2) cos(rθ̄1), (39)
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which contains only the angle θ̄1. This means that by making use of the transformation Ĵ , θ̂ →
J̄ , θ̄, we generated an ignorable coordinate, the angle θ̄2, and consequently the action J̄2 is
constant (in this approximation). Thus, the Hamiltonian (39) describes a system with one
degree of freedom. This Hamiltonian is the averaged Hamiltonian.

The study of the evolution of the averaged system can be made either in the action-angle
variables J̄1, θ̄1, or in the Poincaré variables X =

√

2J̄1 cos θ̄1, Y =
√

2J̄1 sin θ̄1.

The differential equations of the averaged system at the s/r resonance

From the averaged Hamiltonian (39) we obtain the differential equations of motion

˙̄J1 = εrĤrs(J̄1, J̄2) sin(rθ̄1)

˙̄θ1 =
∂Ĥ0

∂J̄1
+ ε∂Ĥrs

∂J̄1
cos(rθ̄1)















, (40)

and
˙̄J2 =

∂H̄0

∂θ̄2
= 0, → J̄2 = J̄20

˙̄θ2 =
∂Ĥ0

∂J̄2
+ ε∂Ĥrs

∂J̄2
cos(rθ̄1)















. (41)

We note that the first two equations (40) are independent of the other two equations (41). The
two equations (40) describe the motion of a one degree of freedom system in the J̄1, θ̄1 variables.
The action J̄2 is constant, as is clear from the equations (41).

The fixed points of the averaged system at the s/r resonance

We shall study now the fixed points of the averaged equations (40). The fixed points are obtained
from the equations

˙̄J1 = 0, ˙̄θ1 = 0

and are
˙̄J1 = 0→ θ̄10 = k

π

r
, (k = 0, 1, 2, . . . , 2r − 1), (42)

and

˙̄θ1 = 0 → ∂Ĥ0

∂J̄1
+ ε

∂Ĥrs

∂J̄1
cos(rθ̄10) = 0. (43)

The equations (42) give the angles and the equation (43) gives the action J̄10. In addition, the
action J̄20 should correspond to the r/s resonance and the angle θ̄2 is given by

θ̄2 = n̄20t+ θ̄20. (44)

From equations (42) we see that there are 2r fixed points, which belong to two groups, k even
and k odd, of r- multiple fixed points:

k : even→ cos(rθ̄10) = +1, (θ̄10 =
2k

r
π, k = 0, 1, 2, . . . r − 1). (45)

k : odd→ cos(rθ̄10) = −1, (θ̄10 =
2k + 1

r
π, k = 0, 1, 2, . . . r − 1). (46)

For each group of r-multiple fixed points, (42) or (43), the value of J̄10 is the same, as we can see
from (43). We shall prove in the following that each group of r-multiple fixed points corresponds
to the same periodic orbit. Consequently, we have two r-multiple fixed points. We shall also
prove that one of them is stable and the other is unstable. Note that this result is equivalent
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Figure 4: The phase portrait of the averaged system at the r/s resonance, for r = 4 (schemati-
cally).

to the Poincaré-Birkhoff fixed-point theorem, mentioned in section 2. (See also Hadjidemetriou
1991). It is interesting to note from Eqs.(40) that for ε = 0 the number of s/r resonant fixed
points is infinite. All these fixed points lie on the level curve J̄1 = J̄10, for arbitrary angle θ̄10.
As soon as the perturbation is applied, ε 6= 0, out of this infinite set of fixed points only a finite
number survives.

The evolution of the system can be studied in the XY plane,

X =
√

2J̄1 cos θ̄1, Y =
√

2J̄1 sin θ̄1,

of the Poincaré variables. In Figure 4 we show, schematically, the phase portrait in the averaged
system, close to the r/s resonance, for r = 4. There are two sets of 4-multiple fixed points, where
one of them is stable and the other is unstable. Compare this with the Poincaré map, shown in
Figure 3b. Although the topology in these two figures is the same, there is a great difference
between these two models. In the averaged model the stable fixed points are surrounded by
level curves, while in the Poincaré map of the non averaged model we have invariant curves.
The difference, (level curves in the averaged system and invariant curves in the non averaged
system) is due to the fact that the non averaged system has two degrees of freedom, while the
averaged system (equations (40)) has only one degree of freedom. Thus, the averaged system
is integrable and the motion is ordered, while in the non averaged system chaos may appear,
starting from the vicinity of the unstable fixed points, as we shall show in the following.

