
Noname manuscript No.

(will be inserted by the editor)

The 1/1 resonance in Extrasolar Systems

Migration from planetary to satellite orbits

John D. Hadjidemetriou · George Voyatzis

the date of receipt and acceptance should be inserted later

Abstract We present families of symmetric and asymmetric periodic orbits at the

1/1 resonance, for a planetary system consisting of a star and two small bodies, in

comparison to the star, moving in the same plane under their mutual gravitational

attraction. The stable 1/1 resonant periodic orbits belong to a family which has a

planetary branch, with the two planets moving in nearly Keplerian orbits with non

zero eccentricities and a satellite branch, where the gravitational interaction between

the two planets dominates the attraction from the star and the two planets form a

close binary which revolves around the star. The stability regions around periodic

orbits along the family are studied. Next, we study the dynamical evolution in time of

a planetary system with two planets which is initially trapped in a stable 1/1 resonant

periodic motion, when a drag force is included in the system. We prove that if we start

with a 1/1 resonant planetary system with large eccentricities, the system migrates,

due to the drag force, along the family of periodic orbits and is finally trapped in a

satellite orbit. This, in principle, provides a mechanism for the generation of a satellite

system: we start with a planetary system and the final stage is a system where the two

small bodies form a close binary whose center of mass revolves around the star.

Keywords 1/1 resonance · periodic orbits · co-orbital motion · planetary migration

1 Introduction

In the present work we study the dynamical evolution of an extrasolar planetary system

which is close to the 1/1 resonance. It is known (Hadjidemetriou 2002; Hadjidemetriou

2006; Beaugé et al. 2003) that families of periodic orbits exist in the three body prob-

lem, in a rotating frame, consisting of a star (with a large mass) and two bodies with

small masses (planets or satellites) that interact gravitationally. We consider here the

planar case, i.e. all bodies move in the same plane (see Fig. 1a). In Hadjidemetriou et al.

(2009), families of stable and unstable periodic orbits are found for planetary systems

at the 1/1 mean motion resonance in the rotating frame . These families determine
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critically the topology of the phase space and consequently affect the evolution of the

system. We remark that these families of 1/1 resonant periodic orbits studied here do

not emanate from Trojan like orbits (e.g. Schwarz et al. 2009) and are called by some

authors “quasi-satellite orbits” (Mikkola et al. 2006; Giuppone et al. 2010).

In this work we consider that, in addition to the gravitational forces between the

three bodies, non conservative forces also act on the planets. If we assume that the

planetary system is not yet fully developed and a proto-planetary nebula exists, then

the motion of the planets is affected by the drag which is due to the interaction between

the planets and the proto-planetary nebula. Such a dissipation effect lasts until this

nebula is dissolved and the system takes its final form. This kind of study has been

made in order to explain the large eccentricities, or the very close proximity of the

planets, and the resonance trapping in several observed extrasolar planetary systems

(Beaugé and Ferraz-Mello 1993; Gomes 1996; Ferraz-Mello et al. 2003; Nelson and

Papaloizou 2003a; Nelson and Papaloizou 2003b; Papaloizou, 2003; Beaugé et al. 2006;

Morbidelli et al. 2007; Zhou et al. 2008; Hadjidemetriou and Voyatzis 2010).

A planetary system under non conservative forces evolves, in the phase space,

following the stable part of the families of periodic orbits, as has been found for the 2/1

and 3/1 resonances by Ferraz-Mello et al. (2003); Beaugé et al. (2006); Hadjidemetriou

and Voyatzis (2010, 2011). In the present case of the 1/1 resonance we start with a

planetary orbit of the two small bodies, with large eccentricities and follow its evolution

under non conservative forces. It is shown that the system evolves along the stable

family and finally can be trapped in a satellite orbit.

In section 2 we introduce our model and discuss the main dynamical issues of the

conservative system, namely the planar three body problem in a rotating frame. In

section 3 we present the periodic orbits of the conservative system for various ratios of

the planetary masses and we study the stability regions around the stable symmetric

family. In section 4 we present the results of our numerical simulations of the dissipative

system and illustrate the evolution. Finally, we conclude in section 5.

2 The conservative and the dissipative models

2.1 The model in the inertial frame of reference

We consider the star S, with mass m0 and the two planets P1 and P2, with masses

m1 and m2, respectively, moving in the same plane, in an inertial frame where the

center of mass of the system is fixed at the origin of a coordinate system XΩY . In the

conservative model we have four degrees of freedom, since the position of the system

is determined by the coordinates X1, Y1 and X2, Y2 of the two planets (the position of

the star is obtained from the fact that the center of mass is at Ω).

It is assumed that the nebula, which introduces the drag, rotates differentially with

Keplerian circular velocity (at each radius r) and the non conservative force is a linear

drag law (a Stokes like force) proportional to the relative velocity of the planets with

respect to the nebula:

R = −10−n(v − vc), (1)

where v is the velocity of the planet and vc is the circular velocity of the nebula, given

by

vc =

√

Gm0

r
eθ. (2)
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The component −10−nv in Eq. 1 is the purely dissipative force and the component

−10−n(−vc) is a forcing force, due to the rotation of the nebula, which is imposed to

the system. This means that the nonconservative force given by Eq. 1 may be either

positive or negative, depending on the relative velocity of the planet with respect to

the circular velocity at that point. This type of drag force has been used by Beaugé

et al. 2006, to study migration at the 2/1 resonance. In the following we shall call the

force given by Eq. 1 dissipative, with the meaning that the dissipation may be either

positive or negative, as explained above.

The differential equations of the motion of the planets are

Ẍ1 = −m0
X1 −X0

r301
−m2

X1 −X2

r312
+ R1x

m1
,

Ÿ1 = −m0
Y1 − Y0

r301
−m2

Y1 − Y2

r312
+
R1y
m1

,

Ẍ2 = −m0
X2 −X0

r302
−m1

X2 −X1

r312
+ R2x

m2
,

Ÿ2 = −m0
Y2 − Y0

r302
−m1

Y2 − Y1

r312
+
R2y
m2

,

(3)

and include the gravitational interaction between the bodies and also the dissipative

force acting on each planet. r01, r02 and r12 are the distances between S and P1, S

and P2 and P1 and P2, respectively. (R1x, R1y) and (R2x, R2y) are the components

of the dissipative force given in Eq. 1, acting on the planets P1 and P2, respectively.

In the numerical integration of the system we assume that the center of mass of the

system is fixed, because the mass of the star is much larger than the masses of the

planets and the dissipative force acting on the planets is very small.

The unit of mass is the total mass, m, of the system and the gravitational constant

G, is also taken equal to unity:

m = m0 +m1 +m2 = 1, G = 1.

2.2 The conservative model in the rotating frame

We introduce now a rotating frame xOy, whose origin is the center of mass of the star S

and the planet P1 and the x axis is the line S−P1 (see Fig. 1b). In this rotating frame

the planet P1 moves always on the x axis and the planet P2 moves in the xOy plane.

We still have four degrees of freedom, with variables (x1, x2, y2, θ), where θ is the angle

between the x axis and a fixed direction in inertial frame and defines the orientation

of the rotating frame. The Lagrangian of the conservative part of the system, in the

rotating frame, is (Hadjidemetriou 1975)

L =
1

2
(m0+m1)

{

q(ẋ2
1 + x2

1θ̇
2) +

m2

m

[

ẋ2
2 + ẏ2

2 + θ̇2(x2
2 + y2

2) + 2θ̇(x2ẏ2 − ẋ2y2)
]

}

−V,

(4)

where

V = −
Gm0m1

r01
−
Gm0m2

r02
−
Gm1m2

r12
, (5)

and q = m1/m0.
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(a) (b) (c)

Fig. 1 a The two planets in elliptic orbits that interact gravitationally. b The rotating frame
xOy. The origin O is at the center of mass of S and P1 and the x-axis is the line S − P1. The
planet P2 moves in this rotating frame. The angle θ is ignorable. c The Poincaré map on the
surface of section y2 = 0.

The angle θ is ignorable and consequently the angular momentum pθ = ∂L/∂θ̇,

given by

pθ = (m0 +m1)
{

θ̇
[

qx2
1 +

m2

m
(x2

2 + y2
2)
]

+
m2

m
(x2ẏ2 − ẋ2y2)

}

, (6)

is constant. We can use now the angular momentum integral to reduce the number of

degrees of freedom from four to three, by eliminating the ignorable angle θ. The new

Lagrangian is the Routhian function (see Pars 1965)

R =
1

2



















qẋ2
1 +

m2

m
(ẋ2

2 + ẏ2
2)−

[

pθ
(m1 +m0)

−
m2

m
(x2ẏ2 − ẋ2y2)

]2

qx2
1 +

m2

m
(x2

2 + y2
2)



















− V. (7)

In this way we restrict our study in the rotating frame only, in the variables (x1, x2, y2)

and the six dimensional phase space (x1, x2, y2, ẋ1, ẋ2, ẏ2). Note that pθ appears as a

fixed parameter in the Routhian (7).

In the numerical study of the evolution of the system we use the full system (Eqs.

3) and transform the motion in the rotating frame xOy. All the computations were

performed by the Bulirch - Stoer integration method, with an accuracy of 10−14.

In order to avoid unnecessary details in the computations and restrict the study to

the general features only, we use the Poincaré map on the surface of section

y2 = 0, ẏ2 > 0. (8)

By the Poincaré map (Fig. 1c) we reduce by one the dimensions of the phase space,

which is now the five dimensional space (x1, x2, ẋ1, ẋ2, ẏ2). In the following sections

we present the results of the computations in projections in different coordinate planes

or, equivalently, in projections in the orbital elements plane, mainly the eccentricity

plane.
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2.3 Periodic orbits

As mentioned above, we can restrict the study of the motion of a planetary system in

the rotating frame of Fig. 1b and it is known that periodic orbits exist in this rotating

frame, which belong to one dimensional families (Hadjidemetriou 2006). The initial

conditions of an orbit in the rotating frame are

X(0) = {x10, x20, y20, ẋ10, ẋ20, ẏ20},

and a periodic orbit of period T is defined by the condition X(0) = X(T ). Due to

the system’s symmetry Σ = (t → −t, x → x, y → −y), if the initial conditions X(0)

correspond to a periodic orbit then the initial conditions

X
′(0) = {x10, x20,−y20,−ẋ10,−ẋ20, ẏ20},

correspond also to a new “mirror image” periodic orbit. If the periodic orbit coincides

with its mirror image orbit then it is “symmetric”, otherwise it is called “asymmetric”

(Hénon, 1997; Voyatzis and Hadjidemetriou, 2005).