The relation of the solution of the averaged system with the solution of the non averaged system

We shall find now the relation between the solution of the averaged system (39) with the solution
of the non averaged system (21). This is given by the canonical transformation from the averaged
variables J̄1, J̄2, θ̄1, θ̄2 to the original action-angle variables J1, J2, θ1, θ2. These transformation
equations are

J1 = J̄1 − ε
n2

r
s−r Ĥ11(J̄1, J̄2) cos(θ̄1 +

2s−r
r θ̄2),

θ1 = θ̄1 +
s
r θ̄2 +

ε
n2

r
s−r

(

∂Ĥ11

∂J̄1
+ s

r
∂Ĥ11

∂J̄2

)

sin(θ̄1 +
2s−r
r θ̄2),

J2 = − s
r J̄1 + J̄2 +

ε
n2

r
s−r Ĥ11(J̄1, J̄2) cos(θ̄1 +

2s−r
r θ̄2),

θ2 = θ̄2 +
ε
n2

r
s−r

∂Ĥ11

∂J̄2
sin(θ̄1 +

2s−r
r θ̄2).



























































(47)
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The relation between the fixed points of the averaged Hamiltonian with the periodic orbits of the
non averaged system

We shall prove now that a fixed point solution of the averaged system (39), given by equations
(42), (43), corresponds to a periodic solution of the non averaged system (21). Using (43), (44)
and (46) we obtain from the relations (47), for a certain fixed point solution J̄10, θ̄10, J̄20, θ̄2 =
n̄20t+ θ20, the solution of the non averaged system

J1 = J̄10 − ε
n2

r
s−r Ĥ11(J̄10, J̄20) cos(θ̄10 +

2s−r
r n̄20t),

θ1 = θ̄10 +
s
r n̄20t+

ε
n2

r
s−r

(

∂Ĥ11

∂J̄10
+ s

r
∂Ĥ11

∂J̄20

)

sin(θ̄10 +
2s−r
r n̄20t),

J2 = − s
r J̄10 + J̄20 +

ε
n2

r
s−r Ĥ11(J̄10, J̄20) cos(θ̄10 +

2s−r
r n̄20t),

θ2 = θ̄20 + n̄20t+
ε
n2

r
s−r

∂Ĥ11

∂J̄20
sin(θ̄10 +

2s−r
r n̄20t).



























































(48)

From equations (48) we see that a certain fixed point solution of the averaged system corresponds
to a periodic solution of the non averaged system, with period

T =
2π

n̄20
r.

During one period T , the angle θ1 makes s revolutions (increases by 2πs) and the angle θ2 makes
r revolutions (increases by 2πr).

We shall prove now that the above periodic solution is an r-multiple periodic solution. To do
so, we take the Poincaré map of the periodic solution (48) on the surface of section (8), i.e. at
θ2 = 0, and we see that it is represented by an r-multiple fixed point. This is so, because we
have r intersections with the circle θ2 = 0 before we come to the initial point. The consecutive
points of intersection at θ2 = 0 are at the times t = (2π/n20)ν, ν = 0, 1, 2, . . . r−1, to zero order
terms in ε (the exact times of intersection are slightly different). The angle θ1 advances at each
intersection by 2πs/r, to zero order terms in ε.

Next, we shall prove that the above points of intersection of the Poincaré map correspond to
the fixed points (45) or (46) of the averaged Hamiltonian. This is so, because if we start the
periodic solution (48) from a certain fixed point (45) or (46), the next fixed point of the Poincaré
map of the solution (48), as defined above at θ2 = 0, is a point of the same set (45) or (46)
(prove it!). This means that each set of fixed points (45) and (46) corresponds to the same r-
multiple periodic orbit. Consequently, to an r-multiple fixed point of the averaged system, there
corresponds a single r-multiple periodic orbit of the non averaged system. Since there are two
r-multiple fixed points of the averaged Hamiltonian, there are two r-multiple periodic solutions
of the non averaged Hamiltonian. In the next section we will prove that one of these orbits is
stable and the other is unstable.