In particular, for symmetric periodic orbits it is y20 = 0, ẋ10 = 0, ẋ20 = 0, i.e.

the planet P2 starts from the x-axis perpendicularly at t = 0 and at the same time

the planet P1 (that moves on the x-axis) is at rest. Consequently, the nonzero initial

conditions of a symmetric periodic orbit at t = 0 are

{x10, x20, ẏ20}. (9)

In a symmetric periodic orbit it is at t = 0, ωi = 0 or π and Mi = 0 or π (i = 1, 2)

and consequently ∆ω = ω2 − ω1 and ∆M = M2 − M1 are always equal to 0 or

π. Note that the configurations (M1 = 0◦, M2 = π) and (M1 = π, M2 = 0◦) are

equivalent, separated by half a period T , due to the 1/1 resonance. However, along

a family of asymmetric periodic orbits ∆ω and ∆M vary. In the following we shall

present the evolution of a planetary system in its phase space, by giving the projection

in coordinate planes, or in the orbital elements space and mainly in the eccentricity

space.

3 The dynamics of the conservative model

In this section we consider the conservative model described in section 2.2. First we

present the different families of periodic orbits of the system and then we study the

stability regions in phase space close to the periodic orbits.

3.1 Symmetric families of 1/1 resonant periodic orbits

Hadjidemetriou et al. (2009) have found two families of symmetric 1/1 resonant periodic

orbits, one stable and one unstable. On the stable family the periastra of the two planets

are in opposite directions (∆ω = π) and the planets at t = 0 are in periastron and

apoastron, respectively (∆M = π). On the unstable family the periastra are in the same

direction (∆ω = 0) and the planets are also in periastron and apoastron, respectively

(∆M = π). A typical example of these families, for the masses m1 = 0.0005, m2 =

0.0015 is presented in Fig. 2 in the projection space of the eccentricities e1 − e2.
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Fig. 2 The stable (S) and the unstable (U) family of 1/1 resonant periodic orbits for the
mass ratio ρ = 3 (m1 = 0.0005, m2 = 0.0015). The S family shows a cusp that separates the
family in two parts, the planetary and satellite part.

The periodic orbits of the stable family have been called “quasi-satellite orbits”

(Giuppone et al. 2010). This type of orbits are also present in the restricted three body

problem, beside the tadpole and horseshoe Trojan orbits (see Mikkola et al. 2006 and

references therein). In Fig. 2 it is clear that the stable family has a cusp as it approaches

the lower eccentricities. This cusp, which is not apparent in the semi-analytical model

used by Giuppone et al. (2010), divides the family in two parts, before and after the

cusp, respectively. In the first part the two planets do not come close to each other,

due to the resonance protection, and their mutual gravitational interaction is relatively

weak. Thus, the orbits are almost Keplerian and we call them orbits of “planetary type”.

After the cusp, the planets are very close to each other and their mutual gravitational

interaction dominates, forming a close binary which revolves around the star. We call

these orbits of “satellite type”. The distinction between planetary and satellite orbits

will become clear in section 4, Figs. 11 and 12.

For small planetary masses, the location of the families of periodic orbits in the

e1−e2 plane is affected only by the planetary mass ratio ρ = m1/m2 and not the total

planetary mass m1 +m2 (provided that mi ¿ m0). In Fig. 3a we present the families

of periodic orbits for various values of ρ in the eccentricity plane and for m1 = 0.001.

Due to the intrinsic symmetry of the 1:1 resonance, the family curves that correspond

to the mass ratio ρ are symmetrical to the curves of mass ratio 1/ρ with respect to

the line e1 = e2. For any value of ρ the cusp is apparent dividing the family in the

“planetary” and “satellite” parts. We note that the location of the planetary parts of

the families are in a very good agreement with those computed by Giuppone et al.

(2010) and the property that all families pass very close to the point e1 ≈ e2 ≈ 0.57 is

verified.

The cusp formed along a stable family in the eccentricity plane appears because

the mutual gravitation of the planets becomes very large and the elliptic shape of the

orbits is significantly deformed. Thus the osculating eccentricities are not appropri-

ate variables to describe smoothly the family of such non Keplerian orbits. We use
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(a) (b)

Fig. 3 a The stable symmetric families in the eccentricity plane for various mass ratios ρ. In
all cases the planetary and satellite parts are well distinct. The gray dashed curves indicate
the symmetrical families for mass ratio 1/ρ. b The stable families in the plane of rotating
variables x1 − x2. The corresponding characteristic curves are smooth. The bold dots indicate
the orbits where the cusps appear in the e1 − e2 presentation. The cross indicates a planetary
collision point.

(a) (b)

Fig. 4 a Asymmetric families in the eccentricity plane and for the indicated mass ratio values
ρ. b The variation of the angles ∆ω = ω2 − ω1 and ∆M = M2 −M1 along the asymmetric
families.

the osculating elements for the satellite part just to show the sharp transition from

planetary to satellite motion. This cusp does not exist if we present the family in the

space of initial conditions (9), expressed in the coordinates of the rotating frame xOy.

This implies that the family is a unique family. Indeed, in Fig. 3b the stable families

are presented in the plane x1 − x2 by smooth curves which seem to terminate at a

planetary collision.
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3.2 Asymmetric families of 1/1 resonant periodic orbits

In Giuppone et al. (2010), two families (AL4 and AL5) of stable asymmetric periodic

orbits are found by using a semi-analytical averaged model. These asymmetric orbits

encompass the Lagrangian points L4 and L5. In this study we present such orbits

in the rotating frame (Fig. 1b) of the general three body model. The family AL5 is

the mirror image of the family AL4 and thus we present only one family. In Fig. 4a

the asymmetric families for some values of the mass ratios ρ and m1 = 0.001 are

shown in the e1 − e2 plane. All families start from zero eccentricities and extend up

to high eccentricity values, remaining linearly stable. The linear dependence of the

eccentricities along the families, which is mentioned by Giuppone et al. (2010), seems

to hold only for eccentricities less that 0.6. For larger eccentricities, the characteristic

curves bend and tend to the diagonal e1 = e2 as ei → 1. Along the asymmetric families

the phases ∆ω and ∆M vary. Their variation is presented in Fig. 4b, where the families

are parametrized by the variable e1 that defines the horizontal axis. The families start

from (∆ω,∆M)=(240◦, 180◦) (or, (60◦, 180◦) for their mirror image) and, as ei → 1,

end to (180◦, 0◦), i.e. to a symmetric configuration. The existence of such asymmetric

orbits in the general three body problem can be explained by the mass continuation

of asymmetric orbits of the restricted problem similarly to the 2/1 resonance studied

in Voyatzis et al. (2009). We note that the restricted problem has various families of

asymmetric orbits associated with the Lagrangian equilateral solutions (Zagouras et

al. 1996; Papadakis and Rodi 2010).

3.3 Stability regions around periodic orbits

It is well known that stable periodic orbits are surrounded by invariant tori, which cor-

respond to longterm regular evolution. On the other hand, starting nearby an unstable

periodic orbit we obtain in most cases chaotic evolution. Particularly, in the framework

of the general three body problem, chaotic motion generally leads the planetary system

to disruption. An example is shown in the two panels of Fig. 5a, where we present two

typical orbits by using the Poincaré map on the plane (e2 cos∆ω, e2 sin∆ω). The first

one starts with initial conditions close to a stable periodic orbit in Fig. 3, for ρ = 1

(m1 = 0.001, m2 = 0.001), whose fixed point on the map is indicated by a filled circle.

Its evolution shows a regular distribution of points that encompass the stable fixed

point. The second orbit starts with initial conditions that correspond to an unstable

periodic orbit for ρ = 1. After a few revolutions the orbit deviates from the unstable

periodic orbit and shows an irregular distribution of points on the Poincaré section.

Finally, after a few thousand revolutions, the planets suffer a close encounter and the

system leaves the 1/1 resonance.

The regular or the chaotic character of the planetary evolution can be studied by

various chaotic indicators (see e.g. Voyatzis, 2008). In Fig. 5b we show the evolution of

the Lyapunov characteristic number (LCN) of the stable and the unstable orbits of Fig.

5a (curves (i) and (ii), respectively). Chaos and order is easily distinguished in this case.

The curve (iii) corresponds to a relatively weak chaotic evolution where the planets

show a slow irregular diffusion and the system will be disrupted in some hundred

thousands revolutions. In the particular systems we study, since the 1/1 resonance

includes close encounters, most of the orbits starting in the resonance are strongly

chaotic, while orbits like case (iii) are rare.



9

(a) (b)

Fig. 5 a Poincaré maps near a periodic orbit of the stable family (S) (upper panel) and of an
orbit which starts very close to the unstable periodic orbit (U) (bottom panel), form1 = 0.001,
m2 = 0.001. b The evolution of the LCN along the stable and the unstable orbit of panel a
(curves (i) and (ii), respectively). The evolution of the LCN along a relatively weakly chaotic
orbit is also shown (curve (iii)). The initial conditions are e1 = e2 = 0.3, ω2 = 0◦ M1 = 180◦,
M2 = 0◦ in all cases and ω1 = 150◦, 0◦ and 138◦ for the cases (i)-(iii), respectively.

In order to study the range of stability around periodic orbits we compute dynam-

ical stability maps constructed by using 2D grids of initial conditions around periodic

orbits and computing the LCN at time intervals that correspond approximately to 105

planetary revolutions for a regular orbit. If during this integration time interval a close

encounter occurs we set LCN=1. For the case of orbits of planetary type we consider

initial conditions given in orbital elements. However, for orbits of satellite type, where

the osculating orbital elements with respect to the star become meaningless, the initial

conditions are given in variables of the rotating frame.

We consider the planetary part of the stable family in Fig. 3 for ρ = 1 (m1 =

m2 = 0.001), where for all of its periodic orbits it is a1 ≈ a2, e1 ≈ e2, ∆ω = 180◦

and ∆M = 180◦. We select four typical periodic orbits along the family to study

the stability region around them, at the points ei = 0.2, ei = 0.4, ei = 0.57 and

ei = 0.8 (i = 1, 2). The corresponding four dynamical maps are presented in Fig. 6.

For the computation of the dynamical maps we fixed the initial conditions ai and ei
at the periodic orbit and varied the angles ∆ω and ∆M . 50 × 50 grids are formed

by considering values ∆ω and ∆M in the interval [0, 360]. The symmetric periodic

orbits are located in the center of the maps, while the asymmetric periodic orbits of

the families AL4 and AL5 correspond at the indicated orbits. Around the symmetric

periodic orbit at e1=e2=0.2 (panel a), which is located on the planetary part of the

family close to the cusp (see family for ρ = 1 in Fig. 3a), we find a thin island of stability
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Fig. 6 LCN dynamical maps (50 × 50) around the symmetric stable periodic orbit
(∆M,∆ω)=(180◦, 180◦) at a ei = 0.2, b ei = 0.4, c ei = 0.57, d ei = 0.8 (i = 1, 2).