Stability

We shall study now the stability of the periodic orbits, in the variables θ1, θ2, J1, J2, given by
the relations (48). The stability is the same as the stability of the fixed points of the system
(40), (41), in the variables θ̄1, θ̄2, J̄1, J̄2. Note that these two sets of variables are related by a
canonical transformation, which conserves the stability indices.

We shall study the stability using the system (40), (41), considering it as representing a system
with two degrees of freedom, as is the case with the system (48). For reasons of brevity, we

10



define the functions

g(J̄) = Ĥrs, fi(J̄) =
∂

∂J̄i
(Ĥ0 + εĤ00), gi(J̄) =

∂Ĥrs

∂J̄i
, i = 1, 2.

Then the system (40), (41) takes the form

˙̄θ1 = f1(J̄) + εg1(J̄) cos(rθ1),

˙̄J1 = εrg1(J̄) sin(rθ1),

˙̄θ2 = f2(J̄) + εg2(J̄) cos(rθ1),

˙̄J1 = 0.

The fixed point solution (42)-(44) takes the form

J̄10, θ̄10 = kπ/r, J̄20, θ̄2 = n̄20t+ θ̄20,

and the corresponding system of variational equations are

ξ̇ = Aξ,

where the column vector ξ is defined as

ξ = (∆θ̄1,∆J̄1,∆θ̄2 − n̄20t,∆J̄2)
t,

the superscript t meaning transpose, and the matrix A is given by











0 α1 0 α2

γ 0 0 0
0 β1 0 β2
0 0 0 0











,

where

γ = εr2g0c0, αi =
∂

∂J̄i
(f1 + εg1c0), βi =

∂

∂J̄i
(f2 + εg2c0),

and we have abbreviated
c0 ≡ cos(rθ̄10) = cos(kπ).

The eigenvalues of the matrix A are

λ1,2 = ±
√
α1γ, λ3 = λ4 = 0.

Since γ = εr2g0 cos(kπ), we come to the conclusion that one set of fixed points (45), for k =even,
corresponds to γ > 0 and the other set of fixed points (46), for k =odd, corresponds to γ < 0.
Consequently, we come to the conclusion that one of the above sets of fixed points is stable (λ1,2:
imaginary) and the other set is unstable (λ1,2 :real), depending on the sign of α1.

Note that the existence of the two zero eigenvalues λ3 = λ4 = 0 is due to the fact that the system
(40), (41), obtained from the averaged Hamiltonian (39), has the energy integral H̄ =constant.

Comparison between the Poincaré map and the averaged Hamiltonian

We remark at this point that the Poincaré map represents accurately the dynamical system (4),
while the method of averaging is an approximate method, because the averaged Hamiltonian
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(39) is obtained by a perturbation method, and in fact, this latter Hamiltonian is a first order
approximation. But even in higher order approximations, the averaged Hamiltonian does not
represent always the original, non averaged, system, because the perturbation series, in general,
do not converge. This is always the case in non integrable systems. So, the phase portrait
of the Poincaré map of the original system may be different from the phase portrait of the
corresponding averaged system. In general, these two phase portraits may coincide in those
regions of the phase space where the system behaves as integrable, i.e. there exist smooth
invariant curves. If chaos appears, then the method of averaging is not applicable. These will be
explained in the next section, by an example. Thus we come to the conclusion that a necessary
criterion for the averaged model to be realistic is, the fixed points of the averaged Hamiltonian
to coincide with the periodic orbits / fixed points of the Poincaré map of the original system.

4 An example

We shall present now an example to make clear the results of the previous two sections. Let us
consider a dynamical system defined by the Hamiltonian

H = J2
1 + 3J1 + 2J2

2 + εJ1J2 cos(2θ1 − θ2)

+ εJ1J
3/2
2 cos(2θ1 − 3θ2).

(49)

The part
H0 = J2

1 + 3J1 + 2J2
2 (50)

in the right hand side of (49) is the integrable part. This is a system with two degrees of freedom,
in the variables J1, J2, θ1, θ2, which are the action-angle variables of the integrable part (50) of
the Hamiltonian (49). The frequencies of the integrable Hamiltonian are

n1 =
∂H

∂J1
= 2J1 + 3, n2 =

∂H

∂J2
= 4J2, (n1 = θ̇1, n2 = θ̇2).