(dark colored region) with quasiperiodic trajectories. This island is also surrounded by

a stability strip, which is represented by the four dark zones (note the toroidal mod

2π periodicity of the maps). This region includes the asymmetric periodic orbits and

the Lagrangian equilateral solutions L4 and L5 (see also Giuppone et al. 2010). As

we pass to larger eccentricities (see panel (b)) the size of the stability island around

the symmetric periodic orbit increases while the width of its surrounding thin stability

region decreases. For e1=e2=0.57 only two small stability islands remain around AL4

and AL5, which disappear for larger eccentricities. The large stability region around

the symmetric periodic orbit remains even for high eccentricities e1 = e2 = 0.8.

In order to study how the stability regions are formed, as we pass from planetary to

satellite orbits, we consider grids with initial conditions along the above stable family

(m1 = m2 = 0.001) which can be parametrized by using the variable x1 of the rotating

frame at the horizontal axis of the grid. Thus for each value of x1 the orbits in the

grid are fixed to the initial conditions of the corresponding periodic orbit and we vary

another variable, as shown in the vertical axis of the grid. In Fig. 7a we present such

a grid with vertical axis the variable x2 of the rotating frame. The projection of the

stable family in this plane is also presented. We obtain that around the planetary part

of the family a strip of regular orbits is formed. However, at the passage point from

planetary to satellite orbits at x1 ≈ 0.82 the stability strip breaks (see Fig. 3). This

is clearly shown in Fig. 7b where the magnification of this region is presented. We
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(a) (b)

Fig. 7 a LCN dynamical map on the x1−x2 plane. The stable symmetric family in this plane
is indicated by the dashed curve. b A magnification of the map of panel (a) at the region where
passage from planetary to satellite orbits occurs.

(a) (b)

Fig. 8 a LCN dynamical map on the x1− φ plane. The stable family of symmetric periodic
orbits in this plane is indicated by the dashed curve. b A magnification of the map of panel
(a) at the region where passage from planetary to satellite orbits occur.

observe, also, a second break of the stability zone at x1 ≈ 0.79. So in the satellite part,

we get two distinct regions (A and B) which show compact domains of regular orbits.

Another dynamical map that illustrates the stability regions close to the transition

point from planetary to satellite orbits is given in Fig. 8. Now the vertical axis presents

the angle φ between the velocity vector v = (ẋ2, ẏ2) and the vertical axis Oy of

the rotating frame. The norm of the vector is fixed to the value that corresponds

to the periodic orbit. Note that for φ = 0 we get the periodic orbits of the stable
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family. The dynamical map shows that along the planetary part of the family, we get

a relatively large region of stability which is extended approximately in the domain

−60◦ < φ < −60◦. As we approach the cusp of the family, the width of the stability

region decreases rapidly and is cut at the cusp. After this point (x1 < 0.82) we get

the stability region of the satellite orbits which shows the two distinct regions A and

B consisting of regular orbits. We should remind at this point that the family ends at

a collision point of the planets at x1 ≈ 0.76, which indicates the end of the domain B.

Thus the strong chaos close to this value is due to the close encounters of the planets

and the possible errors of the numerical integration of the close to collision orbits. The

above results were obtained for m1 = m2 = 0.001 (ρ = 1), but we checked that the

same properties exist for any other mass ratio.

4 Evolution of the system under non conservative forces

We start with a planetary system with two planets, with large eccentricities, which

is trapped in a 1/1 stable resonant periodic orbit. Its position in the phase space is

a point on the planetary part of the stable family. If no external forces act to the

system, this planetary system will stay in its initial condition for all t, i.e. it will be

represented by a fixed point in the phase space. We assume now that, in addition to the

gravitational forces, the dissipative force given by Eq. 1 acts also on the two planets.

This latter system is no longer periodic, but is expected to evolve in time. Our purpose

is to study the long term behavior of such a system by following its evolution in phase

space. The results will be presented in projections in coordinate planes and mainly in

the eccentricity plane e1 − e2.

We checked many cases, with different total planetary massesm1+m2 and different

planetary ratios m1/m2. Note that due to the fact that we are in the 1/1 resonance,

which implies almost equal semimajor axes, a1 ≈ a2, we can study only the case

m1/m2 ≤ 1. In all cases the long term evolution is the same, so we present in the

following two typical cases, m1 = 0.001, m2 = 0.001 and mainly the case m1 = 0.0001,

m2 = 0.0010.

4.1 Typical cases of evolution

In Fig. 9 we present the evolution of a planetary system that starts on the planetary

part of the stable family of 1/1 resonant periodic orbits, with initial conditions

a1 = 8.59425 a2 = 8.56898

e1 = 0.95077 e2 = 0.95486

ω1 = 0 ω2 = π

M1 = π M2 = 0

(10)

and m1 = 0.00100, m2 = 0.00100, that correspond to an exact periodic orbit. We

assume that the dissipative force that acts to the planets is given by Eq. 1 with exponent

n = 7. To have a better physical understanding, we present in Fig.9a the evolution of

the system in the eccentricity space. The system starts with high eccentricities and

follows the planetary part of the family of resonant periodic orbits, with decreasing

values of the eccentricities. This evolution continues along the family up to the orbit

3, which is the transition point from planetary to satellite orbits. We remark that the
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Fig. 9 a The evolution, in the eccentricity space, of the system under the dissipative force
(Eq. 1), for n = 7, m1 = 0.00100, m2 = 0.00100 and for the initial conditions 10. The starting
point is on the family. The whole curve represents the evolution of one orbit. b Detail close
to the transition from planetary to satellite orbits. The family of panel (a) is the same as the
family of Fig. 3a, for ρ = 1.

apparent “cusp” does not imply any discontinuity, as explained in section 3.1. In Fig.

9b we present the detail of panel (a) in the vicinity of the transition point. The orbit

3 is at the edge of the “cusp” and the orbit 3-1 corresponds to the Hill sphere, as

explained bellow. From this point on, the system evolves along the satellite part of the

family and ends up to a close binary of P1 around P2 (planet-satellite system) whose

center of mass revolves around the star in an almost circular orbit.

In Fig. 9 we studied the case where the two planetary masses are equal. We repeat

now this work by studying the case where the planetary masses are different. A typical

case is shown in Fig. 10 for the masses m1 = 0.00010, m2 = 0.00100 and starting from

a periodic orbit with initial conditions

a1 = 2.27306 a2 = 2.26067

e1 = 0.51134 e2 = 0.8869

ω1 = 0 ω2 = π

M1 = π M2 = 0

(11)

We checked that in all other cases, with different masses, the evolution is qualitatively

the same.

The continuous evolution along the family of periodic orbits, from planetary to

satellite orbits, is shown in Fig. 11 in three typical orbits on the planetary part (orbit

1, orbit 2 and orbit 3-0) and an orbit on the satellite part (orbit 3-1), just after the

transition point. This series of orbits shows the transition from planetary to satellite

orbits under a continuous process. In Fig. 12 we present the detail of the orbits 3-0

and 3-1 shown in Fig. 11 and also the satellite orbit 4.

In Fig. 13a we present the relative motion of the planet P1 around the planet P2,

at the transition point (orbits 3-0 and 3-1) and in Fig. 13b the relative motion of P1

around P2 for the satellite orbit (orbit 4). Note that in this latter case the relative

motion is almost circular. Since the mass of P2 is much larger than the mass of P1,

P2 can be considered as the planet and P1 the satellite. A careful inspection of Fig.
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(a) (b)

Fig. 10 The same as in Fig. 9a,b but for m1 = 0.00010, m2 = 0.00100 and for the initial
conditions 11. The orbit 3-0 is on the planetary part and the orbit 3-1 is on the satellite part.

(a) (b) (c) (d)

Fig. 11 Four typical orbits along the continuous evolution presented in Figs. 10a,b, at the
corresponding numbers: a The orbit 1: large eccentricities. b The orbit 2: intermediate eccen-
tricities. c The orbit 3-0 on the planetary part, just before the transition point. The motion is
close to a satellite orbit. d The orbit 3-1 on the satellite part, just after the transition point.

(a) (b) (c)

Fig. 12 Detail of Fig. 11: a The orbit 3-0. The two planets move close to each other. b The
orbit 3-1. Trapping in a satellite orbit where P2 moves in an almost circular orbit. c The orbit

4. Trapping in a close satellite orbit.
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(a) (b) (c)

Fig. 13 The relative motion of P1 around P2 for a The transition orbits 3-0, 3-1 and b The
satellite orbit 4 of Fig. 12. This latter orbit is almost circular. c The variation of the distance
between P1 and P2 of the orbits of panels (a) and (b) for one revolution.

(a) (b)

Fig. 14 a The evolution of the ratio f12/f02 of the forces between the two small bodies (f12)
and the attraction from the star (f02). The transition point from planetary to satellite orbits
is at t ≈ 3.4× 107. b The evolution in time of the distance R12 between the two small bodies.
The Hill sphere is at the distance R12 = 0.11.

12b reveals that P2 revolves around the star in an almost circular orbit and P1 moves

around the star in a “wave like” orbit. Note that the orbit 3-0 could also be considered

as a satellite motion, although the planet-satellite distance is not small.

In Fig. 13c we present the variation of the distance R12 between P1 and P2, during

one revolution, for the transition orbits 3-0 and 3-1. Note that this variation is quite

small. For comparison, we also show the variation of the distance between P1 and P2

for the satellite orbit 4, where it is clear that this distance is close to zero.

4.2 Transition to satellite orbits and the Hill sphere

In order to understand the transition from planetary to satellite orbits, along the

continuous evolution of the system, we studied the change of the ratio f12/f02 of

the gravitational forces between the star and P2 (f02) and between P1 and P2 (f12).

This is shown in Fig. 14a. We note that there is a transition point at t ≈ 3.4 × 107,

where the ratio f12/f02 of the forces increases exponentially, from almost zero values

for t < 3.4 × 107. This point coincides with the transition from planetary to satellite
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orbits, along the evolution of Fig. 10. However this transition is not sharp and an

accurate definition of the exact transition point cannot be given in this approach.

The mechanism of transition from planetary motion to trapping in satellite motion

is studied by computing the radius, rH , of the Hill sphere along the evolution of the

system. This radius, in the circular restricted three body problem approximation, is

given by the equation (Murray and Dermott, 1999)

rH = a2
3

√

m2

3m0

, (12)

where a2 is the semimajor axis of the planet P2 of mass m2, provided that P2 moves in

an almost circular orbit and the mass of P1 is much smaller. We checked that beyond

the orbit 3-0 on the planetary part of the evolution (Fig. 10a), the center of mass of P1

and P2 moves around the star in an almost circular orbit with radius a = 1.56. Also,

the motion of the center of mass of the two planets almost coincides with the motion

of P2 around the star, as is shown in Fig. 15 and in Figs. 12a,b, for the orbits 3-0 and

3-1. The same formula 12 has been used for the elliptic restricted three body problem,

where the semimajor axis a2 is replaced by a(1− e) (Makó et al. 2010). Note however

that in the elliptic restricted problem there is no energy integral to restrict the motion.