Note that there are two basic frequencies in (49),

n1/n2 = 1/2, n1/n2 = 3/2. (51)

The initial conditions corresponding to these frequencies, in the actions J1, J2 (and arbitrary
angles θ1, θ2), are

n1
n2

=
2J1 + 3

4J2
=

1

2
→ J2 = J1 +

3

2
, (52)

for the 1/2 resonance and

n1
n2

=
2J1 + 3

4J2
=

3

2
→ J2 =

1

3
J1 +

1

2
, (53)

for the 3/2 resonance. The resonance curves, for the above two frequencies, in the space J1, J2,
are given in Figure 5a.

The Poincaré map

We consider the Poincaré map of the system (49) for the surface of section

h = 10, θ2 = 0. (54)
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Figure 5: The resonance curves, for the basic resonances 1/2 and 3/2 in the action space . (b)
The energy curves, in the space J1, h.
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Figure 6: Perturbation ε = 0.03. (a) The Poincaré map of the system (49). Both resonances
1/2 and 3/2 are present. The invariant curves are smooth. (b) The level curves of the averaged
Hamiltonian close to the 3/2 resonance.
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Figure 7: Perturbation ε = 0.05. (a) The Poincaré map of the system (49). Both resonances 1/2
and 3/2 are present. Chaotic motion starts at the unstable fixed points at the 3/2 resonance.(b)
The level curves of the averaged Hamiltonian close to the 3/2 resonance.
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Figure 8: Perturbation ε = 0.10. (a) The Poincaré map of the system (49). Both resonances
1/2 and 3/2 are present. In addition, higher order resonances also appear. There is extended
chaotic motion at the 3/2 resonance.(b) The level curves of the averaged Hamiltonian close to
the 3/2 resonance.

Let us assume, as a first approximation, that the energy h is a function of the unperturbed
Hamiltonian (50), h = H0(J1, J2). By making use of the relations (52), (53) between the actions
J1, J2, along the resonances 1/2 and 3/2, respectively, we find the energy curves, in the space
J1h, for these two resonances, as shown in Figure 5b. From this diagram we can find, to a first
approximation, the value of the action J1 for the resonances 1/2 and 3/2, for any energy level.

We shall compute the Poincaré map for the surface of section (54), at the energy level h = 10.
We shall use the complete system (49). In order to select the initial conditions close to the 1/2
and 3/2 resonances, we shall use the analysis of the unperturbed Hamiltonian (50). From Figure
5b and using also equation (53) we find that at this energy lever it is J1 ≈ 0.5, J2 ≈ 1.25, for
the 1/2 resonance and J1 ≈ 1.6, J2 ≈ 1.1 for the 3/2 resonance. In the Figures 6a, 7a and 8a we
present the Poincaré maps for the whole space in the Poincaré variables X =

√
2J1 cos θ1, Y =√

2J1 sin θ1, for increasing values of the perturbation, ε = 0.03, ε = 0.05, ε = 0.10, respectively.
Both resonances appear and, in addition, for the case of the larger perturbation ε = 0.10, higher
order resonances also appear, due to the nonlinearity of the system. Note that the position of
the fixed points in the Poincaré diagrams coincide with the intersection of the resonance curve
with the line h = 0.10 in Figure 5b.

The level curves of the averaged Hamiltonian

We shall work in the region of the 3/2 resonance. The resonance variables, as obtained from the
relations (28) are

Ĵ1 = J1, Ĵ2 =
3
2J1 + J2,

θ̂1 = θ1 − 3
2 θ2, θ̂2 = θ2,











(55)

and it is easily seen that the angle θ1 is a ‘slow’ angle, because
˙̂
θ1 is small at the 3/2 resonance.

The averaged Hamiltonian, as obtained from (49), is

H̄ = J̄2
1 + 3J̄1 + 2

(

−3

2
J̄1 + J̄2

)2

+ εJ̄1

(

−3

2
J̄1 + J̄2

)3/2

cos(2θ̄1), (56)

in the variables J̄1, θ̄1. The angle θ̄2 is ignorable and consequently the action J̄2 is constant.
This is an approximate integral of motion, and in zero order terms is given by

J̄20 ≈
3

2
J1 + J2. (57)
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Figure 9: The approximate integral J̄20 at the 3/2 resonance and at the 1/2 resonance and far
from resonance, for ε = 0.03. (b) The approximate integral J̄20 at the 3/2 resonance and at the
1/2 resonance and far from resonance, for ε = 0.05.