In the general three body problem model, the formula

rH =
a1 + a2

2
3

√

m1 +m2

3m0

, (13)

has been used for the radius of the Hill sphere (Smith and Lissauer 2010), where a1, a2

are the semimajor axes of the two planets and m1, m2 their masses. However, in the

general three body model there do not exist closed surfaces that restrict the motion

(Marchal and Bozis 1982), so the above formula can be considered as an approximation

only. In our case we can easily check that both formulas 12 and 13 give almost the same

results for rH .

We computed rH along the evolution of Fig. 10a, starting before the transition

point, using Eq. 12 for a2 = 1.56, m1 = 0.00010, m2 = 0.00100 and m0 = 0.99890

and we found rH = 0.11 (note that after the transition point it is a2 ≈ 1.56). This is

shown in Fig. 14b, where we have marked the position of the transition point (orbit

3) and the position of the orbit 3-1, where the distance between P1 and P2 is at the

limit of the Hill sphere. From this figure it is clear that beyond the transition point

the two bodies P1 and P2 lie inside the Hill sphere, and consequently form a satellite

system. We remark that the stability region A shown in Fig. 8 starts at a point that

corresponds to the cusp at the transition from planetary to satellite orbits. The Hill

sphere, which is estimated by the formulas (12) and (13), starts from a point which is

located inside the region A.

In addition to the above, we present in Fig. 15a the change of the semimajor

axes during the migration process. The transition point from planetary to satellite

orbits is indicated. In this figure we also present the evolution of the total energy of

the system, which is decreasing. The semimajor axes almost coincide, since we are at

the 1/1 resonance, and decrease up to the transition point from planetary to satellite

orbits. The curves representing the evolution of a1 and a2 after the transition point

(dotted lines) are meaningless because, as we have already mentioned, the gravitational

interaction between P1 and P2 dominates the attraction from the star. From this point
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(a) (b)

Fig. 15 a The change of the semimajor axes a1, a2 and of the total energy E of the system
for the evolution from planetary to satellite orbits (see Fig. 10). The radius rc ≈ 1.56 of the
circular orbit of the center of mass of P1 and P2 is also shown, starting a little before the
transition point. b The distances R01 and R02 of the planets from the star. They coincide at
a1 ≈ a2 = 1.56.

on we consider the radius rc of the center of mass of P1, P2 around the star, which is

almost constant (rc = 1.56).

In Fig. 15b the distances of P1 (R01) and of P2 (R02) from the star, along the

evolution are presented. They are large along the planetary section, because the ec-

centricities are large, and also the variation during one revolution is large. After the

transition point the planets are trapped in a satellite orbit with their center of mass

revolving around the star in an almost circular orbit with rc ≈ 1.56.

From all the above it is clear that in our case the Hill sphere, computed by 12 or

13 is close to the transition area. Thus we come to the conclusion that the trapping

of the planetary system to a satellite system along its evolution under the dissipative

force, Eq. 1, is due to the fact that the two planets eventually come close enough to

enter the Hill sphere, and from that point on they form a close binary. However, even

before the system reaches the Hill sphere, enters the stability region A where we have

“satellite-like” motion too.

4.3 Variation of semimajor axes and eccentricities

In Fig. 16 we present the variation of the semimajor axes and the eccentricities, for

one revolution, for two typical orbits along the evolution process shown in Fig. 9a.

Both orbits are on the planetary part, but orbit 2 has large eccentricities and orbit 3-0

is close to the transition point to satellite motion. In panels (a) and (c) we present

the variation of the eccentricities and the semimajor axes, respectively for the orbit 2

and in panels (b) and (d) the evolution of the eccentricities and the semimajor axes,

respectively, for the orbit 3-0. The behavior is different for these two orbits: For the

planetary orbit 2 the maximum of e1 occurs when e2 is minimum, and vice versa. The

opposite is true for the orbit 3-0, where the maximum, or minimum, take place at the

same time.
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Fig. 16 a The variation of the eccentricities along the planetary orbit 2 of Fig10a. b The
same as in panel (a), for the satellite orbit 3-0 in Fig.10a. c The variation of the semimajor
axes of the orbit 2. d The variation of the semimajor axes along the satellite orbit 3-0.

(a) (b)

Fig. 17 a Typical types of evolution when the starting point is not on the family of periodic
orbits. b The variation of the planetary semimajor axis and the decreasing of the energy along
the evolutions of panel (a).

4.4 Starting nearby a periodic orbit

Another set of numerical studies performed refers to the cases when the starting point

is not on the family of periodic orbits, but there is a deviation either in the initial values

of the semimajor axes, implying that we are not exactly on the 1/1 resonance (but not

far from it), or a deviation in the initial values of the eccentricities, keeping the 1/1
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resonance. An example of a typical evolution is shown in Fig. 17a. We find that the

system evolves in this case all the way along the planetary part of the family, librating

around the resonant family with decreasing amplitude. Alternatively, the orbit may

move at the beginning far from the family, but later is attracted to the family librating

around it as before. However, when the system comes close to the transition point from

planetary to satellite orbits, it enters a chaotic region and is finally destabilized. This

is due to the fact that the region of stability close to the transition point is very small

(see section 3.3). In the present case, the smaller body, P1, is ejected from the system

and we are left with a stable two-body system consisting of the star and P2. The same

evolution appears if there is a deviation in the symmetry, either by changing the angle

∆ω between the line of apsides of P1 and P2, up to ∆ω = 150◦, or by changing the

staring point of P2 at t = 0 by changing the angle M2, up to M2 = 60◦, from the

initial value M2 = 0◦. In Fig. 17b we present the variation of the semimajor axes. The

evolution stops close to the transition point, because, as mentioned above, the stability

region is very small and the system enters a chaotic zone.

5 Conclusions

We studied the dynamics of planetary and co-orbital motion at the 1/1 resonance and

the possibility of the transition from a planetary system, where the two planets revolve

around the star in eccentric orbits, to a satellite system where the former two planets

form a close pair (planet-satellite) whose center of mass revolves around the star.

In the conservative general three body problem there exists a family of stable

periodic orbits, which are symmetric with respect to the x-axis of the rotating frame

xOy given in Fig. 1b. For any planetary mass ratio, the family shows a cusp when it is

presented in the eccentricity plane e1−e2. This cusp separates the family in two parts:

one with planetary-like orbits and one with satellite-like orbits. Around any periodic

orbit of the above family there is a region of phase space with regular orbits. However

at the cusp or, equivalently, at the transition point from planetary to satellite orbits,

this region becomes very narrow.

It is found that the transition from planetary to satellite orbits is possible under a

migration process, due to a drag force (Eq. 1) exerted on the planetary system. The

starting point is a resonant periodic orbit, at the 1/1 resonance. This orbit belongs

to the family of stable periodic orbits mentioned above. When the orbit evolves along

the planetary part the gravitational attraction from the star on the two planets domi-

nates the gravitational interaction between these bodies but along the satellite part the

gravitational interaction between the two small bodies dominates. Along the planetary

part the eccentricities start with large values and decrease along the family up to the

transition point to the satellite part. From that point on the two small bodies form a

close binary (a planet-satellite system) whose center of mass revolves around the star

in an almost circular orbit. It is important to note that this is a single family, presented

in the space of initial conditions (9) by a smooth curve. The system that starts from

a periodic orbit of the planetary part evolves, under the drag force, along the family,

all the way and ends to a satellite orbit. This means that it is, in principle, possible

to generate a satellite system starting from a planetary system. A typical evolution of

this kind is presented in Figs. 9 and 10.

The above mentioned transition takes place when the starting point of the system

is very close to a periodic orbit of the 1/1 resonant stable symmetric family. If the
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starting point deviates from the exact periodic motion, the evolution of the system

follows the planetary part only, up to the transition point (the cusp), but from that

point on it follows a chaotic motion, because the region of stability at that part of the

resonant family is small. Eventually, the smaller body is ejected and we are left with a

two-body system, consisting of the star and the larger of the small bodies. Thus, the

transition from the planetary orbits to the satellite orbits, i.e. passage to the region A

in phase space (see Fig. 7 and 8), seems to be of low probability.

6 Appendix

In the following tables we provide the initial conditions of the orbits discussed in section

4 and indicated in figures 9a and 10a.

Table 1 Initial conditions in the rotating frame of the orbits indicated in Fig. 9a. For all cases
it is ẋ1 = 0, y2 = 0, ẋ2 = 0 (m1 = m2 = 0.001)

orbit x1 x2 ẏ2 θ̇
1 16.714675 0.3737924 2.2346161 0.0032573
2 7.8752676 2.7017427 0.6530591 0.0323985
3 5.2407941 4.5255771 0.1414788 0.0783017
3-1 5.1026149 4.6591849 0.1160025 0.0808149
4 4.9136557 4.8521092 0.1849638 0.0736204

Table 2 Initial conditions in the inertial frame of the orbits given in Table 1. Initial conditions
are given for the bodies P1 and P2. The center of mass of the system (including the star) is in

rest at (0,0) and Y1 = Y2 = 0, Ẋ1 = Ẋ2 = 0.

orbit X1 Ẏ1 X2 Ẏ2

1 16.714302 0.0522089 0.3734186 2.2335978
2 7.8725659 0.2544063 2.6990410 0.7398509
3 5.2362685 0.4098672 4.5210515 0.4953433
3-1 5.0979557 0.4118748 4.6545257 0.4920415
4 4.9088036 0.3612031 4.8472571 0.5416358

Table 3 Initial conditions in the rotating frame of the orbits indicated in Fig. 10a. For all
cases it is ẋ1 = 0, y2 = 0, ẋ2 = 0 (m1 = 0.0001, m2 = 0.001)

orbit x1 x2 ẏ2 θ̇
1 3.4344156 0.2555475 2.6871776 0.1097631
2 2.7079902 1.1148626 0.9401043 0.1310847
3-0 1.9213229 1.5236791 0.3227701 0.3263972
3 1.7185587 1.5425822 0.1886959 0.4040573
3-1 1.6601637 1.5483772 0.1622589 0.4193338
4 1.5792598 1.5565925 0.2294687 0.3799935
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Table 4 Initial conditions in the inertial frame of the orbits given in Table 4. Initial conditions
are given for the bodies P1 and P2. The center of mass of the system (including the star) is in

rest at (0,0) and Y1 = Y2 = 0, Ẋ1 = Ẋ2 = 0.

orbit X1 Ẏ1 X2 Ẏ2

1 3.4341601 0.3742569 0.2552920 2.7125121
2 2.7068753 0.3538898 1.1137477 1.0851595
3-0 1.9197992 0.6262943 1.5221554 0.8192746
3 1.7170161 0.6935842 1.5410396 0.8111755
3-1 1.6586153 0.6953512 1.5468288 0.8107342
4 1.5777032 0.5992875 1.5550359 0.8201428
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