The level curves of the averaged Hamiltonian (56) describe the evolution of the system, in the
J̄1, θ̄1 variables. Since J̄2 is constant, this latter Hamiltonian is equivalent to a system with one
degree of freedom. The parameter for each phase portrait of the level curves is the value of the
action J̄2, which is constant. Note that in the phase space of the Poincaré map the parameter
was the energy h.

In Figures 6b, 7b and 8b we present the level curves of the averaged Hamiltonian (56), for the
perturbation ε = 0.03, ε = 0.05, ε = 0.10, respectively. The value of the parameter J̄2 is
selected in such a way in order to correspond to the energy level h = 10 of the Poincaré map
presented in Figures 6a, 7a and 8a. From the values J1 ≈ 1.6 and J2 ≈ 1.1 that correspond to
the 3/2 resonance, and using relations (55), we find J̄20 = 3.5. We also remark that the Poincaré
variables X =

√
2J1 cos θ1, Y =

√
2J1 sin θ1 used in the mapping of the Figures 6a, 7a and 8a

are equivalent, to first order terms in ε, to the Poincaré variables in the averaged action-angles
X =

√

2J̄1 cos θ̄1, Y =
√

2J̄1 sin θ̄1, as can be seen from the transformation equations (55),
taking also into account that θ2 = 0 on the Poincaré map.

A first remark from the comparison of the figures 6a - 6b, 7a - 7b and 8a - 8b, is that there is a
similarity in the topology, in the sense that the position and the stability character of the fixed
points of the 3/2 resonance is the same. However, the level curves of the averaged Hamiltonian
are smooth curves, implying that the motion is ordered everywhere, since the one degree of
freedom averaged model is integrable. On the contrary, the invariant curves of the Poincaré
map are smooth curves only for a small perturbation, as seen from the comparison between the
Figures 6a and 6b. For a larger perturbation, ε = 0.05, the invariant curves start to dissolve at
the unstable fixed points, and for a still larger perturbation, ε = 0.10, there is widespread chaos
at the whole region of the 3/2 resonance. We also remark that the averaged model (56) is valid
only close to the 3/2 resonance, and for this reason in the level curves the resonance 1/2 does
not appear.

It is also interesting to see the properties of the approximate integral J̄20 ≈ 3
2J1+J2= constant.

In Figures 9a and 9b we plot the value of J̄20 close to the 3/2 resonance and far from this
resonance. It is clear, even in the zero order approximation that we use here, that the variation
of J̄20 is much smaller close to the 3/2 resonance than far from it.
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5 Discussion

The Poincaré map and the method of averaging are two useful methods that are used in the study
of the dynamics and the evolution of a dynamical system. Each method has its advantages and
disadvantages. The Poincaré map describes accurately the dynamical system, but is a purely
numerical method, with all the advantages and the limitations of a numerical work. On the
other hand, the method of averaging is an analytic method, and one can understand better
the dynamics of the system. However, it is based on a perturbation method, involving series
expansions in powers of a small parameter. Unfortunately, these series do not converge (they are
asymptotic series) and in many cases the dynamical system that the averaged system describes
may be different from the real system. In such cases the inclusion of higher order terms does
not improve the situation, and there may be an optimal order, beyond which things deteriorate.
This is the rule in a non integrable dynamical system, but this does not mean that the method
of averaging is not applicable in these cases. In the regions of the phase space where the
system behaves as integrable (smooth invariant curves), the averaged model may give important
information on the dynamics. This is clearly seen from the example of the system (49), as shown
in Figures 7, 8 and 9.

We believe that both methods are useful and complementary in the study of a dynamical system,
and both of them should be used. Note that a necessary condition for the averaged model to
be realistic is to have the same fixed points, with the same stability character, as the Poincaré
map. This is necessary in order for the topology of the averaged model to coincide with the
topology of the real system, as presented by the Poincaré map, since it is the fixed points that
determine the topology of the phase space.
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